Files
neon/test_runner/batch_others/test_snapfiles_gc.py
Heikki Linnakangas 2319e0ec8f Define a layer's start and end bounds more precisely.
After this, a layer's start bound is always defined to be inclusive, and
end bound exclusive.

For example, if you have a layer in the range 100-200, that layer can be
used for GetPage@LSN requests at LSN 100, 199, or anything in between.
But for LSN 200, you need to look at the next layer (if one exists).

This is one part of a fix for https://github.com/zenithdb/zenith/issues/517.
After this, the page server shouldn't create layers for the same segment
with the same LSN, which avoids the issue. However, the same thing would
still happen, if you managed to create layers with same start LSN again.
That could happen e.g. if you had two page servers running, or in some
weird crash/restart scenario, or due to bugs or features added later. The
next commit makes the layer map more robust, so that it tolerates that
situation without deleting wrong files.
2021-09-24 14:10:49 +03:00

134 lines
7.2 KiB
Python

from contextlib import closing
import psycopg2.extras
import time;
pytest_plugins = ("fixtures.zenith_fixtures")
def print_gc_result(row):
print("GC duration {elapsed} ms".format_map(row));
print(" REL total: {layer_relfiles_total}, needed_by_cutoff {layer_relfiles_needed_by_cutoff}, needed_by_branches: {layer_relfiles_needed_by_branches}, not_updated: {layer_relfiles_not_updated}, needed_as_tombstone {layer_relfiles_needed_as_tombstone}, removed: {layer_relfiles_removed}, dropped: {layer_relfiles_dropped}".format_map(row))
print(" NONREL total: {layer_nonrelfiles_total}, needed_by_cutoff {layer_nonrelfiles_needed_by_cutoff}, needed_by_branches: {layer_nonrelfiles_needed_by_branches}, not_updated: {layer_nonrelfiles_not_updated}, needed_as_tombstone {layer_nonrelfiles_needed_as_tombstone}, removed: {layer_nonrelfiles_removed}, dropped: {layer_nonrelfiles_dropped}".format_map(row))
#
# Test Garbage Collection of old layer files
#
# This test is pretty tightly coupled with the current implementation of layered
# storage, in layered_repository.rs.
#
def test_layerfiles_gc(zenith_cli, pageserver, postgres, pg_bin):
zenith_cli.run(["branch", "test_layerfiles_gc", "empty"])
pg = postgres.create_start('test_layerfiles_gc')
with closing(pg.connect()) as conn:
with conn.cursor() as cur:
with closing(pageserver.connect()) as psconn:
with psconn.cursor(cursor_factory = psycopg2.extras.DictCursor) as pscur:
# Get the timeline ID of our branch. We need it for the 'do_gc' command
cur.execute("SHOW zenith.zenith_timeline")
timeline = cur.fetchone()[0]
# Create a test table
cur.execute("CREATE TABLE foo(x integer)")
cur.execute("INSERT INTO foo VALUES (1)")
cur.execute("select relfilenode from pg_class where oid = 'foo'::regclass");
row = cur.fetchone();
print("relfilenode is {}", row[0]);
# Run GC, to clear out any garbage left behind in the catalogs by
# the CREATE TABLE command. We want to have a clean slate with no garbage
# before running the actual tests below, otherwise the counts won't match
# what we expect.
#
# Also run vacuum first to make it less likely that autovacuum or pruning
# kicks in and confuses our numbers.
cur.execute("VACUUM")
# delete the row, to update the Visibility Map. We don't want the VM
# update to confuse our numbers either.
cur.execute("DELETE FROM foo")
print("Running GC before test")
pscur.execute(f"do_gc {pageserver.initial_tenant} {timeline} 0")
row = pscur.fetchone()
print_gc_result(row);
# remember the number of files
layer_relfiles_remain = row['layer_relfiles_total'] - row['layer_relfiles_removed']
assert layer_relfiles_remain > 0
# Insert a row and run GC. Checkpoint should freeze the layer
# so that there is only the most recent image layer left for the rel,
# removing the old image and delta layer.
print("Inserting one row and running GC")
cur.execute("INSERT INTO foo VALUES (1)")
pscur.execute(f"do_gc {pageserver.initial_tenant} {timeline} 0")
row = pscur.fetchone()
print_gc_result(row);
assert row['layer_relfiles_total'] == layer_relfiles_remain + 2
assert row['layer_relfiles_removed'] == 2
assert row['layer_relfiles_dropped'] == 0
# Insert two more rows and run GC.
# This should create new image and delta layer file with the new contents, and
# then remove the old one image and the just-created delta layer.
print("Inserting two more rows and running GC")
cur.execute("INSERT INTO foo VALUES (2)")
cur.execute("INSERT INTO foo VALUES (3)")
pscur.execute(f"do_gc {pageserver.initial_tenant} {timeline} 0")
row = pscur.fetchone()
print_gc_result(row);
assert row['layer_relfiles_total'] == layer_relfiles_remain + 2
assert row['layer_relfiles_removed'] == 2
assert row['layer_relfiles_dropped'] == 0
# Do it again. Should again create two new layer files and remove old ones.
print("Inserting two more rows and running GC")
cur.execute("INSERT INTO foo VALUES (2)")
cur.execute("INSERT INTO foo VALUES (3)")
pscur.execute(f"do_gc {pageserver.initial_tenant} {timeline} 0")
row = pscur.fetchone()
print_gc_result(row);
assert row['layer_relfiles_total'] == layer_relfiles_remain + 2
assert row['layer_relfiles_removed'] == 2
assert row['layer_relfiles_dropped'] == 0
# Run GC again, with no changes in the database. Should not remove anything.
print("Run GC again, with nothing to do")
pscur.execute(f"do_gc {pageserver.initial_tenant} {timeline} 0")
row = pscur.fetchone()
print_gc_result(row);
assert row['layer_relfiles_total'] == layer_relfiles_remain
assert row['layer_relfiles_removed'] == 0
assert row['layer_relfiles_dropped'] == 0
#
# Test DROP TABLE checks that relation data and metadata was deleted by GC from object storage
#
print("Drop table and run GC again");
cur.execute("DROP TABLE foo")
pscur.execute(f"do_gc {pageserver.initial_tenant} {timeline} 0")
row = pscur.fetchone()
print_gc_result(row);
# We still cannot remove the latest layers
# because they serve as tombstones for earlier layers.
assert row['layer_relfiles_dropped'] == 0
# Each relation fork is counted separately, hence 3.
assert row['layer_relfiles_needed_as_tombstone'] == 3
# The catalog updates also create new layer files of the catalogs, which
# are counted as 'removed'
assert row['layer_relfiles_removed'] > 0
# TODO Change the test to check actual CG of dropped layers.
# Each relation fork is counted separately, hence 3.
#assert row['layer_relfiles_dropped'] == 3
# TODO: perhaps we should count catalog and user relations separately,
# to make this kind of testing more robust