Files
neon/pageserver/test_data
John Spray 1678dea20f pageserver: add layer visibility calculation (#8511)
## Problem

We recently added a "visibility" state to layers, but nothing
initializes it.

Part of:
- #8398 

## Summary of changes

- Add a dependency on `range-set-blaze`, which is used as a fast
incrementally updated alternative to KeySpace. We could also use this to
replace the internals of KeySpaceRandomAccum if we wanted to. Writing a
type that does this kind of "BtreeMap & merge overlapping entries" thing
isn't super complicated, but no reason to write this ourselves when
there's a third party impl available.
- Add a function to layermap to calculate visibilities for each layer
- Add a function to Timeline to call into layermap and then apply these
visibilities to the Layer objects.
- Invoke the calculation during startup, after image layer creations,
and when removing branches. Branch removal and image layer creation are
the two ways that a layer can go from Visible to Covered.
- Add unit test & benchmark for the visibility calculation
- Expose `pageserver_visible_physical_size` metric, which should always
be <= `pageserver_remote_physical_size`.
- This metric will feed into the /v1/utilization endpoint later: the
visible size indicates how much space we would like to use on this
pageserver for this tenant.
- When `pageserver_visible_physical_size` is greater than
`pageserver_resident_physical_size`, this is a sign that the tenant has
long-idle branches, which result in layers that are visible in
principle, but not used in practice.

This does not keep visibility hints up to date in all cases:
particularly, when creating a child timeline, any previously covered
layers will not get marked Visible until they are accessed.

Updates after image layer creation could be implemented as more of a
special case, but this would require more new code: the existing depth
calculation code doesn't maintain+yield the list of deltas that would be
covered by an image layer.

## Performance

This operation is done rarely (at startup and at timeline deletion), so
needs to be efficient but not ultra-fast.

There is a new `visibility` bench that measures runtime for a synthetic
100k layers case (`sequential`) and a real layer map (`real_map`) with
~26k layers.

The benchmark shows runtimes of single digit milliseconds (on a ryzen
7950). This confirms that the runtime shouldn't be a problem at startup
(as we already incur S3-level latencies there), but that it's slow
enough that we definitely shouldn't call it more often than necessary,
and it may be worthwhile to optimize further later (things like: when
removing a branch, only bother scanning layers below the branchpoint)

```
visibility/sequential   time:   [4.5087 ms 4.5894 ms 4.6775 ms]
                        change: [+2.0826% +3.9097% +5.8995%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 24 outliers among 100 measurements (24.00%)
  2 (2.00%) high mild
  22 (22.00%) high severe
min: 0/1696070, max: 93/1C0887F0
visibility/real_map     time:   [7.0796 ms 7.0832 ms 7.0871 ms]
                        change: [+0.3900% +0.4505% +0.5164%] (p = 0.00 < 0.05)
                        Change within noise threshold.
Found 4 outliers among 100 measurements (4.00%)
  3 (3.00%) high mild
  1 (1.00%) high severe
min: 0/1696070, max: 93/1C0887F0
visibility/real_map_many_branches
                        time:   [4.5285 ms 4.5355 ms 4.5434 ms]
                        change: [-1.0012% -0.8004% -0.5969%] (p = 0.00 < 0.05)
                        Change within noise threshold.
```
2024-08-01 09:25:35 +00:00
..
2023-11-28 12:50:53 -05:00