Files
neon/libs/desim/src/node_os.rs
Arthur Petukhovsky 4be2223a4c Discrete event simulation for safekeepers (#5804)
This PR contains the first version of a
[FoundationDB-like](https://www.youtube.com/watch?v=4fFDFbi3toc)
simulation testing for safekeeper and walproposer.

### desim

This is a core "framework" for running determenistic simulation. It
operates on threads, allowing to test syncronous code (like walproposer).

`libs/desim/src/executor.rs` contains implementation of a determenistic
thread execution. This is achieved by blocking all threads, and each
time allowing only a single thread to make an execution step. All
executor's threads are blocked using `yield_me(after_ms)` function. This
function is called when a thread wants to sleep or wait for an external
notification (like blocking on a channel until it has a ready message).

`libs/desim/src/chan.rs` contains implementation of a channel (basic
sync primitive). It has unlimited capacity and any thread can push or
read messages to/from it.

`libs/desim/src/network.rs` has a very naive implementation of a network
(only reliable TCP-like connections are supported for now), that can
have arbitrary delays for each package and failure injections for
breaking connections with some probability.

`libs/desim/src/world.rs` ties everything together, to have a concept of
virtual nodes that can have network connections between them.

### walproposer_sim

Has everything to run walproposer and safekeepers in a simulation.

`safekeeper.rs` reimplements all necesary stuff from `receive_wal.rs`,
`send_wal.rs` and `timelines_global_map.rs`.

`walproposer_api.rs` implements all walproposer callback to use
simulation library.

`simulation.rs` defines a schedule – a set of events like `restart <sk>`
or `write_wal` that should happen at time `<ts>`. It also has code to
spawn walproposer/safekeeper threads and provide config to them.

### tests

`simple_test.rs` has tests that just start walproposer and 3 safekeepers
together in a simulation, and tests that they are not crashing right
away.

`misc_test.rs` has tests checking more advanced simulation cases, like
crashing or restarting threads, testing memory deallocation, etc.

`random_test.rs` is the main test, it checks thousands of random seeds
(schedules) for correctness. It roughly corresponds to running a real
python integration test in an environment with very unstable network and
cpu, but in a determenistic way (each seed results in the same execution
log) and much much faster.

Closes #547

---------

Co-authored-by: Arseny Sher <sher-ars@yandex.ru>
2024-02-12 20:29:57 +00:00

55 lines
1.2 KiB
Rust

use std::sync::Arc;
use rand::Rng;
use crate::proto::NodeEvent;
use super::{
chan::Chan,
network::TCP,
world::{Node, NodeId, World},
};
/// Abstraction with all functions (aka syscalls) available to the node.
#[derive(Clone)]
pub struct NodeOs {
world: Arc<World>,
internal: Arc<Node>,
}
impl NodeOs {
pub fn new(world: Arc<World>, internal: Arc<Node>) -> NodeOs {
NodeOs { world, internal }
}
/// Get the node id.
pub fn id(&self) -> NodeId {
self.internal.id
}
/// Opens a bidirectional connection with the other node. Always successful.
pub fn open_tcp(&self, dst: NodeId) -> TCP {
self.world.open_tcp(dst)
}
/// Returns a channel to receive node events (socket Accept and internal messages).
pub fn node_events(&self) -> Chan<NodeEvent> {
self.internal.node_events()
}
/// Get current time.
pub fn now(&self) -> u64 {
self.world.now()
}
/// Generate a random number in range [0, max).
pub fn random(&self, max: u64) -> u64 {
self.internal.rng.lock().gen_range(0..max)
}
/// Append a new event to the world event log.
pub fn log_event(&self, data: String) {
self.internal.log_event(data)
}
}