Files
neon/libs/wal_decoder/src/decoder.rs
Heikki Linnakangas 1950ccfe33 Eliminate dependency from pageserver_api to postgres_ffi (#12273)
Introduce a separate `postgres_ffi_types` crate which contains a few
types and functions that were used in the API. `postgres_ffi_types` is a
much small crate than `postgres_ffi`, and it doesn't depend on bindgen
or the Postgres C headers.

Move NeonWalRecord and Value types to wal_decoder crate. They are only
used in the pageserver-safekeeper "ingest" API. The rest of the ingest
API types are defined in wal_decoder, so move these there as well.
2025-06-19 10:31:27 +00:00

984 lines
45 KiB
Rust

//! This module contains logic for decoding and interpreting
//! raw bytes which represent a raw Postgres WAL record.
use std::collections::HashMap;
use bytes::{Buf, Bytes};
use pageserver_api::key::rel_block_to_key;
use pageserver_api::reltag::{RelTag, SlruKind};
use pageserver_api::shard::ShardIdentity;
use postgres_ffi::pg_constants;
use postgres_ffi::walrecord::*;
use postgres_ffi_types::forknum::VISIBILITYMAP_FORKNUM;
use utils::lsn::Lsn;
use crate::models::*;
use crate::serialized_batch::SerializedValueBatch;
impl InterpretedWalRecord {
/// Decode and interpreted raw bytes which represent one Postgres WAL record.
/// Data blocks which do not match any of the provided shard identities are filtered out.
/// Shard 0 is a special case since it tracks all relation sizes. We only give it
/// the keys that are being written as that is enough for updating relation sizes.
pub fn from_bytes_filtered(
buf: Bytes,
shards: &[ShardIdentity],
next_record_lsn: Lsn,
pg_version: u32,
) -> anyhow::Result<HashMap<ShardIdentity, InterpretedWalRecord>> {
let mut decoded = DecodedWALRecord::default();
decode_wal_record(buf, &mut decoded, pg_version)?;
let xid = decoded.xl_xid;
let flush_uncommitted = if decoded.is_dbase_create_copy(pg_version) {
FlushUncommittedRecords::Yes
} else {
FlushUncommittedRecords::No
};
let mut shard_records: HashMap<ShardIdentity, InterpretedWalRecord> =
HashMap::with_capacity(shards.len());
for shard in shards {
shard_records.insert(
*shard,
InterpretedWalRecord {
metadata_record: None,
batch: SerializedValueBatch::default(),
next_record_lsn,
flush_uncommitted,
xid,
},
);
}
MetadataRecord::from_decoded_filtered(
&decoded,
&mut shard_records,
next_record_lsn,
pg_version,
)?;
SerializedValueBatch::from_decoded_filtered(
decoded,
&mut shard_records,
next_record_lsn,
pg_version,
)?;
Ok(shard_records)
}
}
impl MetadataRecord {
/// Populates the given `shard_records` with metadata records from this WAL record, if any,
/// discarding those belonging to other shards.
///
/// Only metadata records relevant for the given shards is emitted. Currently, most metadata
/// records are broadcast to all shards for simplicity, but this should be improved.
fn from_decoded_filtered(
decoded: &DecodedWALRecord,
shard_records: &mut HashMap<ShardIdentity, InterpretedWalRecord>,
next_record_lsn: Lsn,
pg_version: u32,
) -> anyhow::Result<()> {
// Note: this doesn't actually copy the bytes since
// the [`Bytes`] type implements it via a level of indirection.
let mut buf = decoded.record.clone();
buf.advance(decoded.main_data_offset);
// First, generate metadata records from the decoded WAL record.
let metadata_record = match decoded.xl_rmid {
pg_constants::RM_HEAP_ID | pg_constants::RM_HEAP2_ID => {
Self::decode_heapam_record(&mut buf, decoded, pg_version)?
}
pg_constants::RM_NEON_ID => Self::decode_neonmgr_record(&mut buf, decoded, pg_version)?,
// Handle other special record types
pg_constants::RM_SMGR_ID => Self::decode_smgr_record(&mut buf, decoded)?,
pg_constants::RM_DBASE_ID => Self::decode_dbase_record(&mut buf, decoded, pg_version)?,
pg_constants::RM_TBLSPC_ID => {
tracing::trace!("XLOG_TBLSPC_CREATE/DROP is not handled yet");
None
}
pg_constants::RM_CLOG_ID => Self::decode_clog_record(&mut buf, decoded, pg_version)?,
pg_constants::RM_XACT_ID => {
Self::decode_xact_record(&mut buf, decoded, next_record_lsn)?
}
pg_constants::RM_MULTIXACT_ID => {
Self::decode_multixact_record(&mut buf, decoded, pg_version)?
}
pg_constants::RM_RELMAP_ID => Self::decode_relmap_record(&mut buf, decoded)?,
// This is an odd duck. It needs to go to all shards.
// Since it uses the checkpoint image (that's initialized from CHECKPOINT_KEY
// in WalIngest::new), we have to send the whole DecodedWalRecord::record to
// the pageserver and decode it there.
//
// Alternatively, one can make the checkpoint part of the subscription protocol
// to the pageserver. This should work fine, but can be done at a later point.
pg_constants::RM_XLOG_ID => {
Self::decode_xlog_record(&mut buf, decoded, next_record_lsn)?
}
pg_constants::RM_LOGICALMSG_ID => {
Self::decode_logical_message_record(&mut buf, decoded)?
}
pg_constants::RM_STANDBY_ID => Self::decode_standby_record(&mut buf, decoded)?,
pg_constants::RM_REPLORIGIN_ID => Self::decode_replorigin_record(&mut buf, decoded)?,
_unexpected => {
// TODO: consider failing here instead of blindly doing something without
// understanding the protocol
None
}
};
// Next, filter the metadata record by shard.
for (shard, record) in shard_records.iter_mut() {
match metadata_record {
Some(
MetadataRecord::Heapam(HeapamRecord::ClearVmBits(ref clear_vm_bits))
| MetadataRecord::Neonrmgr(NeonrmgrRecord::ClearVmBits(ref clear_vm_bits)),
) => {
// Route VM page updates to the shards that own them. VM pages are stored in the VM fork
// of the main relation. These are sharded and managed just like regular relation pages.
// See: https://github.com/neondatabase/neon/issues/9855
let is_local_vm_page = |heap_blk| {
let vm_blk = pg_constants::HEAPBLK_TO_MAPBLOCK(heap_blk);
shard.is_key_local(&rel_block_to_key(clear_vm_bits.vm_rel, vm_blk))
};
// Send the old and new VM page updates to their respective shards.
let updated_old_heap_blkno = clear_vm_bits
.old_heap_blkno
.filter(|&blkno| is_local_vm_page(blkno));
let updated_new_heap_blkno = clear_vm_bits
.new_heap_blkno
.filter(|&blkno| is_local_vm_page(blkno));
// If neither VM page belongs to this shard, discard the record.
if updated_old_heap_blkno.is_some() || updated_new_heap_blkno.is_some() {
// Clone the record and update it for the current shard.
let mut for_shard = metadata_record.clone();
match for_shard {
Some(
MetadataRecord::Heapam(HeapamRecord::ClearVmBits(
ref mut clear_vm_bits,
))
| MetadataRecord::Neonrmgr(NeonrmgrRecord::ClearVmBits(
ref mut clear_vm_bits,
)),
) => {
clear_vm_bits.old_heap_blkno = updated_old_heap_blkno;
clear_vm_bits.new_heap_blkno = updated_new_heap_blkno;
record.metadata_record = for_shard;
}
_ => {
unreachable!("for_shard is a clone of what we checked above")
}
}
}
}
Some(MetadataRecord::LogicalMessage(LogicalMessageRecord::Put(_))) => {
// Filter LogicalMessage records (AUX files) to only be stored on shard zero
if shard.is_shard_zero() {
record.metadata_record = metadata_record;
// No other shards should receive this record, so we stop traversing shards early.
break;
}
}
_ => {
// All other metadata records are sent to all shards.
record.metadata_record = metadata_record.clone();
}
}
}
Ok(())
}
fn decode_heapam_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
pg_version: u32,
) -> anyhow::Result<Option<MetadataRecord>> {
// Handle VM bit updates that are implicitly part of heap records.
// First, look at the record to determine which VM bits need
// to be cleared. If either of these variables is set, we
// need to clear the corresponding bits in the visibility map.
let mut new_heap_blkno: Option<u32> = None;
let mut old_heap_blkno: Option<u32> = None;
let mut flags = pg_constants::VISIBILITYMAP_VALID_BITS;
match pg_version {
14 => {
if decoded.xl_rmid == pg_constants::RM_HEAP_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP_INSERT {
let xlrec = v14::XlHeapInsert::decode(buf);
assert_eq!(0, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_DELETE {
let xlrec = v14::XlHeapDelete::decode(buf);
if (xlrec.flags & pg_constants::XLH_DELETE_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_UPDATE
|| info == pg_constants::XLOG_HEAP_HOT_UPDATE
{
let xlrec = v14::XlHeapUpdate::decode(buf);
// the size of tuple data is inferred from the size of the record.
// we can't validate the remaining number of bytes without parsing
// the tuple data.
if (xlrec.flags & pg_constants::XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks.last().unwrap().blkno);
}
if (xlrec.flags & pg_constants::XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) != 0 {
// PostgreSQL only uses XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED on a
// non-HOT update where the new tuple goes to different page than
// the old one. Otherwise, only XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED is
// set.
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_LOCK {
let xlrec = v14::XlHeapLock::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else if decoded.xl_rmid == pg_constants::RM_HEAP2_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP2_MULTI_INSERT {
let xlrec = v14::XlHeapMultiInsert::decode(buf);
let offset_array_len =
if decoded.xl_info & pg_constants::XLOG_HEAP_INIT_PAGE > 0 {
// the offsets array is omitted if XLOG_HEAP_INIT_PAGE is set
0
} else {
size_of::<u16>() * xlrec.ntuples as usize
};
assert_eq!(offset_array_len, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP2_LOCK_UPDATED {
let xlrec = v14::XlHeapLockUpdated::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else {
anyhow::bail!("Unknown RMGR {} for Heap decoding", decoded.xl_rmid);
}
}
15 => {
if decoded.xl_rmid == pg_constants::RM_HEAP_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP_INSERT {
let xlrec = v15::XlHeapInsert::decode(buf);
assert_eq!(0, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_DELETE {
let xlrec = v15::XlHeapDelete::decode(buf);
if (xlrec.flags & pg_constants::XLH_DELETE_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_UPDATE
|| info == pg_constants::XLOG_HEAP_HOT_UPDATE
{
let xlrec = v15::XlHeapUpdate::decode(buf);
// the size of tuple data is inferred from the size of the record.
// we can't validate the remaining number of bytes without parsing
// the tuple data.
if (xlrec.flags & pg_constants::XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks.last().unwrap().blkno);
}
if (xlrec.flags & pg_constants::XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) != 0 {
// PostgreSQL only uses XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED on a
// non-HOT update where the new tuple goes to different page than
// the old one. Otherwise, only XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED is
// set.
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_LOCK {
let xlrec = v15::XlHeapLock::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else if decoded.xl_rmid == pg_constants::RM_HEAP2_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP2_MULTI_INSERT {
let xlrec = v15::XlHeapMultiInsert::decode(buf);
let offset_array_len =
if decoded.xl_info & pg_constants::XLOG_HEAP_INIT_PAGE > 0 {
// the offsets array is omitted if XLOG_HEAP_INIT_PAGE is set
0
} else {
size_of::<u16>() * xlrec.ntuples as usize
};
assert_eq!(offset_array_len, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP2_LOCK_UPDATED {
let xlrec = v15::XlHeapLockUpdated::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else {
anyhow::bail!("Unknown RMGR {} for Heap decoding", decoded.xl_rmid);
}
}
16 => {
if decoded.xl_rmid == pg_constants::RM_HEAP_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP_INSERT {
let xlrec = v16::XlHeapInsert::decode(buf);
assert_eq!(0, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_DELETE {
let xlrec = v16::XlHeapDelete::decode(buf);
if (xlrec.flags & pg_constants::XLH_DELETE_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_UPDATE
|| info == pg_constants::XLOG_HEAP_HOT_UPDATE
{
let xlrec = v16::XlHeapUpdate::decode(buf);
// the size of tuple data is inferred from the size of the record.
// we can't validate the remaining number of bytes without parsing
// the tuple data.
if (xlrec.flags & pg_constants::XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks.last().unwrap().blkno);
}
if (xlrec.flags & pg_constants::XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) != 0 {
// PostgreSQL only uses XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED on a
// non-HOT update where the new tuple goes to different page than
// the old one. Otherwise, only XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED is
// set.
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_LOCK {
let xlrec = v16::XlHeapLock::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else if decoded.xl_rmid == pg_constants::RM_HEAP2_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP2_MULTI_INSERT {
let xlrec = v16::XlHeapMultiInsert::decode(buf);
let offset_array_len =
if decoded.xl_info & pg_constants::XLOG_HEAP_INIT_PAGE > 0 {
// the offsets array is omitted if XLOG_HEAP_INIT_PAGE is set
0
} else {
size_of::<u16>() * xlrec.ntuples as usize
};
assert_eq!(offset_array_len, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP2_LOCK_UPDATED {
let xlrec = v16::XlHeapLockUpdated::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else {
anyhow::bail!("Unknown RMGR {} for Heap decoding", decoded.xl_rmid);
}
}
17 => {
if decoded.xl_rmid == pg_constants::RM_HEAP_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP_INSERT {
let xlrec = v17::XlHeapInsert::decode(buf);
assert_eq!(0, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_DELETE {
let xlrec = v17::XlHeapDelete::decode(buf);
if (xlrec.flags & pg_constants::XLH_DELETE_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_UPDATE
|| info == pg_constants::XLOG_HEAP_HOT_UPDATE
{
let xlrec = v17::XlHeapUpdate::decode(buf);
// the size of tuple data is inferred from the size of the record.
// we can't validate the remaining number of bytes without parsing
// the tuple data.
if (xlrec.flags & pg_constants::XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks.last().unwrap().blkno);
}
if (xlrec.flags & pg_constants::XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) != 0 {
// PostgreSQL only uses XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED on a
// non-HOT update where the new tuple goes to different page than
// the old one. Otherwise, only XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED is
// set.
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP_LOCK {
let xlrec = v17::XlHeapLock::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else if decoded.xl_rmid == pg_constants::RM_HEAP2_ID {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
if info == pg_constants::XLOG_HEAP2_MULTI_INSERT {
let xlrec = v17::XlHeapMultiInsert::decode(buf);
let offset_array_len =
if decoded.xl_info & pg_constants::XLOG_HEAP_INIT_PAGE > 0 {
// the offsets array is omitted if XLOG_HEAP_INIT_PAGE is set
0
} else {
size_of::<u16>() * xlrec.ntuples as usize
};
assert_eq!(offset_array_len, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
} else if info == pg_constants::XLOG_HEAP2_LOCK_UPDATED {
let xlrec = v17::XlHeapLockUpdated::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
} else {
anyhow::bail!("Unknown RMGR {} for Heap decoding", decoded.xl_rmid);
}
}
_ => {}
}
if new_heap_blkno.is_some() || old_heap_blkno.is_some() {
let vm_rel = RelTag {
forknum: VISIBILITYMAP_FORKNUM,
spcnode: decoded.blocks[0].rnode_spcnode,
dbnode: decoded.blocks[0].rnode_dbnode,
relnode: decoded.blocks[0].rnode_relnode,
};
Ok(Some(MetadataRecord::Heapam(HeapamRecord::ClearVmBits(
ClearVmBits {
new_heap_blkno,
old_heap_blkno,
vm_rel,
flags,
},
))))
} else {
Ok(None)
}
}
fn decode_neonmgr_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
pg_version: u32,
) -> anyhow::Result<Option<MetadataRecord>> {
// Handle VM bit updates that are implicitly part of heap records.
// First, look at the record to determine which VM bits need
// to be cleared. If either of these variables is set, we
// need to clear the corresponding bits in the visibility map.
let mut new_heap_blkno: Option<u32> = None;
let mut old_heap_blkno: Option<u32> = None;
let mut flags = pg_constants::VISIBILITYMAP_VALID_BITS;
assert_eq!(decoded.xl_rmid, pg_constants::RM_NEON_ID);
match pg_version {
16 | 17 => {
let info = decoded.xl_info & pg_constants::XLOG_HEAP_OPMASK;
match info {
pg_constants::XLOG_NEON_HEAP_INSERT => {
let xlrec = v17::rm_neon::XlNeonHeapInsert::decode(buf);
assert_eq!(0, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
}
pg_constants::XLOG_NEON_HEAP_DELETE => {
let xlrec = v17::rm_neon::XlNeonHeapDelete::decode(buf);
if (xlrec.flags & pg_constants::XLH_DELETE_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
}
pg_constants::XLOG_NEON_HEAP_UPDATE
| pg_constants::XLOG_NEON_HEAP_HOT_UPDATE => {
let xlrec = v17::rm_neon::XlNeonHeapUpdate::decode(buf);
// the size of tuple data is inferred from the size of the record.
// we can't validate the remaining number of bytes without parsing
// the tuple data.
if (xlrec.flags & pg_constants::XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks.last().unwrap().blkno);
}
if (xlrec.flags & pg_constants::XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) != 0 {
// PostgreSQL only uses XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED on a
// non-HOT update where the new tuple goes to different page than
// the old one. Otherwise, only XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED is
// set.
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
}
pg_constants::XLOG_NEON_HEAP_MULTI_INSERT => {
let xlrec = v17::rm_neon::XlNeonHeapMultiInsert::decode(buf);
let offset_array_len =
if decoded.xl_info & pg_constants::XLOG_HEAP_INIT_PAGE > 0 {
// the offsets array is omitted if XLOG_HEAP_INIT_PAGE is set
0
} else {
size_of::<u16>() * xlrec.ntuples as usize
};
assert_eq!(offset_array_len, buf.remaining());
if (xlrec.flags & pg_constants::XLH_INSERT_ALL_VISIBLE_CLEARED) != 0 {
new_heap_blkno = Some(decoded.blocks[0].blkno);
}
}
pg_constants::XLOG_NEON_HEAP_LOCK => {
let xlrec = v17::rm_neon::XlNeonHeapLock::decode(buf);
if (xlrec.flags & pg_constants::XLH_LOCK_ALL_FROZEN_CLEARED) != 0 {
old_heap_blkno = Some(decoded.blocks[0].blkno);
flags = pg_constants::VISIBILITYMAP_ALL_FROZEN;
}
}
info => anyhow::bail!("Unknown WAL record type for Neon RMGR: {}", info),
}
}
_ => anyhow::bail!(
"Neon RMGR has no known compatibility with PostgreSQL version {}",
pg_version
),
}
if new_heap_blkno.is_some() || old_heap_blkno.is_some() {
let vm_rel = RelTag {
forknum: VISIBILITYMAP_FORKNUM,
spcnode: decoded.blocks[0].rnode_spcnode,
dbnode: decoded.blocks[0].rnode_dbnode,
relnode: decoded.blocks[0].rnode_relnode,
};
Ok(Some(MetadataRecord::Neonrmgr(NeonrmgrRecord::ClearVmBits(
ClearVmBits {
new_heap_blkno,
old_heap_blkno,
vm_rel,
flags,
},
))))
} else {
Ok(None)
}
}
fn decode_smgr_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
if info == pg_constants::XLOG_SMGR_CREATE {
let create = XlSmgrCreate::decode(buf);
let rel = RelTag {
spcnode: create.rnode.spcnode,
dbnode: create.rnode.dbnode,
relnode: create.rnode.relnode,
forknum: create.forknum,
};
return Ok(Some(MetadataRecord::Smgr(SmgrRecord::Create(SmgrCreate {
rel,
}))));
} else if info == pg_constants::XLOG_SMGR_TRUNCATE {
let truncate = XlSmgrTruncate::decode(buf);
return Ok(Some(MetadataRecord::Smgr(SmgrRecord::Truncate(truncate))));
}
Ok(None)
}
fn decode_dbase_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
pg_version: u32,
) -> anyhow::Result<Option<MetadataRecord>> {
// TODO: Refactor this to avoid the duplication between postgres versions.
let info = decoded.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
tracing::debug!(%info, %pg_version, "handle RM_DBASE_ID");
if pg_version == 14 {
if info == postgres_ffi::v14::bindings::XLOG_DBASE_CREATE {
let createdb = XlCreateDatabase::decode(buf);
tracing::debug!("XLOG_DBASE_CREATE v14");
let record = MetadataRecord::Dbase(DbaseRecord::Create(DbaseCreate {
db_id: createdb.db_id,
tablespace_id: createdb.tablespace_id,
src_db_id: createdb.src_db_id,
src_tablespace_id: createdb.src_tablespace_id,
}));
return Ok(Some(record));
} else if info == postgres_ffi::v14::bindings::XLOG_DBASE_DROP {
let dropdb = XlDropDatabase::decode(buf);
let record = MetadataRecord::Dbase(DbaseRecord::Drop(DbaseDrop {
db_id: dropdb.db_id,
tablespace_ids: dropdb.tablespace_ids,
}));
return Ok(Some(record));
}
} else if pg_version == 15 {
if info == postgres_ffi::v15::bindings::XLOG_DBASE_CREATE_WAL_LOG {
tracing::debug!("XLOG_DBASE_CREATE_WAL_LOG: noop");
} else if info == postgres_ffi::v15::bindings::XLOG_DBASE_CREATE_FILE_COPY {
// The XLOG record was renamed between v14 and v15,
// but the record format is the same.
// So we can reuse XlCreateDatabase here.
tracing::debug!("XLOG_DBASE_CREATE_FILE_COPY");
let createdb = XlCreateDatabase::decode(buf);
let record = MetadataRecord::Dbase(DbaseRecord::Create(DbaseCreate {
db_id: createdb.db_id,
tablespace_id: createdb.tablespace_id,
src_db_id: createdb.src_db_id,
src_tablespace_id: createdb.src_tablespace_id,
}));
return Ok(Some(record));
} else if info == postgres_ffi::v15::bindings::XLOG_DBASE_DROP {
let dropdb = XlDropDatabase::decode(buf);
let record = MetadataRecord::Dbase(DbaseRecord::Drop(DbaseDrop {
db_id: dropdb.db_id,
tablespace_ids: dropdb.tablespace_ids,
}));
return Ok(Some(record));
}
} else if pg_version == 16 {
if info == postgres_ffi::v16::bindings::XLOG_DBASE_CREATE_WAL_LOG {
tracing::debug!("XLOG_DBASE_CREATE_WAL_LOG: noop");
} else if info == postgres_ffi::v16::bindings::XLOG_DBASE_CREATE_FILE_COPY {
// The XLOG record was renamed between v14 and v15,
// but the record format is the same.
// So we can reuse XlCreateDatabase here.
tracing::debug!("XLOG_DBASE_CREATE_FILE_COPY");
let createdb = XlCreateDatabase::decode(buf);
let record = MetadataRecord::Dbase(DbaseRecord::Create(DbaseCreate {
db_id: createdb.db_id,
tablespace_id: createdb.tablespace_id,
src_db_id: createdb.src_db_id,
src_tablespace_id: createdb.src_tablespace_id,
}));
return Ok(Some(record));
} else if info == postgres_ffi::v16::bindings::XLOG_DBASE_DROP {
let dropdb = XlDropDatabase::decode(buf);
let record = MetadataRecord::Dbase(DbaseRecord::Drop(DbaseDrop {
db_id: dropdb.db_id,
tablespace_ids: dropdb.tablespace_ids,
}));
return Ok(Some(record));
}
} else if pg_version == 17 {
if info == postgres_ffi::v17::bindings::XLOG_DBASE_CREATE_WAL_LOG {
tracing::debug!("XLOG_DBASE_CREATE_WAL_LOG: noop");
} else if info == postgres_ffi::v17::bindings::XLOG_DBASE_CREATE_FILE_COPY {
// The XLOG record was renamed between v14 and v15,
// but the record format is the same.
// So we can reuse XlCreateDatabase here.
tracing::debug!("XLOG_DBASE_CREATE_FILE_COPY");
let createdb = XlCreateDatabase::decode(buf);
let record = MetadataRecord::Dbase(DbaseRecord::Create(DbaseCreate {
db_id: createdb.db_id,
tablespace_id: createdb.tablespace_id,
src_db_id: createdb.src_db_id,
src_tablespace_id: createdb.src_tablespace_id,
}));
return Ok(Some(record));
} else if info == postgres_ffi::v17::bindings::XLOG_DBASE_DROP {
let dropdb = XlDropDatabase::decode(buf);
let record = MetadataRecord::Dbase(DbaseRecord::Drop(DbaseDrop {
db_id: dropdb.db_id,
tablespace_ids: dropdb.tablespace_ids,
}));
return Ok(Some(record));
}
}
Ok(None)
}
fn decode_clog_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
pg_version: u32,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & !pg_constants::XLR_INFO_MASK;
if info == pg_constants::CLOG_ZEROPAGE {
let pageno = if pg_version < 17 {
buf.get_u32_le()
} else {
buf.get_u64_le() as u32
};
let segno = pageno / pg_constants::SLRU_PAGES_PER_SEGMENT;
let rpageno = pageno % pg_constants::SLRU_PAGES_PER_SEGMENT;
Ok(Some(MetadataRecord::Clog(ClogRecord::ZeroPage(
ClogZeroPage { segno, rpageno },
))))
} else {
assert!(info == pg_constants::CLOG_TRUNCATE);
let xlrec = XlClogTruncate::decode(buf, pg_version);
Ok(Some(MetadataRecord::Clog(ClogRecord::Truncate(
ClogTruncate {
pageno: xlrec.pageno,
oldest_xid: xlrec.oldest_xid,
oldest_xid_db: xlrec.oldest_xid_db,
},
))))
}
}
fn decode_xact_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
lsn: Lsn,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & pg_constants::XLOG_XACT_OPMASK;
let origin_id = decoded.origin_id;
let xl_xid = decoded.xl_xid;
if info == pg_constants::XLOG_XACT_COMMIT {
let parsed = XlXactParsedRecord::decode(buf, decoded.xl_xid, decoded.xl_info);
return Ok(Some(MetadataRecord::Xact(XactRecord::Commit(XactCommon {
parsed,
origin_id,
xl_xid,
lsn,
}))));
} else if info == pg_constants::XLOG_XACT_ABORT {
let parsed = XlXactParsedRecord::decode(buf, decoded.xl_xid, decoded.xl_info);
return Ok(Some(MetadataRecord::Xact(XactRecord::Abort(XactCommon {
parsed,
origin_id,
xl_xid,
lsn,
}))));
} else if info == pg_constants::XLOG_XACT_COMMIT_PREPARED {
let parsed = XlXactParsedRecord::decode(buf, decoded.xl_xid, decoded.xl_info);
return Ok(Some(MetadataRecord::Xact(XactRecord::CommitPrepared(
XactCommon {
parsed,
origin_id,
xl_xid,
lsn,
},
))));
} else if info == pg_constants::XLOG_XACT_ABORT_PREPARED {
let parsed = XlXactParsedRecord::decode(buf, decoded.xl_xid, decoded.xl_info);
return Ok(Some(MetadataRecord::Xact(XactRecord::AbortPrepared(
XactCommon {
parsed,
origin_id,
xl_xid,
lsn,
},
))));
} else if info == pg_constants::XLOG_XACT_PREPARE {
return Ok(Some(MetadataRecord::Xact(XactRecord::Prepare(
XactPrepare {
xl_xid: decoded.xl_xid,
data: Bytes::copy_from_slice(&buf[..]),
},
))));
}
Ok(None)
}
fn decode_multixact_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
pg_version: u32,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
if info == pg_constants::XLOG_MULTIXACT_ZERO_OFF_PAGE
|| info == pg_constants::XLOG_MULTIXACT_ZERO_MEM_PAGE
{
let pageno = if pg_version < 17 {
buf.get_u32_le()
} else {
buf.get_u64_le() as u32
};
let segno = pageno / pg_constants::SLRU_PAGES_PER_SEGMENT;
let rpageno = pageno % pg_constants::SLRU_PAGES_PER_SEGMENT;
let slru_kind = match info {
pg_constants::XLOG_MULTIXACT_ZERO_OFF_PAGE => SlruKind::MultiXactOffsets,
pg_constants::XLOG_MULTIXACT_ZERO_MEM_PAGE => SlruKind::MultiXactMembers,
_ => unreachable!(),
};
return Ok(Some(MetadataRecord::MultiXact(MultiXactRecord::ZeroPage(
MultiXactZeroPage {
slru_kind,
segno,
rpageno,
},
))));
} else if info == pg_constants::XLOG_MULTIXACT_CREATE_ID {
let xlrec = XlMultiXactCreate::decode(buf);
return Ok(Some(MetadataRecord::MultiXact(MultiXactRecord::Create(
xlrec,
))));
} else if info == pg_constants::XLOG_MULTIXACT_TRUNCATE_ID {
let xlrec = XlMultiXactTruncate::decode(buf);
return Ok(Some(MetadataRecord::MultiXact(MultiXactRecord::Truncate(
xlrec,
))));
}
Ok(None)
}
fn decode_relmap_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
) -> anyhow::Result<Option<MetadataRecord>> {
let update = XlRelmapUpdate::decode(buf);
let mut buf = decoded.record.clone();
buf.advance(decoded.main_data_offset);
// skip xl_relmap_update
buf.advance(12);
Ok(Some(MetadataRecord::Relmap(RelmapRecord::Update(
RelmapUpdate {
update,
buf: Bytes::copy_from_slice(&buf[..]),
},
))))
}
fn decode_xlog_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
lsn: Lsn,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
Ok(Some(MetadataRecord::Xlog(XlogRecord::Raw(RawXlogRecord {
info,
lsn,
buf: buf.clone(),
}))))
}
fn decode_logical_message_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
if info == pg_constants::XLOG_LOGICAL_MESSAGE {
let xlrec = XlLogicalMessage::decode(buf);
let prefix = std::str::from_utf8(&buf[0..xlrec.prefix_size - 1])?;
#[cfg(feature = "testing")]
if prefix == "neon-test" {
return Ok(Some(MetadataRecord::LogicalMessage(
LogicalMessageRecord::Failpoint,
)));
}
if let Some(path) = prefix.strip_prefix("neon-file:") {
let buf_size = xlrec.prefix_size + xlrec.message_size;
let buf = Bytes::copy_from_slice(&buf[xlrec.prefix_size..buf_size]);
return Ok(Some(MetadataRecord::LogicalMessage(
LogicalMessageRecord::Put(PutLogicalMessage {
path: path.to_string(),
buf,
}),
)));
}
}
Ok(None)
}
fn decode_standby_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
if info == pg_constants::XLOG_RUNNING_XACTS {
let xlrec = XlRunningXacts::decode(buf);
return Ok(Some(MetadataRecord::Standby(StandbyRecord::RunningXacts(
StandbyRunningXacts {
oldest_running_xid: xlrec.oldest_running_xid,
},
))));
}
Ok(None)
}
fn decode_replorigin_record(
buf: &mut Bytes,
decoded: &DecodedWALRecord,
) -> anyhow::Result<Option<MetadataRecord>> {
let info = decoded.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
if info == pg_constants::XLOG_REPLORIGIN_SET {
let xlrec = XlReploriginSet::decode(buf);
return Ok(Some(MetadataRecord::Replorigin(ReploriginRecord::Set(
xlrec,
))));
} else if info == pg_constants::XLOG_REPLORIGIN_DROP {
let xlrec = XlReploriginDrop::decode(buf);
return Ok(Some(MetadataRecord::Replorigin(ReploriginRecord::Drop(
xlrec,
))));
}
Ok(None)
}
}