Files
neon/pageserver/benches/bench_layer_map.rs
Christian Schwarz 22ae67af8d refactor: use new type LayerFileName when referring to layer file names in PathBuf/RemotePath (#3026)
refactor: use new type LayerFileName when referring to layer file names in PathBuf/RemotePath

Before this patch, we would sometimes carry around plain file names in
`Path` types and/or awkwardly "rebase" paths to have a unified
representation of the layer file name between local and remote.

This patch introduces a new type `LayerFileName` which replaces the use
of `Path` / `PathBuf` / `RemotePath` in the `storage_sync2` APIs.

Instead of holding a string, it contains the parsed representation of
the image and delta file name.
When we need the file name, e.g., to construct a local path or
remote object key, we construct the name ad-hoc.

`LayerFileName` is also serde {Dese,Se}rializable, and in an initial   
version of this patch, it was supposed to be used directly inside      
`IndexPart`, replacing `RemotePath`.                                   
However,                                                               
  commit 3122f3282f                      
      Ignore backup files (ones with .n.old suffix) in download_missing
fixed handling of `*.old` backup file names in IndexPart, and we need  
to carry that behavior forward.                                        
The solution is to remove `*.old` backup files names during            
deserialization. When we re-serialize the IndexPart, the `*.old` file  
will be gone.                                                          
This leaks the `.old` file in the remote storage, but makes it safe    
to clean it up later.           

There is additional churn by a preliminary refactoring that got squashed
into this change:

   split off LayerMap's needs from trait Layer into super trait

That refactoring renames `Layer` to `PersistentLayer` and splits off a subset
of the functions into a super-trait called `Layer`.
The upser trait implements just the functions needed by `LayerMap`, whereas
`PersisentLayer` adds the context of the pageserver.

The naming is imperfect as some functions that reside in `PersistentLayer`
have nothing persistence-specific to it. But it's a step in the right direction.
2022-12-13 01:27:59 +02:00

251 lines
7.9 KiB
Rust

use anyhow::Result;
use pageserver::repository::Key;
use pageserver::tenant::filename::{DeltaFileName, ImageFileName};
use pageserver::tenant::layer_map::LayerMap;
use pageserver::tenant::storage_layer::ValueReconstructState;
use pageserver::tenant::storage_layer::{Layer, ValueReconstructResult};
use rand::prelude::{SeedableRng, SliceRandom, StdRng};
use std::cmp::{max, min};
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::ops::Range;
use std::path::PathBuf;
use std::str::FromStr;
use std::sync::Arc;
use std::time::Instant;
use utils::lsn::Lsn;
use criterion::{criterion_group, criterion_main, Criterion};
struct DummyDelta {
key_range: Range<Key>,
lsn_range: Range<Lsn>,
}
impl Layer for DummyDelta {
fn get_key_range(&self) -> Range<Key> {
self.key_range.clone()
}
fn get_lsn_range(&self) -> Range<Lsn> {
self.lsn_range.clone()
}
fn get_value_reconstruct_data(
&self,
_key: Key,
_lsn_range: Range<Lsn>,
_reconstruct_data: &mut ValueReconstructState,
) -> Result<ValueReconstructResult> {
panic!()
}
fn is_incremental(&self) -> bool {
true
}
fn dump(&self, _verbose: bool) -> Result<()> {
unimplemented!()
}
fn short_id(&self) -> String {
unimplemented!()
}
}
struct DummyImage {
key_range: Range<Key>,
lsn: Lsn,
}
impl Layer for DummyImage {
fn get_key_range(&self) -> Range<Key> {
self.key_range.clone()
}
fn get_lsn_range(&self) -> Range<Lsn> {
// End-bound is exclusive
self.lsn..(self.lsn + 1)
}
fn get_value_reconstruct_data(
&self,
_key: Key,
_lsn_range: Range<Lsn>,
_reconstruct_data: &mut ValueReconstructState,
) -> Result<ValueReconstructResult> {
panic!()
}
fn is_incremental(&self) -> bool {
false
}
fn dump(&self, _verbose: bool) -> Result<()> {
unimplemented!()
}
fn short_id(&self) -> String {
unimplemented!()
}
}
fn build_layer_map(filename_dump: PathBuf) -> LayerMap<dyn Layer> {
let mut layer_map = LayerMap::<dyn Layer>::default();
let mut min_lsn = Lsn(u64::MAX);
let mut max_lsn = Lsn(0);
let filenames = BufReader::new(File::open(filename_dump).unwrap()).lines();
for fname in filenames {
let fname = &fname.unwrap();
if let Some(imgfilename) = ImageFileName::parse_str(fname) {
let layer = DummyImage {
key_range: imgfilename.key_range,
lsn: imgfilename.lsn,
};
layer_map.insert_historic(Arc::new(layer));
min_lsn = min(min_lsn, imgfilename.lsn);
max_lsn = max(max_lsn, imgfilename.lsn);
} else if let Some(deltafilename) = DeltaFileName::parse_str(fname) {
let layer = DummyDelta {
key_range: deltafilename.key_range,
lsn_range: deltafilename.lsn_range.clone(),
};
layer_map.insert_historic(Arc::new(layer));
min_lsn = min(min_lsn, deltafilename.lsn_range.start);
max_lsn = max(max_lsn, deltafilename.lsn_range.end);
} else {
panic!("unexpected filename {fname}");
}
}
println!("min: {min_lsn}, max: {max_lsn}");
layer_map
}
/// Construct a layer map query pattern for benchmarks
fn uniform_query_pattern(layer_map: &LayerMap<dyn Layer>) -> Vec<(Key, Lsn)> {
// For each image layer we query one of the pages contained, at LSN right
// before the image layer was created. This gives us a somewhat uniform
// coverage of both the lsn and key space because image layers have
// approximately equal sizes and cover approximately equal WAL since
// last image.
layer_map
.iter_historic_layers()
.filter_map(|l| {
if l.is_incremental() {
None
} else {
let kr = l.get_key_range();
let lr = l.get_lsn_range();
let key_inside = kr.start.next();
let lsn_before = Lsn(lr.start.0 - 1);
Some((key_inside, lsn_before))
}
})
.collect()
}
// Benchmark using metadata extracted from our performance test environment, from
// a project where we have run pgbench many timmes. The pgbench database was initialized
// between each test run.
fn bench_from_captest_env(c: &mut Criterion) {
// TODO consider compressing this file
let layer_map = build_layer_map(PathBuf::from("benches/odd-brook-layernames.txt"));
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
// Test with uniform query pattern
c.bench_function("captest_uniform_queries", |b| {
b.iter(|| {
for q in queries.clone().into_iter() {
layer_map.search(q.0, q.1).unwrap();
}
});
});
// test with a key that corresponds to the RelDir entry. See pgdatadir_mapping.rs.
c.bench_function("captest_rel_dir_query", |b| {
b.iter(|| {
let result = layer_map.search(
Key::from_hex("000000067F00008000000000000000000001").unwrap(),
// This LSN is higher than any of the LSNs in the tree
Lsn::from_str("D0/80208AE1").unwrap(),
);
result.unwrap();
});
});
}
// Benchmark using metadata extracted from a real project that was taknig
// too long processing layer map queries.
fn bench_from_real_project(c: &mut Criterion) {
// TODO consider compressing this file
let layer_map = build_layer_map(PathBuf::from("benches/odd-brook-layernames.txt"));
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
// Test with uniform query pattern
c.bench_function("real_map_uniform_queries", |b| {
b.iter(|| {
for q in queries.clone().into_iter() {
layer_map.search(q.0, q.1).unwrap();
}
});
});
}
// Benchmark using synthetic data. Arrange image layers on stacked diagonal lines.
fn bench_sequential(c: &mut Criterion) {
let mut layer_map: LayerMap<dyn Layer> = LayerMap::default();
// Init layer map. Create 100_000 layers arranged in 1000 diagonal lines.
//
// TODO This code is pretty slow and runs even if we're only running other
// benchmarks. It needs to be somewhere else, but it's not clear where.
// Putting it inside the `bench_function` closure is not a solution
// because then it runs multiple times during warmup.
let now = Instant::now();
for i in 0..100_000 {
// TODO try inserting a super-wide layer in between every 10 to reflect
// what often happens with L1 layers that include non-rel changes.
// Maybe do that as a separate test.
let i32 = (i as u32) % 100;
let zero = Key::from_hex("000000000000000000000000000000000000").unwrap();
let layer = DummyImage {
key_range: zero.add(10 * i32)..zero.add(10 * i32 + 1),
lsn: Lsn(10 * i),
};
layer_map.insert_historic(Arc::new(layer));
}
// Manually measure runtime without criterion because criterion
// has a minimum sample size of 10 and I don't want to run it 10 times.
println!("Finished init in {:?}", now.elapsed());
// Choose 100 uniformly random queries
let rng = &mut StdRng::seed_from_u64(1);
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map)
.choose_multiple(rng, 1)
.copied()
.collect();
// Define and name the benchmark function
c.bench_function("sequential_uniform_queries", |b| {
// Run the search queries
b.iter(|| {
for q in queries.clone().into_iter() {
layer_map.search(q.0, q.1).unwrap();
}
});
});
}
criterion_group!(group_1, bench_from_captest_env);
criterion_group!(group_2, bench_from_real_project);
criterion_group!(group_3, bench_sequential);
criterion_main!(group_1, group_2, group_3);