Files
neon/compute_tools
Alexey Kondratov 6ae4b89000 feat(compute_ctl): Implement graceful compute monitor exit (#11911)
## Problem

After introducing a naive downtime calculation for the Postgres process
inside compute in https://github.com/neondatabase/neon/pull/11346, I
noticed that some amount of computes regularly report short downtime.
After checking some particular cases, it looks like all of them report
downtime close to the end of the life of the compute, i.e., when the
control plane calls a `/terminate` and we are waiting for Postgres to
exit.

Compute monitor also produces a lot of error logs because Postgres stops
accepting connections, but it's expected during the termination process.

## Summary of changes

Regularly check the compute status inside the main compute monitor loop
and exit gracefully when the compute is in some terminal or
soon-to-be-terminal state.

---------

Co-authored-by: Tristan Partin <tristan@neon.tech>
2025-06-05 12:17:28 +00:00
..
2024-03-20 17:10:46 -05:00

Compute node tools

Postgres wrapper (compute_ctl) is intended to be run as a Docker entrypoint or as a systemd ExecStart option. It will handle all the Neon specifics during compute node initialization:

  • compute_ctl accepts cluster (compute node) specification as a JSON file.
  • Every start is a fresh start, so the data directory is removed and initialized again on each run.
  • Next it will put configuration files into the PGDATA directory.
  • Sync safekeepers and get commit LSN.
  • Get basebackup from pageserver using the returned on the previous step LSN.
  • Try to start postgres and wait until it is ready to accept connections.
  • Check and alter/drop/create roles and databases.
  • Hang waiting on the postmaster process to exit.

Also compute_ctl spawns two separate service threads:

  • compute-monitor checks the last Postgres activity timestamp and saves it into the shared ComputeNode;
  • http-endpoint runs a Hyper HTTP API server, which serves readiness and the last activity requests.

If AUTOSCALING environment variable is set, compute_ctl will start the vm-monitor located in [neon/libs/vm_monitor]. For VM compute nodes, vm-monitor communicates with the VM autoscaling system. It coordinates downscaling and requests immediate upscaling under resource pressure.

Usage example:

compute_ctl -D /var/db/postgres/compute \
            -C 'postgresql://cloud_admin@localhost/postgres' \
            -S /var/db/postgres/specs/current.json \
            -b /usr/local/bin/postgres

State Diagram

Computes can be in various states. Below is a diagram that details how a compute moves between states.

%% https://mermaid.js.org/syntax/stateDiagram.html
stateDiagram-v2
  [*] --> Empty : Compute spawned
  Empty --> ConfigurationPending : Waiting for compute spec
  ConfigurationPending --> Configuration : Received compute spec
  Configuration --> Failed : Failed to configure the compute
  Configuration --> Running : Compute has been configured
  Empty --> Init : Compute spec is immediately available
  Empty --> TerminationPending : Requested termination
  Init --> Failed : Failed to start Postgres
  Init --> Running : Started Postgres
  Running --> TerminationPending : Requested termination
  TerminationPending --> Terminated : Terminated compute
  Failed --> [*] : Compute exited
  Terminated --> [*] : Compute exited

Tests

Cargo formatter:

cargo fmt

Run tests:

cargo test

Clippy linter:

cargo clippy --all --all-targets -- -Dwarnings -Drust-2018-idioms

Cross-platform compilation

Imaging that you are on macOS (x86) and you want a Linux GNU (x86_64-unknown-linux-gnu platform in rust terminology) executable.

Using docker

You can use a throw-away Docker container (rustlang/rust image) for doing that:

docker run --rm \
    -v $(pwd):/compute_tools \
    -w /compute_tools \
    -t rustlang/rust:nightly cargo build --release --target=x86_64-unknown-linux-gnu

or one-line:

docker run --rm -v $(pwd):/compute_tools -w /compute_tools -t rust:latest cargo build --release --target=x86_64-unknown-linux-gnu

Using rust native cross-compilation

Another way is to add x86_64-unknown-linux-gnu target on your host system:

rustup target add x86_64-unknown-linux-gnu

Install macOS cross-compiler toolchain:

brew tap SergioBenitez/osxct
brew install x86_64-unknown-linux-gnu

And finally run cargo build:

CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_LINKER=x86_64-unknown-linux-gnu-gcc cargo build --target=x86_64-unknown-linux-gnu --release