## Problem the idea is to keep compute up and running if there are any active logical replication subscriptions. ### Rationale Rationale: - The Write-Ahead Logging (WAL) files, which contain the data changes, will need to be retained on the publisher side until the subscriber is able to connect again and apply these changes. This could potentially lead to increased disk usage on the publisher - and we do not want to disrupt the source - I think it is more pain for our customer to resolve storage issues on the source than to pay for the compute at the target. - Upon resuming the compute resources, the subscriber will start consuming and applying the changes from the retained WAL files. The time taken to catch up will depend on the volume of changes and the configured vCPUs. we can avoid explaining complex situations where we lag behind (in extreme cases we could lag behind hours, days or even months) - I think an important use case for logical replication from a source is a one-time migration or release upgrade. In this case the customer would not mind if we are not suspended for the duration of the migration. We need to document this in the release notes and the documentation in the context of logical replication where Neon is the target (subscriber) ### See internal discussion here https://neondb.slack.com/archives/C04DGM6SMTM/p1706793400746539?thread_ts=1706792628.701279&cid=C04DGM6SMTM
Compute node tools
Postgres wrapper (compute_ctl) is intended to be run as a Docker entrypoint or as a systemd
ExecStart option. It will handle all the Neon specifics during compute node
initialization:
compute_ctlaccepts cluster (compute node) specification as a JSON file.- Every start is a fresh start, so the data directory is removed and initialized again on each run.
- Next it will put configuration files into the
PGDATAdirectory. - Sync safekeepers and get commit LSN.
- Get
basebackupfrom pageserver using the returned on the previous step LSN. - Try to start
postgresand wait until it is ready to accept connections. - Check and alter/drop/create roles and databases.
- Hang waiting on the
postmasterprocess to exit.
Also compute_ctl spawns two separate service threads:
compute-monitorchecks the last Postgres activity timestamp and saves it into the sharedComputeNode;http-endpointruns a Hyper HTTP API server, which serves readiness and the last activity requests.
If AUTOSCALING environment variable is set, compute_ctl will start the
vm-monitor located in [neon/libs/vm_monitor]. For VM compute nodes,
vm-monitor communicates with the VM autoscaling system. It coordinates
downscaling and requests immediate upscaling under resource pressure.
Usage example:
compute_ctl -D /var/db/postgres/compute \
-C 'postgresql://cloud_admin@localhost/postgres' \
-S /var/db/postgres/specs/current.json \
-b /usr/local/bin/postgres
Tests
Cargo formatter:
cargo fmt
Run tests:
cargo test
Clippy linter:
cargo clippy --all --all-targets -- -Dwarnings -Drust-2018-idioms
Cross-platform compilation
Imaging that you are on macOS (x86) and you want a Linux GNU (x86_64-unknown-linux-gnu platform in rust terminology) executable.
Using docker
You can use a throw-away Docker container (rustlang/rust image) for doing that:
docker run --rm \
-v $(pwd):/compute_tools \
-w /compute_tools \
-t rustlang/rust:nightly cargo build --release --target=x86_64-unknown-linux-gnu
or one-line:
docker run --rm -v $(pwd):/compute_tools -w /compute_tools -t rust:latest cargo build --release --target=x86_64-unknown-linux-gnu
Using rust native cross-compilation
Another way is to add x86_64-unknown-linux-gnu target on your host system:
rustup target add x86_64-unknown-linux-gnu
Install macOS cross-compiler toolchain:
brew tap SergioBenitez/osxct
brew install x86_64-unknown-linux-gnu
And finally run cargo build:
CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_LINKER=x86_64-unknown-linux-gnu-gcc cargo build --target=x86_64-unknown-linux-gnu --release