Files
neon/libs/utils/src/vec_map.rs
2024-09-19 11:57:10 +03:00

430 lines
14 KiB
Rust

use std::{alloc::Layout, cmp::Ordering, ops::RangeBounds};
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum VecMapOrdering {
Greater,
GreaterOrEqual,
}
/// Ordered map datastructure implemented in a Vec.
///
/// Append only - can only add keys that are larger than the
/// current max key.
/// Ordering can be adjusted using [`VecMapOrdering`]
/// during `VecMap` construction.
#[derive(Clone, Debug)]
pub struct VecMap<K, V> {
data: Vec<(K, V)>,
ordering: VecMapOrdering,
}
impl<K, V> Default for VecMap<K, V> {
fn default() -> Self {
VecMap {
data: Default::default(),
ordering: VecMapOrdering::Greater,
}
}
}
#[derive(thiserror::Error, Debug)]
pub enum VecMapError {
#[error("Key violates ordering constraint")]
InvalidKey,
#[error("Mismatched ordering constraints")]
ExtendOrderingError,
}
impl<K: Ord, V> VecMap<K, V> {
pub fn new(ordering: VecMapOrdering) -> Self {
Self {
data: Vec::new(),
ordering,
}
}
pub fn with_capacity(capacity: usize, ordering: VecMapOrdering) -> Self {
Self {
data: Vec::with_capacity(capacity),
ordering,
}
}
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
pub fn as_slice(&self) -> &[(K, V)] {
self.data.as_slice()
}
/// This function may panic if given a range where the lower bound is
/// greater than the upper bound.
pub fn slice_range<R: RangeBounds<K>>(&self, range: R) -> &[(K, V)] {
use std::ops::Bound::*;
let binary_search = |k: &K| self.data.binary_search_by_key(&k, extract_key);
let start_idx = match range.start_bound() {
Unbounded => 0,
Included(k) => binary_search(k).unwrap_or_else(std::convert::identity),
Excluded(k) => match binary_search(k) {
Ok(idx) => idx + 1,
Err(idx) => idx,
},
};
let end_idx = match range.end_bound() {
Unbounded => self.data.len(),
Included(k) => match binary_search(k) {
Ok(idx) => idx + 1,
Err(idx) => idx,
},
Excluded(k) => binary_search(k).unwrap_or_else(std::convert::identity),
};
&self.data[start_idx..end_idx]
}
/// Add a key value pair to the map.
/// If `key` is not respective of the `self` ordering the
/// pair will not be added and `InvalidKey` error will be returned.
pub fn append(&mut self, key: K, value: V) -> Result<usize, VecMapError> {
self.validate_key_order(&key)?;
let delta_size = self.instrument_vec_op(|vec| vec.push((key, value)));
Ok(delta_size)
}
/// Update the maximum key value pair or add a new key value pair to the map.
/// If `key` is not respective of the `self` ordering no updates or additions
/// will occur and `InvalidKey` error will be returned.
pub fn append_or_update_last(
&mut self,
key: K,
mut value: V,
) -> Result<(Option<V>, usize), VecMapError> {
if let Some((last_key, last_value)) = self.data.last_mut() {
match key.cmp(last_key) {
Ordering::Less => return Err(VecMapError::InvalidKey),
Ordering::Equal => {
std::mem::swap(last_value, &mut value);
const DELTA_SIZE: usize = 0;
return Ok((Some(value), DELTA_SIZE));
}
Ordering::Greater => {}
}
}
let delta_size = self.instrument_vec_op(|vec| vec.push((key, value)));
Ok((None, delta_size))
}
/// Move items from `other` to the end of `self`, leaving `other` empty.
/// If the `other` ordering is different from `self` ordering
/// `ExtendOrderingError` error will be returned.
/// If any keys in `other` is not respective of the ordering defined in
/// `self`, `InvalidKey` error will be returned and no mutation will occur.
pub fn extend(&mut self, other: &mut Self) -> Result<usize, VecMapError> {
if self.ordering != other.ordering {
return Err(VecMapError::ExtendOrderingError);
}
let other_first_opt = other.data.last().map(extract_key);
if let Some(other_first) = other_first_opt {
self.validate_key_order(other_first)?;
}
let delta_size = self.instrument_vec_op(|vec| vec.append(&mut other.data));
Ok(delta_size)
}
/// Validate the current last key in `self` and key being
/// inserted against the order defined in `self`.
fn validate_key_order(&self, key: &K) -> Result<(), VecMapError> {
if let Some(last_key) = self.data.last().map(extract_key) {
match (&self.ordering, &key.cmp(last_key)) {
(VecMapOrdering::Greater, Ordering::Less | Ordering::Equal) => {
return Err(VecMapError::InvalidKey);
}
(VecMapOrdering::Greater, Ordering::Greater) => {}
(VecMapOrdering::GreaterOrEqual, Ordering::Less) => {
return Err(VecMapError::InvalidKey);
}
(VecMapOrdering::GreaterOrEqual, Ordering::Equal | Ordering::Greater) => {}
}
}
Ok(())
}
/// Instrument an operation on the underlying [`Vec`].
/// Will panic if the operation decreases capacity.
/// Returns the increase in memory usage caused by the op.
fn instrument_vec_op(&mut self, op: impl FnOnce(&mut Vec<(K, V)>)) -> usize {
let old_cap = self.data.capacity();
op(&mut self.data);
let new_cap = self.data.capacity();
match old_cap.cmp(&new_cap) {
Ordering::Less => {
let old_size = Layout::array::<(K, V)>(old_cap).unwrap().size();
let new_size = Layout::array::<(K, V)>(new_cap).unwrap().size();
new_size - old_size
}
Ordering::Equal => 0,
Ordering::Greater => panic!("VecMap capacity shouldn't ever decrease"),
}
}
/// Similar to `from_iter` defined in `FromIter` trait except
/// that it accepts an [`VecMapOrdering`]
pub fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I, ordering: VecMapOrdering) -> Self {
let iter = iter.into_iter();
let initial_capacity = {
match iter.size_hint() {
(lower_bound, None) => lower_bound,
(_, Some(upper_bound)) => upper_bound,
}
};
let mut vec_map = VecMap::with_capacity(initial_capacity, ordering);
for (key, value) in iter {
vec_map
.append(key, value)
.expect("The passed collection needs to be sorted!");
}
vec_map
}
}
impl<K: Ord, V> IntoIterator for VecMap<K, V> {
type Item = (K, V);
type IntoIter = std::vec::IntoIter<(K, V)>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
fn extract_key<K, V>(entry: &(K, V)) -> &K {
&entry.0
}
#[cfg(test)]
mod tests {
use std::{collections::BTreeMap, ops::Bound};
use super::{VecMap, VecMapOrdering};
#[test]
fn unbounded_range() {
let mut vec = VecMap::default();
vec.append(0, ()).unwrap();
assert_eq!(vec.slice_range(0..0), &[]);
}
#[test]
#[should_panic]
fn invalid_ordering_range() {
let mut vec = VecMap::default();
vec.append(0, ()).unwrap();
#[allow(clippy::reversed_empty_ranges)]
vec.slice_range(1..0);
}
#[test]
fn range_tests() {
let mut vec = VecMap::default();
vec.append(0, ()).unwrap();
vec.append(2, ()).unwrap();
vec.append(4, ()).unwrap();
assert_eq!(vec.slice_range(0..0), &[]);
assert_eq!(vec.slice_range(0..1), &[(0, ())]);
assert_eq!(vec.slice_range(0..2), &[(0, ())]);
assert_eq!(vec.slice_range(0..3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..0), &[]);
assert_eq!(vec.slice_range(..1), &[(0, ())]);
assert_eq!(vec.slice_range(..3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(0..=0), &[(0, ())]);
assert_eq!(vec.slice_range(0..=1), &[(0, ())]);
assert_eq!(vec.slice_range(0..=2), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(0..=3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..=0), &[(0, ())]);
assert_eq!(vec.slice_range(..=1), &[(0, ())]);
assert_eq!(vec.slice_range(..=2), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..=3), &[(0, ()), (2, ())]);
}
struct BoundIter {
min: i32,
max: i32,
next: Option<Bound<i32>>,
}
impl BoundIter {
fn new(min: i32, max: i32) -> Self {
Self {
min,
max,
next: Some(Bound::Unbounded),
}
}
}
impl Iterator for BoundIter {
type Item = Bound<i32>;
fn next(&mut self) -> Option<Self::Item> {
let cur = self.next?;
self.next = match &cur {
Bound::Unbounded => Some(Bound::Included(self.min)),
Bound::Included(x) => {
if *x >= self.max {
Some(Bound::Excluded(self.min))
} else {
Some(Bound::Included(x + 1))
}
}
Bound::Excluded(x) => {
if *x >= self.max {
None
} else {
Some(Bound::Excluded(x + 1))
}
}
};
Some(cur)
}
}
#[test]
fn range_exhaustive() {
let map: BTreeMap<i32, ()> = (1..=7).step_by(2).map(|x| (x, ())).collect();
let mut vec = VecMap::default();
for &key in map.keys() {
vec.append(key, ()).unwrap();
}
const RANGE_MIN: i32 = 0;
const RANGE_MAX: i32 = 8;
for lower_bound in BoundIter::new(RANGE_MIN, RANGE_MAX) {
let ub_min = match lower_bound {
Bound::Unbounded => RANGE_MIN,
Bound::Included(x) => x,
Bound::Excluded(x) => x + 1,
};
for upper_bound in BoundIter::new(ub_min, RANGE_MAX) {
let map_range: Vec<(i32, ())> = map
.range((lower_bound, upper_bound))
.map(|(&x, _)| (x, ()))
.collect();
let vec_slice = vec.slice_range((lower_bound, upper_bound));
assert_eq!(map_range, vec_slice);
}
}
}
#[test]
fn extend() {
let mut left = VecMap::default();
left.append(0, ()).unwrap();
assert_eq!(left.as_slice(), &[(0, ())]);
let mut empty = VecMap::default();
left.extend(&mut empty).unwrap();
assert_eq!(left.as_slice(), &[(0, ())]);
assert_eq!(empty.as_slice(), &[]);
let mut right = VecMap::default();
right.append(1, ()).unwrap();
left.extend(&mut right).unwrap();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(right.as_slice(), &[]);
let mut zero_map = VecMap::default();
zero_map.append(0, ()).unwrap();
left.extend(&mut zero_map).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(zero_map.as_slice(), &[(0, ())]);
let mut one_map = VecMap::default();
one_map.append(1, ()).unwrap();
left.extend(&mut one_map).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(one_map.as_slice(), &[(1, ())]);
let mut map_greater_or_equal = VecMap::new(VecMapOrdering::GreaterOrEqual);
map_greater_or_equal.append(2, ()).unwrap();
map_greater_or_equal.append(2, ()).unwrap();
left.extend(&mut map_greater_or_equal).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(map_greater_or_equal.as_slice(), &[(2, ()), (2, ())]);
}
#[test]
fn extend_with_ordering() {
let mut left = VecMap::new(VecMapOrdering::GreaterOrEqual);
left.append(0, ()).unwrap();
assert_eq!(left.as_slice(), &[(0, ())]);
let mut greater_right = VecMap::new(VecMapOrdering::Greater);
greater_right.append(0, ()).unwrap();
left.extend(&mut greater_right).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ())]);
let mut greater_or_equal_right = VecMap::new(VecMapOrdering::GreaterOrEqual);
greater_or_equal_right.append(2, ()).unwrap();
greater_or_equal_right.append(2, ()).unwrap();
left.extend(&mut greater_or_equal_right).unwrap();
assert_eq!(left.as_slice(), &[(0, ()), (2, ()), (2, ())]);
}
#[test]
fn vec_map_from_sorted() {
let vec = vec![(1, ()), (2, ()), (3, ()), (6, ())];
let vec_map = VecMap::from_iter(vec, VecMapOrdering::Greater);
assert_eq!(vec_map.as_slice(), &[(1, ()), (2, ()), (3, ()), (6, ())]);
let vec = vec![(1, ()), (2, ()), (3, ()), (3, ()), (6, ()), (6, ())];
let vec_map = VecMap::from_iter(vec, VecMapOrdering::GreaterOrEqual);
assert_eq!(
vec_map.as_slice(),
&[(1, ()), (2, ()), (3, ()), (3, ()), (6, ()), (6, ())]
);
}
#[test]
#[should_panic]
fn vec_map_from_unsorted_greater() {
let vec = vec![(1, ()), (2, ()), (2, ()), (3, ()), (6, ())];
let _ = VecMap::from_iter(vec, VecMapOrdering::Greater);
}
#[test]
#[should_panic]
fn vec_map_from_unsorted_greater_or_equal() {
let vec = vec![(1, ()), (2, ()), (3, ()), (6, ()), (5, ())];
let _ = VecMap::from_iter(vec, VecMapOrdering::GreaterOrEqual);
}
}