Files
neon/libs/utils/src/shard.rs
Yuchen Liang 595c450036 fix(scrubber): more robust metadata consistency checks (#8344)
Part of #8128.

## Problem

Scrubber uses `scan_metadata` command to flag metadata inconsistencies.
To trust it at scale, we need to make sure the errors we emit is a
reflection of real scenario. One check performed in the scrubber is to
see whether layers listed in the latest `index_part.json` is present in
object listing. Currently, the scrubber does not robustly handle the
case where objects are uploaded/deleted during the scan.

## Summary of changes

**Condition for success:** An object in the index is (1) in the object
listing we acquire from S3 or (2) found in a HeadObject request (new
object).

- Add in the `HeadObject` requests for the layers missing from the
object listing.
- Keep the order of first getting the object listing and then
downloading the layers.
- Update check to only consider shards with highest shard count.
- Skip analyzing a timeline if `deleted_at` tombstone is marked in
`index_part.json`.
- Add new test to see if scrubber actually detect the metadata
inconsistency.

_Misc_

- A timeline with no ancestor should always have some layers.
- Removed experimental histograms

_Caveat_

- Ancestor layer is not cleaned until #8308 is implemented. If ancestor
layers reference non-existing layers in the index, the scrubber will
emit false positives.

Signed-off-by: Yuchen Liang <yuchen@neon.tech>
2024-07-22 14:53:33 +01:00

453 lines
15 KiB
Rust

//! See `pageserver_api::shard` for description on sharding.
use std::{ops::RangeInclusive, str::FromStr};
use hex::FromHex;
use serde::{Deserialize, Serialize};
use crate::id::TenantId;
#[derive(Ord, PartialOrd, Eq, PartialEq, Clone, Copy, Serialize, Deserialize, Debug, Hash)]
pub struct ShardNumber(pub u8);
#[derive(Ord, PartialOrd, Eq, PartialEq, Clone, Copy, Serialize, Deserialize, Debug, Hash)]
pub struct ShardCount(pub u8);
/// Combination of ShardNumber and ShardCount. For use within the context of a particular tenant,
/// when we need to know which shard we're dealing with, but do not need to know the full
/// ShardIdentity (because we won't be doing any page->shard mapping), and do not need to know
/// the fully qualified TenantShardId.
#[derive(Eq, PartialEq, PartialOrd, Ord, Clone, Copy, Hash)]
pub struct ShardIndex {
pub shard_number: ShardNumber,
pub shard_count: ShardCount,
}
/// Formatting helper, for generating the `shard_id` label in traces.
pub struct ShardSlug<'a>(&'a TenantShardId);
/// TenantShardId globally identifies a particular shard in a particular tenant.
///
/// These are written as `<TenantId>-<ShardSlug>`, for example:
/// # The second shard in a two-shard tenant
/// 072f1291a5310026820b2fe4b2968934-0102
///
/// If the `ShardCount` is _unsharded_, the `TenantShardId` is written without
/// a shard suffix and is equivalent to the encoding of a `TenantId`: this enables
/// an unsharded [`TenantShardId`] to be used interchangably with a [`TenantId`].
///
/// The human-readable encoding of an unsharded TenantShardId, such as used in API URLs,
/// is both forward and backward compatible with TenantId: a legacy TenantId can be
/// decoded as a TenantShardId, and when re-encoded it will be parseable
/// as a TenantId.
#[derive(Eq, PartialEq, PartialOrd, Ord, Clone, Copy, Hash)]
pub struct TenantShardId {
pub tenant_id: TenantId,
pub shard_number: ShardNumber,
pub shard_count: ShardCount,
}
impl ShardCount {
pub const MAX: Self = Self(u8::MAX);
pub const MIN: Self = Self(0);
/// The internal value of a ShardCount may be zero, which means "1 shard, but use
/// legacy format for TenantShardId that excludes the shard suffix", also known
/// as [`TenantShardId::unsharded`].
///
/// This method returns the actual number of shards, i.e. if our internal value is
/// zero, we return 1 (unsharded tenants have 1 shard).
pub fn count(&self) -> u8 {
if self.0 > 0 {
self.0
} else {
1
}
}
/// The literal internal value: this is **not** the number of shards in the
/// tenant, as we have a special zero value for legacy unsharded tenants. Use
/// [`Self::count`] if you want to know the cardinality of shards.
pub fn literal(&self) -> u8 {
self.0
}
/// Whether the `ShardCount` is for an unsharded tenant, so uses one shard but
/// uses the legacy format for `TenantShardId`. See also the documentation for
/// [`Self::count`].
pub fn is_unsharded(&self) -> bool {
self.0 == 0
}
/// `v` may be zero, or the number of shards in the tenant. `v` is what
/// [`Self::literal`] would return.
pub const fn new(val: u8) -> Self {
Self(val)
}
}
impl ShardNumber {
pub const MAX: Self = Self(u8::MAX);
}
impl TenantShardId {
pub fn unsharded(tenant_id: TenantId) -> Self {
Self {
tenant_id,
shard_number: ShardNumber(0),
shard_count: ShardCount(0),
}
}
/// The range of all TenantShardId that belong to a particular TenantId. This is useful when
/// you have a BTreeMap of TenantShardId, and are querying by TenantId.
pub fn tenant_range(tenant_id: TenantId) -> RangeInclusive<Self> {
RangeInclusive::new(
Self {
tenant_id,
shard_number: ShardNumber(0),
shard_count: ShardCount(0),
},
Self {
tenant_id,
shard_number: ShardNumber::MAX,
shard_count: ShardCount::MAX,
},
)
}
pub fn shard_slug(&self) -> impl std::fmt::Display + '_ {
ShardSlug(self)
}
/// Convenience for code that has special behavior on the 0th shard.
pub fn is_shard_zero(&self) -> bool {
self.shard_number == ShardNumber(0)
}
/// The "unsharded" value is distinct from simply having a single shard: it represents
/// a tenant which is not shard-aware at all, and whose storage paths will not include
/// a shard suffix.
pub fn is_unsharded(&self) -> bool {
self.shard_number == ShardNumber(0) && self.shard_count.is_unsharded()
}
/// Convenience for dropping the tenant_id and just getting the ShardIndex: this
/// is useful when logging from code that is already in a span that includes tenant ID, to
/// keep messages reasonably terse.
pub fn to_index(&self) -> ShardIndex {
ShardIndex {
shard_number: self.shard_number,
shard_count: self.shard_count,
}
}
/// Calculate the children of this TenantShardId when splitting the overall tenant into
/// the given number of shards.
pub fn split(&self, new_shard_count: ShardCount) -> Vec<TenantShardId> {
let effective_old_shard_count = std::cmp::max(self.shard_count.0, 1);
let mut child_shards = Vec::new();
for shard_number in 0..ShardNumber(new_shard_count.0).0 {
// Key mapping is based on a round robin mapping of key hash modulo shard count,
// so our child shards are the ones which the same keys would map to.
if shard_number % effective_old_shard_count == self.shard_number.0 {
child_shards.push(TenantShardId {
tenant_id: self.tenant_id,
shard_number: ShardNumber(shard_number),
shard_count: new_shard_count,
})
}
}
child_shards
}
}
impl<'a> std::fmt::Display for ShardSlug<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{:02x}{:02x}",
self.0.shard_number.0, self.0.shard_count.0
)
}
}
impl std::fmt::Display for TenantShardId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.shard_count != ShardCount(0) {
write!(f, "{}-{}", self.tenant_id, self.shard_slug())
} else {
// Legacy case (shard_count == 0) -- format as just the tenant id. Note that this
// is distinct from the normal single shard case (shard count == 1).
self.tenant_id.fmt(f)
}
}
}
impl std::fmt::Debug for TenantShardId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Debug is the same as Display: the compact hex representation
write!(f, "{}", self)
}
}
impl std::str::FromStr for TenantShardId {
type Err = hex::FromHexError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
// Expect format: 16 byte TenantId, '-', 1 byte shard number, 1 byte shard count
if s.len() == 32 {
// Legacy case: no shard specified
Ok(Self {
tenant_id: TenantId::from_str(s)?,
shard_number: ShardNumber(0),
shard_count: ShardCount(0),
})
} else if s.len() == 37 {
let bytes = s.as_bytes();
let tenant_id = TenantId::from_hex(&bytes[0..32])?;
let mut shard_parts: [u8; 2] = [0u8; 2];
hex::decode_to_slice(&bytes[33..37], &mut shard_parts)?;
Ok(Self {
tenant_id,
shard_number: ShardNumber(shard_parts[0]),
shard_count: ShardCount(shard_parts[1]),
})
} else {
Err(hex::FromHexError::InvalidStringLength)
}
}
}
impl From<[u8; 18]> for TenantShardId {
fn from(b: [u8; 18]) -> Self {
let tenant_id_bytes: [u8; 16] = b[0..16].try_into().unwrap();
Self {
tenant_id: TenantId::from(tenant_id_bytes),
shard_number: ShardNumber(b[16]),
shard_count: ShardCount(b[17]),
}
}
}
impl ShardIndex {
pub fn new(number: ShardNumber, count: ShardCount) -> Self {
Self {
shard_number: number,
shard_count: count,
}
}
pub fn unsharded() -> Self {
Self {
shard_number: ShardNumber(0),
shard_count: ShardCount(0),
}
}
/// The "unsharded" value is distinct from simply having a single shard: it represents
/// a tenant which is not shard-aware at all, and whose storage paths will not include
/// a shard suffix.
pub fn is_unsharded(&self) -> bool {
self.shard_number == ShardNumber(0) && self.shard_count == ShardCount(0)
}
/// For use in constructing remote storage paths: concatenate this with a TenantId
/// to get a fully qualified TenantShardId.
///
/// Backward compat: this function returns an empty string if Self::is_unsharded, such
/// that the legacy pre-sharding remote key format is preserved.
pub fn get_suffix(&self) -> String {
if self.is_unsharded() {
"".to_string()
} else {
format!("-{:02x}{:02x}", self.shard_number.0, self.shard_count.0)
}
}
}
impl std::fmt::Display for ShardIndex {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:02x}{:02x}", self.shard_number.0, self.shard_count.0)
}
}
impl std::fmt::Debug for ShardIndex {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Debug is the same as Display: the compact hex representation
write!(f, "{}", self)
}
}
impl std::str::FromStr for ShardIndex {
type Err = hex::FromHexError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
// Expect format: 1 byte shard number, 1 byte shard count
if s.len() == 4 {
let bytes = s.as_bytes();
let mut shard_parts: [u8; 2] = [0u8; 2];
hex::decode_to_slice(bytes, &mut shard_parts)?;
Ok(Self {
shard_number: ShardNumber(shard_parts[0]),
shard_count: ShardCount(shard_parts[1]),
})
} else {
Err(hex::FromHexError::InvalidStringLength)
}
}
}
impl From<[u8; 2]> for ShardIndex {
fn from(b: [u8; 2]) -> Self {
Self {
shard_number: ShardNumber(b[0]),
shard_count: ShardCount(b[1]),
}
}
}
impl Serialize for TenantShardId {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
if serializer.is_human_readable() {
serializer.collect_str(self)
} else {
// Note: while human encoding of [`TenantShardId`] is backward and forward
// compatible, this binary encoding is not.
let mut packed: [u8; 18] = [0; 18];
packed[0..16].clone_from_slice(&self.tenant_id.as_arr());
packed[16] = self.shard_number.0;
packed[17] = self.shard_count.0;
packed.serialize(serializer)
}
}
}
impl<'de> Deserialize<'de> for TenantShardId {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
struct IdVisitor {
is_human_readable_deserializer: bool,
}
impl<'de> serde::de::Visitor<'de> for IdVisitor {
type Value = TenantShardId;
fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
if self.is_human_readable_deserializer {
formatter.write_str("value in form of hex string")
} else {
formatter.write_str("value in form of integer array([u8; 18])")
}
}
fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
where
A: serde::de::SeqAccess<'de>,
{
let s = serde::de::value::SeqAccessDeserializer::new(seq);
let id: [u8; 18] = Deserialize::deserialize(s)?;
Ok(TenantShardId::from(id))
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
TenantShardId::from_str(v).map_err(E::custom)
}
}
if deserializer.is_human_readable() {
deserializer.deserialize_str(IdVisitor {
is_human_readable_deserializer: true,
})
} else {
deserializer.deserialize_tuple(
18,
IdVisitor {
is_human_readable_deserializer: false,
},
)
}
}
}
impl Serialize for ShardIndex {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
if serializer.is_human_readable() {
serializer.collect_str(self)
} else {
// Binary encoding is not used in index_part.json, but is included in anticipation of
// switching various structures (e.g. inter-process communication, remote metadata) to more
// compact binary encodings in future.
let mut packed: [u8; 2] = [0; 2];
packed[0] = self.shard_number.0;
packed[1] = self.shard_count.0;
packed.serialize(serializer)
}
}
}
impl<'de> Deserialize<'de> for ShardIndex {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
struct IdVisitor {
is_human_readable_deserializer: bool,
}
impl<'de> serde::de::Visitor<'de> for IdVisitor {
type Value = ShardIndex;
fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
if self.is_human_readable_deserializer {
formatter.write_str("value in form of hex string")
} else {
formatter.write_str("value in form of integer array([u8; 2])")
}
}
fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
where
A: serde::de::SeqAccess<'de>,
{
let s = serde::de::value::SeqAccessDeserializer::new(seq);
let id: [u8; 2] = Deserialize::deserialize(s)?;
Ok(ShardIndex::from(id))
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
ShardIndex::from_str(v).map_err(E::custom)
}
}
if deserializer.is_human_readable() {
deserializer.deserialize_str(IdVisitor {
is_human_readable_deserializer: true,
})
} else {
deserializer.deserialize_tuple(
2,
IdVisitor {
is_human_readable_deserializer: false,
},
)
}
}
}