Files
neon/pageserver/src/walredo.rs
2021-06-17 22:49:44 +03:00

769 lines
30 KiB
Rust

//!
//! WAL redo. This service runs PostgreSQL in a special wal_redo mode
//! to apply given WAL records over an old page image and return new page image.
//!
//! We rely on Postgres to perform WAL redo for us. We launch a
//! postgres process in special "wal redo" mode that's similar to
//! single-user mode. We then pass the previous page image, if any,
//! and all the WAL records we want to apply, to the postgres
//! process. Then we get the page image back. Communication with the
//! postgres process happens via stdin/stdout
//!
//! See src/backend/tcop/zenith_wal_redo.c for the other side of
//! this communication.
//!
//! TODO: Even though the postgres code runs in a separate process,
//! it's not a secure sandbox.
//!
use byteorder::{ByteOrder, LittleEndian};
use bytes::{Buf, BufMut, Bytes, BytesMut};
use log::*;
use std::assert;
use std::cell::RefCell;
use std::fs;
use std::fs::OpenOptions;
use std::io::prelude::*;
use std::io::Error;
use std::path::PathBuf;
use std::process::Stdio;
use std::sync::mpsc;
use std::sync::Mutex;
use std::time::Duration;
use std::time::Instant;
use tokio::io::AsyncBufReadExt;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::process::{ChildStdin, ChildStdout, Command};
use tokio::time::timeout;
use zenith_utils::bin_ser::BeSer;
use zenith_utils::lsn::Lsn;
use crate::repository::{BufferTag, ObjectTag, WALRecord};
use crate::waldecoder::{MultiXactId, XlMultiXactCreate};
use crate::PageServerConf;
use postgres_ffi::nonrelfile_utils::transaction_id_set_status;
use postgres_ffi::pg_constants;
use postgres_ffi::xlog_utils::XLogRecord;
///
/// WAL Redo Manager is responsible for replaying WAL records.
///
/// Callers use the WAL redo manager through this abstract interface,
/// which makes it easy to mock it in tests.
pub trait WalRedoManager: Send + Sync {
/// Apply some WAL records.
///
/// The caller passes an old page image, and WAL records that should be
/// applied over it. The return value is a new page image, after applying
/// the reords.
fn request_redo(
&self,
tag: ObjectTag,
lsn: Lsn,
base_img: Option<Bytes>,
records: Vec<WALRecord>,
) -> Result<Bytes, WalRedoError>;
}
///
/// A dummy WAL Redo Manager implementation that doesn't allow replaying
/// anything. Currently used during bootstrapping (zenith init), to create
/// a Repository object without launching the real WAL redo process.
///
pub struct DummyRedoManager {}
impl crate::walredo::WalRedoManager for DummyRedoManager {
fn request_redo(
&self,
_tag: ObjectTag,
_lsn: Lsn,
_base_img: Option<Bytes>,
_records: Vec<WALRecord>,
) -> Result<Bytes, WalRedoError> {
Err(WalRedoError::InvalidState)
}
}
static TIMEOUT: Duration = Duration::from_secs(20);
///
/// The implementation consists of two parts: PostgresRedoManager, and
/// PostgresRedoManagerInternal. PostgresRedoManager is the public struct
/// that can be used to send redo requests to the manager.
/// PostgresRedoManagerInternal is used by the manager thread itself.
///
pub struct PostgresRedoManager {
request_tx: Mutex<mpsc::Sender<WalRedoRequest>>,
}
struct PostgresRedoManagerInternal {
conf: &'static PageServerConf,
request_rx: mpsc::Receiver<WalRedoRequest>,
}
#[derive(Debug)]
struct WalRedoRequest {
tag: ObjectTag,
lsn: Lsn,
base_img: Option<Bytes>,
records: Vec<WALRecord>,
response_channel: mpsc::Sender<Result<Bytes, WalRedoError>>,
}
/// An error happened in WAL redo
#[derive(Debug, thiserror::Error)]
pub enum WalRedoError {
#[error(transparent)]
IoError(#[from] std::io::Error),
#[error("cannot perform WAL redo now")]
InvalidState,
}
///
/// Public interface of WAL redo manager
///
impl PostgresRedoManager {
///
/// Create a new PostgresRedoManager.
///
/// This launches a new thread to handle the requests.
pub fn new(conf: &'static PageServerConf) -> PostgresRedoManager {
let (tx, rx) = mpsc::channel();
//
// Launch the WAL redo thread
//
// Get mutable references to the values that we need to pass to the
// thread.
let request_rx = rx;
// Currently, the join handle is not saved anywhere and we
// won't try restart the thread if it dies.
let _walredo_thread = std::thread::Builder::new()
.name("WAL redo thread".into())
.spawn(move || {
let mut internal = PostgresRedoManagerInternal { conf, request_rx };
internal.wal_redo_main();
})
.unwrap();
PostgresRedoManager {
request_tx: Mutex::new(tx),
}
}
}
impl WalRedoManager for PostgresRedoManager {
///
/// Request the WAL redo manager to apply some WAL records
///
/// The WAL redo is handled by a separate thread, so this just sends a request
/// to the thread and waits for response.
///
fn request_redo(
&self,
tag: ObjectTag,
lsn: Lsn,
base_img: Option<Bytes>,
records: Vec<WALRecord>,
) -> Result<Bytes, WalRedoError> {
// Create a channel where to receive the response
let (tx, rx) = mpsc::channel::<Result<Bytes, WalRedoError>>();
let request = WalRedoRequest {
tag,
lsn,
base_img,
records,
response_channel: tx,
};
self.request_tx
.lock()
.unwrap()
.send(request)
.expect("could not send WAL redo request");
rx.recv()
.expect("could not receive response to WAL redo request")
}
}
fn mx_offset_to_flags_offset(xid: MultiXactId) -> usize {
((xid / pg_constants::MULTIXACT_MEMBERS_PER_MEMBERGROUP as u32) as u16
% pg_constants::MULTIXACT_MEMBERGROUPS_PER_PAGE
* pg_constants::MULTIXACT_MEMBERGROUP_SIZE) as usize
}
fn mx_offset_to_flags_bitshift(xid: MultiXactId) -> u16 {
(xid as u16) % pg_constants::MULTIXACT_MEMBERS_PER_MEMBERGROUP
* pg_constants::MXACT_MEMBER_BITS_PER_XACT
}
/* Location (byte offset within page) of TransactionId of given member */
fn mx_offset_to_member_offset(xid: MultiXactId) -> usize {
mx_offset_to_flags_offset(xid)
+ (pg_constants::MULTIXACT_FLAGBYTES_PER_GROUP
+ (xid as u16 % pg_constants::MULTIXACT_MEMBERS_PER_MEMBERGROUP) * 4) as usize
}
///
/// WAL redo thread
///
impl PostgresRedoManagerInternal {
//
// Main entry point for the WAL applicator thread.
//
fn wal_redo_main(&mut self) {
info!("WAL redo thread started");
// We block on waiting for requests on the walredo request channel, but
// use async I/O to communicate with the child process. Initialize the
// runtime for the async part.
let runtime = tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap();
let process: PostgresRedoProcess;
info!("launching WAL redo postgres process");
process = runtime
.block_on(PostgresRedoProcess::launch(self.conf))
.unwrap();
// Loop forever, handling requests as they come.
loop {
let request = self
.request_rx
.recv()
.expect("WAL redo request channel was closed");
let result = runtime.block_on(self.handle_apply_request(&process, &request));
let result_ok = result.is_ok();
// Send the result to the requester
let _ = request.response_channel.send(result);
if !result_ok {
error!("wal-redo-postgres failed to apply request {:?}", request);
}
}
}
///
/// Process one request for WAL redo.
///
async fn handle_apply_request(
&self,
process: &PostgresRedoProcess,
request: &WalRedoRequest,
) -> Result<Bytes, WalRedoError> {
let tag = request.tag;
let lsn = request.lsn;
let base_img = request.base_img.clone();
let records = &request.records;
let nrecords = records.len();
let start = Instant::now();
let apply_result: Result<Bytes, Error>;
if let ObjectTag::RelationBuffer(buf_tag) = tag {
apply_result = process.apply_wal_records(buf_tag, base_img, records).await;
} else {
const ZERO_PAGE: [u8; 8192] = [0u8; 8192];
let mut page = BytesMut::new();
if let Some(fpi) = base_img {
page.extend_from_slice(&fpi[..]);
} else {
page.extend_from_slice(&ZERO_PAGE);
}
for record in records {
let mut buf = record.rec.clone();
// 1. Parse XLogRecord struct
// FIXME: refactor to avoid code duplication.
let xlogrec = XLogRecord::from_bytes(&mut buf);
//move to main data
// TODO probably, we should store some records in our special format
// to avoid this weird parsing on replay
let skip = (record.main_data_offset - pg_constants::SIZEOF_XLOGRECORD) as usize;
if buf.remaining() > skip {
buf.advance(skip);
}
if xlogrec.xl_rmid == pg_constants::RM_CLOG_ID {
let info = xlogrec.xl_info & !pg_constants::XLR_INFO_MASK;
if info == pg_constants::CLOG_ZEROPAGE {
page.copy_from_slice(&ZERO_PAGE);
}
} else if xlogrec.xl_rmid == pg_constants::RM_XACT_ID {
let info = xlogrec.xl_info & pg_constants::XLOG_XACT_OPMASK;
let mut status = 0;
let tag_blknum = match tag {
ObjectTag::Clog(slru) => slru.blknum,
ObjectTag::TwoPhase(_) => {
assert!(info == pg_constants::XLOG_XACT_PREPARE);
0 // not used by XLOG_XACT_PREPARE
}
_ => panic!("Not valid XACT object tag {:?}", tag),
};
if info == pg_constants::XLOG_XACT_COMMIT
|| info == pg_constants::XLOG_XACT_COMMIT_PREPARED
{
status = pg_constants::TRANSACTION_STATUS_COMMITTED;
if info == pg_constants::XLOG_XACT_COMMIT {
transaction_id_set_status(xlogrec.xl_xid, status, &mut page);
}
//handle subtrans
let _xact_time = buf.get_i64_le();
let mut xinfo = 0;
if xlogrec.xl_info & pg_constants::XLOG_XACT_HAS_INFO != 0 {
xinfo = buf.get_u32_le();
if xinfo & pg_constants::XACT_XINFO_HAS_DBINFO != 0 {
let _dbid = buf.get_u32_le();
let _tsid = buf.get_u32_le();
}
}
if xinfo & pg_constants::XACT_XINFO_HAS_SUBXACTS != 0 {
let nsubxacts = buf.get_i32_le();
for _i in 0..nsubxacts {
let subxact = buf.get_u32_le();
let blkno = subxact as u32 / pg_constants::CLOG_XACTS_PER_PAGE;
// only update xids on the requested page
if tag_blknum == blkno {
status = pg_constants::TRANSACTION_STATUS_SUB_COMMITTED;
transaction_id_set_status(subxact, status, &mut page);
}
}
}
if info == pg_constants::XLOG_XACT_COMMIT_PREPARED {
if xinfo & pg_constants::XACT_XINFO_HAS_RELFILENODES != 0 {
let nrels = buf.get_i32_le();
for _i in 0..nrels {
let spcnode = buf.get_u32_le();
let dbnode = buf.get_u32_le();
let relnode = buf.get_u32_le();
//TODO handle this too?
trace!(
"XLOG_XACT_COMMIT relfilenode {}/{}/{}",
spcnode,
dbnode,
relnode
);
}
}
if xinfo & pg_constants::XACT_XINFO_HAS_INVALS != 0 {
let nmsgs = buf.get_i32_le();
for _i in 0..nmsgs {
let sizeof_shared_invalidation_message = 0;
buf.advance(sizeof_shared_invalidation_message);
}
}
assert!((xinfo & pg_constants::XACT_XINFO_HAS_TWOPHASE) != 0);
let xid = buf.get_u32_le();
transaction_id_set_status(xid, status, &mut page);
}
} else if info == pg_constants::XLOG_XACT_ABORT
|| info == pg_constants::XLOG_XACT_ABORT_PREPARED
{
status = pg_constants::TRANSACTION_STATUS_ABORTED;
if info == pg_constants::XLOG_XACT_ABORT {
transaction_id_set_status(xlogrec.xl_xid, status, &mut page);
}
//handle subtrans
let _xact_time = buf.get_i64_le();
let mut xinfo = 0;
if xlogrec.xl_info & pg_constants::XLOG_XACT_HAS_INFO != 0 {
xinfo = buf.get_u32_le();
if xinfo & pg_constants::XACT_XINFO_HAS_DBINFO != 0 {
let _dbid = buf.get_u32_le();
let _tsid = buf.get_u32_le();
}
}
if xinfo & pg_constants::XACT_XINFO_HAS_SUBXACTS != 0 {
let nsubxacts = buf.get_i32_le();
for _i in 0..nsubxacts {
let subxact = buf.get_u32_le();
let blkno = subxact as u32 / pg_constants::CLOG_XACTS_PER_PAGE;
// only update xids on the requested page
if tag_blknum == blkno {
status = pg_constants::TRANSACTION_STATUS_ABORTED;
transaction_id_set_status(subxact, status, &mut page);
}
}
}
if info == pg_constants::XLOG_XACT_ABORT_PREPARED {
if xinfo & pg_constants::XACT_XINFO_HAS_RELFILENODES != 0 {
let nrels = buf.get_i32_le();
for _i in 0..nrels {
let spcnode = buf.get_u32_le();
let dbnode = buf.get_u32_le();
let relnode = buf.get_u32_le();
//TODO handle this too?
trace!(
"XLOG_XACT_COMMIT relfilenode {}/{}/{}",
spcnode,
dbnode,
relnode
);
}
}
if xinfo & pg_constants::XACT_XINFO_HAS_INVALS != 0 {
let nmsgs = buf.get_i32_le();
for _i in 0..nmsgs {
let sizeof_shared_invalidation_message = 0;
buf.advance(sizeof_shared_invalidation_message);
}
}
assert!((xinfo & pg_constants::XACT_XINFO_HAS_TWOPHASE) != 0);
let xid = buf.get_u32_le();
transaction_id_set_status(xid, status, &mut page);
}
} else if info == pg_constants::XLOG_XACT_PREPARE {
info!("Apply prepare {} record", xlogrec.xl_xid);
page.clear();
page.extend_from_slice(&buf[..]);
} else {
error!("handle_apply_request for RM_XACT_ID-{} NOT SUPPORTED YET. RETURN. lsn {} main_data_offset {}, rec.len {}",
status,
record.lsn,
record.main_data_offset, record.rec.len());
}
} else if xlogrec.xl_rmid == pg_constants::RM_MULTIXACT_ID {
let info = xlogrec.xl_info & pg_constants::XLR_RMGR_INFO_MASK;
if info == pg_constants::XLOG_MULTIXACT_ZERO_OFF_PAGE
|| info == pg_constants::XLOG_MULTIXACT_ZERO_MEM_PAGE
{
page.copy_from_slice(&ZERO_PAGE);
} else if info == pg_constants::XLOG_MULTIXACT_CREATE_ID {
let xlrec = XlMultiXactCreate::decode(&mut buf);
if let ObjectTag::MultiXactMembers(slru) = tag {
for i in 0..xlrec.nmembers {
let blkno = i / pg_constants::MULTIXACT_MEMBERS_PER_PAGE as u32;
if blkno == slru.blknum {
// update only target block
let offset = xlrec.moff + i;
let memberoff = mx_offset_to_member_offset(offset);
let flagsoff = mx_offset_to_flags_offset(offset);
let bshift = mx_offset_to_flags_bitshift(offset);
let mut flagsval =
LittleEndian::read_u32(&page[flagsoff..flagsoff + 4]);
flagsval &=
!(((1 << pg_constants::MXACT_MEMBER_BITS_PER_XACT) - 1)
<< bshift);
flagsval |= xlrec.members[i as usize].status << bshift;
LittleEndian::write_u32(
&mut page[flagsoff..flagsoff + 4],
flagsval,
);
LittleEndian::write_u32(
&mut page[memberoff..memberoff + 4],
xlrec.members[i as usize].xid,
);
}
}
} else {
let offs = (xlrec.mid % pg_constants::MULTIXACT_OFFSETS_PER_PAGE as u32
* 4) as usize;
LittleEndian::write_u32(&mut page[offs..offs + 4], xlrec.moff);
}
} else {
panic!();
}
} else if xlogrec.xl_rmid == pg_constants::RM_RELMAP_ID {
page.clear();
page.extend_from_slice(&buf[12..]); // skip xl_relmap_update
assert!(page.len() == 512); // size of pg_filenode.map
}
}
apply_result = Ok::<Bytes, Error>(page.freeze());
}
let duration = start.elapsed();
let result: Result<Bytes, WalRedoError>;
debug!(
"applied {} WAL records in {} ms to reconstruct page image at LSN {}",
nrecords,
duration.as_millis(),
lsn
);
if let Err(e) = apply_result {
error!("could not apply WAL records: {}", e);
result = Err(WalRedoError::IoError(e));
} else {
let img = apply_result.unwrap();
result = Ok(img);
}
// The caller is responsible for sending the response
result
}
}
struct PostgresRedoProcess {
stdin: RefCell<ChildStdin>,
stdout: RefCell<ChildStdout>,
}
impl PostgresRedoProcess {
//
// Start postgres binary in special WAL redo mode.
//
async fn launch(conf: &PageServerConf) -> Result<PostgresRedoProcess, Error> {
// FIXME: We need a dummy Postgres cluster to run the process in. Currently, we
// just create one with constant name. That fails if you try to launch more than
// one WAL redo manager concurrently.
let datadir = conf.workdir.join("wal-redo-datadir");
// Create empty data directory for wal-redo postgres, deleting old one first.
if datadir.exists() {
info!("directory {:?} exists, removing", &datadir);
if let Err(e) = fs::remove_dir_all(&datadir) {
error!("could not remove old wal-redo-datadir: {:?}", e);
}
}
info!("running initdb in {:?}", datadir.display());
let initdb = Command::new(conf.pg_bin_dir().join("initdb"))
.args(&["-D", datadir.to_str().unwrap()])
.arg("-N")
.env_clear()
.env("LD_LIBRARY_PATH", conf.pg_lib_dir().to_str().unwrap())
.env("DYLD_LIBRARY_PATH", conf.pg_lib_dir().to_str().unwrap())
.output()
.await
.expect("failed to execute initdb");
if !initdb.status.success() {
panic!(
"initdb failed: {}\nstderr:\n{}",
std::str::from_utf8(&initdb.stdout).unwrap(),
std::str::from_utf8(&initdb.stderr).unwrap()
);
} else {
// Limit shared cache for wal-redo-postres
let mut config = OpenOptions::new()
.append(true)
.open(PathBuf::from(&datadir).join("postgresql.conf"))?;
config.write_all(b"shared_buffers=128kB\n")?;
config.write_all(b"fsync=off\n")?;
config.write_all(b"shared_preload_libraries=zenith\n")?;
config.write_all(b"zenith.wal_redo=on\n")?;
}
// Start postgres itself
let mut child = Command::new(conf.pg_bin_dir().join("postgres"))
.arg("--wal-redo")
.stdin(Stdio::piped())
.stderr(Stdio::piped())
.stdout(Stdio::piped())
.env_clear()
.env("LD_LIBRARY_PATH", conf.pg_lib_dir().to_str().unwrap())
.env("DYLD_LIBRARY_PATH", conf.pg_lib_dir().to_str().unwrap())
.env("PGDATA", &datadir)
.spawn()
.expect("postgres --wal-redo command failed to start");
info!(
"launched WAL redo postgres process on {:?}",
datadir.display()
);
let stdin = child.stdin.take().expect("failed to open child's stdin");
let stderr = child.stderr.take().expect("failed to open child's stderr");
let stdout = child.stdout.take().expect("failed to open child's stdout");
// This async block reads the child's stderr, and forwards it to the logger
let f_stderr = async {
let mut stderr_buffered = tokio::io::BufReader::new(stderr);
let mut line = String::new();
loop {
let res = stderr_buffered.read_line(&mut line).await;
if res.is_err() {
debug!("could not convert line to utf-8");
continue;
}
if res.unwrap() == 0 {
break;
}
error!("wal-redo-postgres: {}", line.trim());
line.clear();
}
Ok::<(), Error>(())
};
tokio::spawn(f_stderr);
Ok(PostgresRedoProcess {
stdin: RefCell::new(stdin),
stdout: RefCell::new(stdout),
})
}
//
// Apply given WAL records ('records') over an old page image. Returns
// new page image.
//
async fn apply_wal_records(
&self,
tag: BufferTag,
base_img: Option<Bytes>,
records: &[WALRecord],
) -> Result<Bytes, std::io::Error> {
let mut stdin = self.stdin.borrow_mut();
let mut stdout = self.stdout.borrow_mut();
// We do three things simultaneously: send the old base image and WAL records to
// the child process's stdin, read the result from child's stdout, and forward any logging
// information that the child writes to its stderr to the page server's log.
//
// 'f_stdin' handles writing the base image and WAL records to the child process.
// 'f_stdout' below reads the result back. And 'f_stderr', which was spawned into the
// tokio runtime in the 'launch' function already, forwards the logging.
let f_stdin = async {
// Send base image, if any. (If the record initializes the page, previous page
// version is not needed.)
timeout(
TIMEOUT,
stdin.write_all(&build_begin_redo_for_block_msg(tag)),
)
.await??;
if base_img.is_some() {
timeout(
TIMEOUT,
stdin.write_all(&build_push_page_msg(tag, base_img.unwrap())),
)
.await??;
}
// Send WAL records.
for rec in records.iter() {
let r = rec.clone();
stdin
.write_all(&build_apply_record_msg(r.lsn, r.rec))
.await?;
//debug!("sent WAL record to wal redo postgres process ({:X}/{:X}",
// r.lsn >> 32, r.lsn & 0xffff_ffff);
}
//debug!("sent {} WAL records to wal redo postgres process ({:X}/{:X}",
// records.len(), lsn >> 32, lsn & 0xffff_ffff);
// Send GetPage command to get the result back
timeout(TIMEOUT, stdin.write_all(&build_get_page_msg(tag))).await??;
timeout(TIMEOUT, stdin.flush()).await??;
//debug!("sent GetPage for {}", tag.blknum);
Ok::<(), Error>(())
};
// Read back new page image
let f_stdout = async {
let mut buf = [0u8; 8192];
timeout(TIMEOUT, stdout.read_exact(&mut buf)).await??;
//debug!("got response for {}", tag.blknum);
Ok::<[u8; 8192], Error>(buf)
};
let res = tokio::try_join!(f_stdout, f_stdin)?;
let buf = res.0;
Ok::<Bytes, Error>(Bytes::from(std::vec::Vec::from(buf)))
}
}
// Functions for constructing messages to send to the postgres WAL redo
// process. See vendor/postgres/src/backend/tcop/zenith_wal_redo.c for
// explanation of the protocol.
fn build_begin_redo_for_block_msg(tag: BufferTag) -> Bytes {
let len = 4 + 1 + 4 * 4;
let mut buf = BytesMut::with_capacity(1 + len);
buf.put_u8(b'B');
buf.put_u32(len as u32);
// FIXME: this is a temporary hack that should go away when we refactor
// the postgres protocol serialization + handlers.
//
// BytesMut is a dynamic growable buffer, used a lot in tokio code but
// not in the std library. To write to a BytesMut from a serde serializer,
// we need to either:
// - pre-allocate the required buffer space. This is annoying because we
// shouldn't care what the exact serialized size is-- that's the
// serializer's job.
// - Or, we need to create a temporary "writer" (which implements the
// `Write` trait). It's a bit awkward, because the writer consumes the
// underlying BytesMut, and we need to extract it later with
// `into_inner`.
let mut writer = buf.writer();
tag.ser_into(&mut writer)
.expect("serialize BufferTag should always succeed");
let buf = writer.into_inner();
debug_assert!(buf.len() == 1 + len);
buf.freeze()
}
fn build_push_page_msg(tag: BufferTag, base_img: Bytes) -> Bytes {
assert!(base_img.len() == 8192);
let len = 4 + 1 + 4 * 4 + base_img.len();
let mut buf = BytesMut::with_capacity(1 + len);
buf.put_u8(b'P');
buf.put_u32(len as u32);
let mut writer = buf.writer();
tag.ser_into(&mut writer)
.expect("serialize BufferTag should always succeed");
let mut buf = writer.into_inner();
buf.put(base_img);
debug_assert!(buf.len() == 1 + len);
buf.freeze()
}
fn build_apply_record_msg(endlsn: Lsn, rec: Bytes) -> Bytes {
let len = 4 + 8 + rec.len();
let mut buf = BytesMut::with_capacity(1 + len);
buf.put_u8(b'A');
buf.put_u32(len as u32);
buf.put_u64(endlsn.0);
buf.put(rec);
debug_assert!(buf.len() == 1 + len);
buf.freeze()
}
fn build_get_page_msg(tag: BufferTag) -> Bytes {
let len = 4 + 1 + 4 * 4;
let mut buf = BytesMut::with_capacity(1 + len);
buf.put_u8(b'G');
buf.put_u32(len as u32);
let mut writer = buf.writer();
tag.ser_into(&mut writer)
.expect("serialize BufferTag should always succeed");
let buf = writer.into_inner();
debug_assert!(buf.len() == 1 + len);
buf.freeze()
}