Files
neon/libs/postgres_ffi/src/xlog_utils.rs

575 lines
21 KiB
Rust

//
// This file contains common utilities for dealing with PostgreSQL WAL files and
// LSNs.
//
// Many of these functions have been copied from PostgreSQL, and rewritten in
// Rust. That's why they don't follow the usual Rust naming conventions, they
// have been named the same as the corresponding PostgreSQL functions instead.
//
use crate::pg_constants;
use crate::CheckPoint;
use crate::FullTransactionId;
use crate::XLogLongPageHeaderData;
use crate::XLogPageHeaderData;
use crate::XLogRecord;
use crate::XLOG_PAGE_MAGIC;
use anyhow::{bail, Result};
use byteorder::{ByteOrder, LittleEndian};
use bytes::BytesMut;
use bytes::{Buf, Bytes};
use crc32c::*;
use log::*;
use std::cmp::max;
use std::cmp::min;
use std::fs::{self, File};
use std::io::prelude::*;
use std::io::SeekFrom;
use std::path::{Path, PathBuf};
use std::time::SystemTime;
use utils::lsn::Lsn;
pub const XLOG_FNAME_LEN: usize = 24;
pub const XLOG_BLCKSZ: usize = 8192;
pub const XLP_FIRST_IS_CONTRECORD: u16 = 0x0001;
pub const XLP_REM_LEN_OFFS: usize = 2 + 2 + 4 + 8;
pub const XLOG_RECORD_CRC_OFFS: usize = 4 + 4 + 8 + 1 + 1 + 2;
pub const MAX_SEND_SIZE: usize = XLOG_BLCKSZ * 16;
pub const XLOG_SIZE_OF_XLOG_SHORT_PHD: usize = std::mem::size_of::<XLogPageHeaderData>();
pub const XLOG_SIZE_OF_XLOG_LONG_PHD: usize = std::mem::size_of::<XLogLongPageHeaderData>();
pub const XLOG_SIZE_OF_XLOG_RECORD: usize = std::mem::size_of::<XLogRecord>();
#[allow(clippy::identity_op)]
pub const SIZE_OF_XLOG_RECORD_DATA_HEADER_SHORT: usize = 1 * 2;
// PG timeline is always 1, changing it doesn't have useful meaning in Zenith.
pub const PG_TLI: u32 = 1;
pub type XLogRecPtr = u64;
pub type TimeLineID = u32;
pub type TimestampTz = i64;
pub type XLogSegNo = u64;
/// Interval of checkpointing metadata file. We should store metadata file to enforce
/// predicate that checkpoint.nextXid is larger than any XID in WAL.
/// But flushing checkpoint file for each transaction seems to be too expensive,
/// so XID_CHECKPOINT_INTERVAL is used to forward align nextXid and so perform
/// metadata checkpoint only once per XID_CHECKPOINT_INTERVAL transactions.
/// XID_CHECKPOINT_INTERVAL should not be larger than BLCKSZ*CLOG_XACTS_PER_BYTE
/// in order to let CLOG_TRUNCATE mechanism correctly extend CLOG.
const XID_CHECKPOINT_INTERVAL: u32 = 1024;
#[allow(non_snake_case)]
pub fn XLogSegmentsPerXLogId(wal_segsz_bytes: usize) -> XLogSegNo {
(0x100000000u64 / wal_segsz_bytes as u64) as XLogSegNo
}
#[allow(non_snake_case)]
pub fn XLogSegNoOffsetToRecPtr(
segno: XLogSegNo,
offset: u32,
wal_segsz_bytes: usize,
) -> XLogRecPtr {
segno * (wal_segsz_bytes as u64) + (offset as u64)
}
#[allow(non_snake_case)]
pub fn XLogFileName(tli: TimeLineID, logSegNo: XLogSegNo, wal_segsz_bytes: usize) -> String {
return format!(
"{:>08X}{:>08X}{:>08X}",
tli,
logSegNo / XLogSegmentsPerXLogId(wal_segsz_bytes),
logSegNo % XLogSegmentsPerXLogId(wal_segsz_bytes)
);
}
#[allow(non_snake_case)]
pub fn XLogFromFileName(fname: &str, wal_seg_size: usize) -> (XLogSegNo, TimeLineID) {
let tli = u32::from_str_radix(&fname[0..8], 16).unwrap();
let log = u32::from_str_radix(&fname[8..16], 16).unwrap() as XLogSegNo;
let seg = u32::from_str_radix(&fname[16..24], 16).unwrap() as XLogSegNo;
(log * XLogSegmentsPerXLogId(wal_seg_size) + seg, tli)
}
#[allow(non_snake_case)]
pub fn IsXLogFileName(fname: &str) -> bool {
return fname.len() == XLOG_FNAME_LEN && fname.chars().all(|c| c.is_ascii_hexdigit());
}
#[allow(non_snake_case)]
pub fn IsPartialXLogFileName(fname: &str) -> bool {
fname.ends_with(".partial") && IsXLogFileName(&fname[0..fname.len() - 8])
}
/// If LSN points to the beginning of the page, then shift it to first record,
/// otherwise align on 8-bytes boundary (required for WAL records)
pub fn normalize_lsn(lsn: Lsn, seg_sz: usize) -> Lsn {
if lsn.0 % XLOG_BLCKSZ as u64 == 0 {
let hdr_size = if lsn.0 % seg_sz as u64 == 0 {
XLOG_SIZE_OF_XLOG_LONG_PHD
} else {
XLOG_SIZE_OF_XLOG_SHORT_PHD
};
lsn + hdr_size as u64
} else {
lsn.align()
}
}
pub fn get_current_timestamp() -> TimestampTz {
const UNIX_EPOCH_JDATE: u64 = 2440588; /* == date2j(1970, 1, 1) */
const POSTGRES_EPOCH_JDATE: u64 = 2451545; /* == date2j(2000, 1, 1) */
const SECS_PER_DAY: u64 = 86400;
const USECS_PER_SEC: u64 = 1000000;
match SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) {
Ok(n) => {
((n.as_secs() - ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY))
* USECS_PER_SEC
+ n.subsec_micros() as u64) as i64
}
Err(_) => panic!("SystemTime before UNIX EPOCH!"),
}
}
/// Return offset of the last valid record in the segment segno, starting
/// looking at start_offset. Returns start_offset if no records found.
fn find_end_of_wal_segment(
data_dir: &Path,
segno: XLogSegNo,
tli: TimeLineID,
wal_seg_size: usize,
start_offset: usize, // start reading at this point
) -> Result<u32> {
// step back to the beginning of the page to read it in...
let mut offs: usize = start_offset - start_offset % XLOG_BLCKSZ;
let mut contlen: usize = 0;
let mut wal_crc: u32 = 0;
let mut crc: u32 = 0;
let mut rec_offs: usize = 0;
let mut buf = [0u8; XLOG_BLCKSZ];
let file_name = XLogFileName(tli, segno, wal_seg_size);
let mut last_valid_rec_pos: usize = start_offset; // assume at given start_offset begins new record
let mut file = File::open(data_dir.join(file_name.clone() + ".partial")).unwrap();
file.seek(SeekFrom::Start(offs as u64))?;
let mut rec_hdr = [0u8; XLOG_RECORD_CRC_OFFS];
while offs < wal_seg_size {
// we are at the beginning of the page; read it in
if offs % XLOG_BLCKSZ == 0 {
let bytes_read = file.read(&mut buf)?;
if bytes_read != buf.len() {
bail!(
"failed to read {} bytes from {} at {}",
XLOG_BLCKSZ,
file_name,
offs
);
}
let xlp_magic = LittleEndian::read_u16(&buf[0..2]);
let xlp_info = LittleEndian::read_u16(&buf[2..4]);
let xlp_rem_len = LittleEndian::read_u32(&buf[XLP_REM_LEN_OFFS..XLP_REM_LEN_OFFS + 4]);
// this is expected in current usage when valid WAL starts after page header
if xlp_magic != XLOG_PAGE_MAGIC as u16 {
trace!(
"invalid WAL file {}.partial magic {} at {:?}",
file_name,
xlp_magic,
Lsn(XLogSegNoOffsetToRecPtr(segno, offs as u32, wal_seg_size)),
);
}
if offs == 0 {
offs = XLOG_SIZE_OF_XLOG_LONG_PHD;
if (xlp_info & XLP_FIRST_IS_CONTRECORD) != 0 {
offs += ((xlp_rem_len + 7) & !7) as usize;
}
} else {
offs += XLOG_SIZE_OF_XLOG_SHORT_PHD;
}
// ... and step forward again if asked
offs = max(offs, start_offset);
// beginning of the next record
} else if contlen == 0 {
let page_offs = offs % XLOG_BLCKSZ;
let xl_tot_len = LittleEndian::read_u32(&buf[page_offs..page_offs + 4]) as usize;
if xl_tot_len == 0 {
info!(
"find_end_of_wal_segment reached zeros at {:?}, last records ends at {:?}",
Lsn(XLogSegNoOffsetToRecPtr(segno, offs as u32, wal_seg_size)),
Lsn(XLogSegNoOffsetToRecPtr(
segno,
last_valid_rec_pos as u32,
wal_seg_size
))
);
break; // zeros, reached the end
}
last_valid_rec_pos = offs;
offs += 4;
rec_offs = 4;
contlen = xl_tot_len - 4;
rec_hdr[0..4].copy_from_slice(&buf[page_offs..page_offs + 4]);
} else {
// we're continuing a record, possibly from previous page.
let page_offs = offs % XLOG_BLCKSZ;
let pageleft = XLOG_BLCKSZ - page_offs;
// read the rest of the record, or as much as fits on this page.
let n = min(contlen, pageleft);
// fill rec_hdr (header up to (but not including) xl_crc field)
if rec_offs < XLOG_RECORD_CRC_OFFS {
let len = min(XLOG_RECORD_CRC_OFFS - rec_offs, n);
rec_hdr[rec_offs..rec_offs + len].copy_from_slice(&buf[page_offs..page_offs + len]);
}
if rec_offs <= XLOG_RECORD_CRC_OFFS && rec_offs + n >= XLOG_SIZE_OF_XLOG_RECORD {
let crc_offs = page_offs - rec_offs + XLOG_RECORD_CRC_OFFS;
wal_crc = LittleEndian::read_u32(&buf[crc_offs..crc_offs + 4]);
crc = crc32c_append(0, &buf[crc_offs + 4..page_offs + n]);
} else {
crc ^= 0xFFFFFFFFu32;
crc = crc32c_append(crc, &buf[page_offs..page_offs + n]);
}
crc = !crc;
rec_offs += n;
offs += n;
contlen -= n;
if contlen == 0 {
crc = !crc;
crc = crc32c_append(crc, &rec_hdr);
offs = (offs + 7) & !7; // pad on 8 bytes boundary */
if crc == wal_crc {
// record is valid, advance the result to its end (with
// alignment to the next record taken into account)
last_valid_rec_pos = offs;
} else {
info!(
"CRC mismatch {} vs {} at {}",
crc, wal_crc, last_valid_rec_pos
);
break;
}
}
}
}
Ok(last_valid_rec_pos as u32)
}
///
/// Scan a directory that contains PostgreSQL WAL files, for the end of WAL.
/// If precise, returns end LSN (next insertion point, basically);
/// otherwise, start of the last segment.
/// Returns (0, 0) if there is no WAL.
///
pub fn find_end_of_wal(
data_dir: &Path,
wal_seg_size: usize,
precise: bool,
start_lsn: Lsn, // start reading WAL at this point or later
) -> Result<(XLogRecPtr, TimeLineID)> {
let mut high_segno: XLogSegNo = 0;
let mut high_tli: TimeLineID = 0;
let mut high_ispartial = false;
for entry in fs::read_dir(data_dir).unwrap().flatten() {
let ispartial: bool;
let entry_name = entry.file_name();
let fname = entry_name.to_str().unwrap();
/*
* Check if the filename looks like an xlog file, or a .partial file.
*/
if IsXLogFileName(fname) {
ispartial = false;
} else if IsPartialXLogFileName(fname) {
ispartial = true;
} else {
continue;
}
let (segno, tli) = XLogFromFileName(fname, wal_seg_size);
if !ispartial && entry.metadata().unwrap().len() != wal_seg_size as u64 {
continue;
}
if segno > high_segno
|| (segno == high_segno && tli > high_tli)
|| (segno == high_segno && tli == high_tli && high_ispartial && !ispartial)
{
high_segno = segno;
high_tli = tli;
high_ispartial = ispartial;
}
}
if high_segno > 0 {
let mut high_offs = 0;
/*
* Move the starting pointer to the start of the next segment, if the
* highest one we saw was completed.
*/
if !high_ispartial {
high_segno += 1;
} else if precise {
/* otherwise locate last record in last partial segment */
if start_lsn.segment_number(wal_seg_size) > high_segno {
bail!(
"provided start_lsn {:?} is beyond highest segno {:?} available",
start_lsn,
high_segno,
);
}
let start_offset = if start_lsn.segment_number(wal_seg_size) == high_segno {
start_lsn.segment_offset(wal_seg_size)
} else {
0
};
high_offs = find_end_of_wal_segment(
data_dir,
high_segno,
high_tli,
wal_seg_size,
start_offset,
)?;
}
let high_ptr = XLogSegNoOffsetToRecPtr(high_segno, high_offs, wal_seg_size);
return Ok((high_ptr, high_tli));
}
Ok((0, 0))
}
pub fn main() {
let mut data_dir = PathBuf::new();
data_dir.push(".");
let wal_seg_size = 16 * 1024 * 1024;
let (wal_end, tli) = find_end_of_wal(&data_dir, wal_seg_size, true, Lsn(0)).unwrap();
println!(
"wal_end={:>08X}{:>08X}, tli={}",
(wal_end >> 32) as u32,
wal_end as u32,
tli
);
}
impl XLogRecord {
pub fn from_slice(buf: &[u8]) -> XLogRecord {
use utils::bin_ser::LeSer;
XLogRecord::des(buf).unwrap()
}
pub fn from_bytes<B: Buf>(buf: &mut B) -> XLogRecord {
use utils::bin_ser::LeSer;
XLogRecord::des_from(&mut buf.reader()).unwrap()
}
pub fn encode(&self) -> Bytes {
use utils::bin_ser::LeSer;
self.ser().unwrap().into()
}
// Is this record an XLOG_SWITCH record? They need some special processing,
pub fn is_xlog_switch_record(&self) -> bool {
self.xl_info == pg_constants::XLOG_SWITCH && self.xl_rmid == pg_constants::RM_XLOG_ID
}
}
impl XLogPageHeaderData {
pub fn from_bytes<B: Buf>(buf: &mut B) -> XLogPageHeaderData {
use utils::bin_ser::LeSer;
XLogPageHeaderData::des_from(&mut buf.reader()).unwrap()
}
}
impl XLogLongPageHeaderData {
pub fn from_bytes<B: Buf>(buf: &mut B) -> XLogLongPageHeaderData {
use utils::bin_ser::LeSer;
XLogLongPageHeaderData::des_from(&mut buf.reader()).unwrap()
}
pub fn encode(&self) -> Bytes {
use utils::bin_ser::LeSer;
self.ser().unwrap().into()
}
}
pub const SIZEOF_CHECKPOINT: usize = std::mem::size_of::<CheckPoint>();
impl CheckPoint {
pub fn encode(&self) -> Bytes {
use utils::bin_ser::LeSer;
self.ser().unwrap().into()
}
pub fn decode(buf: &[u8]) -> Result<CheckPoint, anyhow::Error> {
use utils::bin_ser::LeSer;
Ok(CheckPoint::des(buf)?)
}
/// Update next XID based on provided new_xid and stored epoch.
/// Next XID should be greater than new_xid. This handles 32-bit
/// XID wraparound correctly.
///
/// Returns 'true' if the XID was updated.
pub fn update_next_xid(&mut self, xid: u32) -> bool {
// nextXid should nw greate than any XID in WAL, so increment provided XID and check for wraparround.
let mut new_xid = std::cmp::max(xid + 1, pg_constants::FIRST_NORMAL_TRANSACTION_ID);
// To reduce number of metadata checkpoints, we forward align XID on XID_CHECKPOINT_INTERVAL.
// XID_CHECKPOINT_INTERVAL should not be larger than BLCKSZ*CLOG_XACTS_PER_BYTE
new_xid =
new_xid.wrapping_add(XID_CHECKPOINT_INTERVAL - 1) & !(XID_CHECKPOINT_INTERVAL - 1);
let full_xid = self.nextXid.value;
let old_xid = full_xid as u32;
if new_xid.wrapping_sub(old_xid) as i32 > 0 {
let mut epoch = full_xid >> 32;
if new_xid < old_xid {
// wrap-around
epoch += 1;
}
let nextXid = (epoch << 32) | new_xid as u64;
if nextXid != self.nextXid.value {
self.nextXid = FullTransactionId { value: nextXid };
return true;
}
}
false
}
}
//
// Generate new, empty WAL segment.
// We need this segment to start compute node.
//
pub fn generate_wal_segment(segno: u64, system_id: u64) -> Bytes {
let mut seg_buf = BytesMut::with_capacity(pg_constants::WAL_SEGMENT_SIZE as usize);
let pageaddr = XLogSegNoOffsetToRecPtr(segno, 0, pg_constants::WAL_SEGMENT_SIZE);
let hdr = XLogLongPageHeaderData {
std: {
XLogPageHeaderData {
xlp_magic: XLOG_PAGE_MAGIC as u16,
xlp_info: pg_constants::XLP_LONG_HEADER,
xlp_tli: PG_TLI,
xlp_pageaddr: pageaddr,
xlp_rem_len: 0,
..Default::default() // Put 0 in padding fields.
}
},
xlp_sysid: system_id,
xlp_seg_size: pg_constants::WAL_SEGMENT_SIZE as u32,
xlp_xlog_blcksz: XLOG_BLCKSZ as u32,
};
let hdr_bytes = hdr.encode();
seg_buf.extend_from_slice(&hdr_bytes);
//zero out the rest of the file
seg_buf.resize(pg_constants::WAL_SEGMENT_SIZE, 0);
seg_buf.freeze()
}
#[cfg(test)]
mod tests {
use super::*;
use regex::Regex;
use std::{env, process::Command, str::FromStr};
// Run find_end_of_wal against file in test_wal dir
// Ensure that it finds last record correctly
#[test]
pub fn test_find_end_of_wal() {
// 1. Run initdb to generate some WAL
let top_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"))
.join("..")
.join("..");
let data_dir = top_path.join("test_output/test_find_end_of_wal");
let initdb_path = top_path.join("tmp_install/bin/initdb");
let lib_path = top_path.join("tmp_install/lib");
if data_dir.exists() {
fs::remove_dir_all(&data_dir).unwrap();
}
println!("Using initdb from '{}'", initdb_path.display());
println!("Data directory '{}'", data_dir.display());
let initdb_output = Command::new(initdb_path)
.args(&["-D", data_dir.to_str().unwrap()])
.arg("--no-instructions")
.arg("--no-sync")
.env_clear()
.env("LD_LIBRARY_PATH", &lib_path)
.env("DYLD_LIBRARY_PATH", &lib_path)
.output()
.unwrap();
assert!(
initdb_output.status.success(),
"initdb failed. Status: '{}', stdout: '{}', stderr: '{}'",
initdb_output.status,
String::from_utf8_lossy(&initdb_output.stdout),
String::from_utf8_lossy(&initdb_output.stderr),
);
// 2. Pick WAL generated by initdb
let wal_dir = data_dir.join("pg_wal");
let wal_seg_size = 16 * 1024 * 1024;
// 3. Check end_of_wal on non-partial WAL segment (we treat it as fully populated)
let (wal_end, tli) = find_end_of_wal(&wal_dir, wal_seg_size, true, Lsn(0)).unwrap();
let wal_end = Lsn(wal_end);
println!("wal_end={}, tli={}", wal_end, tli);
assert_eq!(wal_end, "0/2000000".parse::<Lsn>().unwrap());
// 4. Get the actual end of WAL by pg_waldump
let waldump_path = top_path.join("tmp_install/bin/pg_waldump");
let waldump_output = Command::new(waldump_path)
.arg(wal_dir.join("000000010000000000000001"))
.env_clear()
.env("LD_LIBRARY_PATH", &lib_path)
.env("DYLD_LIBRARY_PATH", &lib_path)
.output()
.unwrap();
let waldump_output = std::str::from_utf8(&waldump_output.stderr).unwrap();
println!("waldump_output = '{}'", &waldump_output);
let re = Regex::new(r"invalid record length at (.+):").unwrap();
let caps = re.captures(waldump_output).unwrap();
let waldump_wal_end = Lsn::from_str(caps.get(1).unwrap().as_str()).unwrap();
// 5. Rename file to partial to actually find last valid lsn
fs::rename(
wal_dir.join("000000010000000000000001"),
wal_dir.join("000000010000000000000001.partial"),
)
.unwrap();
let (wal_end, tli) = find_end_of_wal(&wal_dir, wal_seg_size, true, Lsn(0)).unwrap();
let wal_end = Lsn(wal_end);
println!("wal_end={}, tli={}", wal_end, tli);
assert_eq!(wal_end, waldump_wal_end);
}
/// Check the math in update_next_xid
///
/// NOTE: These checks are sensitive to the value of XID_CHECKPOINT_INTERVAL,
/// currently 1024.
#[test]
pub fn test_update_next_xid() {
let checkpoint_buf = [0u8; std::mem::size_of::<CheckPoint>()];
let mut checkpoint = CheckPoint::decode(&checkpoint_buf).unwrap();
checkpoint.nextXid = FullTransactionId { value: 10 };
assert_eq!(checkpoint.nextXid.value, 10);
// The input XID gets rounded up to the next XID_CHECKPOINT_INTERVAL
// boundary
checkpoint.update_next_xid(100);
assert_eq!(checkpoint.nextXid.value, 1024);
// No change
checkpoint.update_next_xid(500);
assert_eq!(checkpoint.nextXid.value, 1024);
checkpoint.update_next_xid(1023);
assert_eq!(checkpoint.nextXid.value, 1024);
// The function returns the *next* XID, given the highest XID seen so
// far. So when we pass 1024, the nextXid gets bumped up to the next
// XID_CHECKPOINT_INTERVAL boundary.
checkpoint.update_next_xid(1024);
assert_eq!(checkpoint.nextXid.value, 2048);
}
}