mirror of
https://github.com/neondatabase/neon.git
synced 2026-01-05 20:42:54 +00:00
210 lines
7.6 KiB
Python
210 lines
7.6 KiB
Python
import calendar
|
|
import enum
|
|
import os
|
|
import timeit
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import List
|
|
|
|
import pytest
|
|
from fixtures.benchmark_fixture import MetricReport, PgBenchInitResult, PgBenchRunResult
|
|
from fixtures.compare_fixtures import NeonCompare, PgCompare
|
|
from fixtures.neon_fixtures import profiling_supported
|
|
from fixtures.utils import get_scale_for_db
|
|
|
|
|
|
@enum.unique
|
|
class PgBenchLoadType(enum.Enum):
|
|
INIT = "init"
|
|
SIMPLE_UPDATE = "simple_update"
|
|
SELECT_ONLY = "select-only"
|
|
|
|
|
|
def utc_now_timestamp() -> int:
|
|
return calendar.timegm(datetime.utcnow().utctimetuple())
|
|
|
|
|
|
def init_pgbench(env: PgCompare, cmdline):
|
|
# calculate timestamps and durations separately
|
|
# timestamp is intended to be used for linking to grafana and logs
|
|
# duration is actually a metric and uses float instead of int for timestamp
|
|
start_timestamp = utc_now_timestamp()
|
|
t0 = timeit.default_timer()
|
|
with env.record_pageserver_writes('init.pageserver_writes'):
|
|
out = env.pg_bin.run_capture(cmdline)
|
|
env.flush()
|
|
|
|
duration = timeit.default_timer() - t0
|
|
end_timestamp = utc_now_timestamp()
|
|
|
|
stderr = Path(f"{out}.stderr").read_text()
|
|
|
|
res = PgBenchInitResult.parse_from_stderr(
|
|
stderr=stderr,
|
|
duration=duration,
|
|
start_timestamp=start_timestamp,
|
|
end_timestamp=end_timestamp,
|
|
)
|
|
env.zenbenchmark.record_pg_bench_init_result("init", res)
|
|
|
|
|
|
def run_pgbench(env: PgCompare, prefix: str, cmdline):
|
|
with env.record_pageserver_writes(f'{prefix}.pageserver_writes'):
|
|
run_start_timestamp = utc_now_timestamp()
|
|
t0 = timeit.default_timer()
|
|
out = env.pg_bin.run_capture(cmdline, )
|
|
run_duration = timeit.default_timer() - t0
|
|
run_end_timestamp = utc_now_timestamp()
|
|
env.flush()
|
|
|
|
stdout = Path(f"{out}.stdout").read_text()
|
|
|
|
res = PgBenchRunResult.parse_from_stdout(
|
|
stdout=stdout,
|
|
run_duration=run_duration,
|
|
run_start_timestamp=run_start_timestamp,
|
|
run_end_timestamp=run_end_timestamp,
|
|
)
|
|
env.zenbenchmark.record_pg_bench_result(prefix, res)
|
|
|
|
|
|
#
|
|
# Initialize a pgbench database, and run pgbench against it.
|
|
#
|
|
# This makes runs two different pgbench workloads against the same
|
|
# initialized database, and 'duration' is the time of each run. So
|
|
# the total runtime is 2 * duration, plus time needed to initialize
|
|
# the test database.
|
|
#
|
|
# Currently, the # of connections is hardcoded at 4
|
|
def run_test_pgbench(env: PgCompare, scale: int, duration: int, workload_type: PgBenchLoadType):
|
|
env.zenbenchmark.record("scale", scale, '', MetricReport.TEST_PARAM)
|
|
|
|
if workload_type == PgBenchLoadType.INIT:
|
|
# Run initialize
|
|
init_pgbench(
|
|
env, ['pgbench', f'-s{scale}', '-i', env.pg.connstr(options='-cstatement_timeout=1h')])
|
|
|
|
if workload_type == PgBenchLoadType.SIMPLE_UPDATE:
|
|
# Run simple-update workload
|
|
run_pgbench(env,
|
|
"simple-update",
|
|
[
|
|
'pgbench',
|
|
'-N',
|
|
'-c4',
|
|
f'-T{duration}',
|
|
'-P2',
|
|
'--progress-timestamp',
|
|
env.pg.connstr(),
|
|
])
|
|
|
|
if workload_type == PgBenchLoadType.SELECT_ONLY:
|
|
# Run SELECT workload
|
|
run_pgbench(env,
|
|
"select-only",
|
|
[
|
|
'pgbench',
|
|
'-S',
|
|
'-c4',
|
|
f'-T{duration}',
|
|
'-P2',
|
|
'--progress-timestamp',
|
|
env.pg.connstr(),
|
|
])
|
|
|
|
env.report_size()
|
|
|
|
|
|
def get_durations_matrix(default: int = 45) -> List[int]:
|
|
durations = os.getenv("TEST_PG_BENCH_DURATIONS_MATRIX", default=str(default))
|
|
rv = []
|
|
for d in durations.split(","):
|
|
d = d.strip().lower()
|
|
if d.endswith('h'):
|
|
duration = int(d.removesuffix('h')) * 60 * 60
|
|
elif d.endswith('m'):
|
|
duration = int(d.removesuffix('m')) * 60
|
|
else:
|
|
duration = int(d.removesuffix('s'))
|
|
rv.append(duration)
|
|
|
|
return rv
|
|
|
|
|
|
def get_scales_matrix(default: int = 10) -> List[int]:
|
|
scales = os.getenv("TEST_PG_BENCH_SCALES_MATRIX", default=str(default))
|
|
rv = []
|
|
for s in scales.split(","):
|
|
s = s.strip().lower()
|
|
if s.endswith('mb'):
|
|
scale = get_scale_for_db(int(s.removesuffix('mb')))
|
|
elif s.endswith('gb'):
|
|
scale = get_scale_for_db(int(s.removesuffix('gb')) * 1024)
|
|
else:
|
|
scale = int(s)
|
|
rv.append(scale)
|
|
|
|
return rv
|
|
|
|
|
|
# Run the pgbench tests against vanilla Postgres and neon
|
|
@pytest.mark.parametrize("scale", get_scales_matrix())
|
|
@pytest.mark.parametrize("duration", get_durations_matrix())
|
|
def test_pgbench(neon_with_baseline: PgCompare, scale: int, duration: int):
|
|
run_test_pgbench(neon_with_baseline, scale, duration, PgBenchLoadType.INIT)
|
|
run_test_pgbench(neon_with_baseline, scale, duration, PgBenchLoadType.SIMPLE_UPDATE)
|
|
run_test_pgbench(neon_with_baseline, scale, duration, PgBenchLoadType.SELECT_ONLY)
|
|
|
|
|
|
# Run the pgbench tests, and generate a flamegraph from it
|
|
# This requires that the pageserver was built with the 'profiling' feature.
|
|
#
|
|
# TODO: If the profiling is cheap enough, there's no need to run the same test
|
|
# twice, with and without profiling. But for now, run it separately, so that we
|
|
# can see how much overhead the profiling adds.
|
|
@pytest.mark.parametrize("scale", get_scales_matrix())
|
|
@pytest.mark.parametrize("duration", get_durations_matrix())
|
|
def test_pgbench_flamegraph(zenbenchmark, pg_bin, neon_env_builder, scale: int, duration: int):
|
|
neon_env_builder.num_safekeepers = 1
|
|
neon_env_builder.pageserver_config_override = '''
|
|
profiling="page_requests"
|
|
'''
|
|
if not profiling_supported():
|
|
pytest.skip("pageserver was built without 'profiling' feature")
|
|
|
|
env = neon_env_builder.init_start()
|
|
env.neon_cli.create_branch("empty", "main")
|
|
|
|
neon_compare = NeonCompare(zenbenchmark, env, pg_bin, "pgbench")
|
|
run_test_pgbench(neon_compare, scale, duration, PgBenchLoadType.INIT)
|
|
run_test_pgbench(neon_compare, scale, duration, PgBenchLoadType.SIMPLE_UPDATE)
|
|
run_test_pgbench(neon_compare, scale, duration, PgBenchLoadType.SELECT_ONLY)
|
|
|
|
|
|
# The following 3 tests run on an existing database as it was set up by previous tests,
|
|
# and leaves the database in a state that would be used in the next tests.
|
|
# Modifying the definition order of these functions or adding other remote tests in between will alter results.
|
|
# See usage of --sparse-ordering flag in the pytest invocation in the CI workflow
|
|
#
|
|
# Run the pgbench tests against an existing Postgres cluster
|
|
@pytest.mark.parametrize("scale", get_scales_matrix())
|
|
@pytest.mark.parametrize("duration", get_durations_matrix())
|
|
@pytest.mark.remote_cluster
|
|
def test_pgbench_remote_init(remote_compare: PgCompare, scale: int, duration: int):
|
|
run_test_pgbench(remote_compare, scale, duration, PgBenchLoadType.INIT)
|
|
|
|
|
|
@pytest.mark.parametrize("scale", get_scales_matrix())
|
|
@pytest.mark.parametrize("duration", get_durations_matrix())
|
|
@pytest.mark.remote_cluster
|
|
def test_pgbench_remote_simple_update(remote_compare: PgCompare, scale: int, duration: int):
|
|
run_test_pgbench(remote_compare, scale, duration, PgBenchLoadType.SIMPLE_UPDATE)
|
|
|
|
|
|
@pytest.mark.parametrize("scale", get_scales_matrix())
|
|
@pytest.mark.parametrize("duration", get_durations_matrix())
|
|
@pytest.mark.remote_cluster
|
|
def test_pgbench_remote_select_only(remote_compare: PgCompare, scale: int, duration: int):
|
|
run_test_pgbench(remote_compare, scale, duration, PgBenchLoadType.SELECT_ONLY)
|