Our scale-to-zero logic was optimized for short auto-suspend intervals, e.g. minutes or hours. In this case, if compute was restarted by k8s due to some reason (OOM, k8s node went down, pod relocation, etc.), `last_active` got bumped, we start counting auto-suspend timeout again. It's not a big deal, i.e. we suspend completely idle compute not after 5 minutes, but after 10 minutes or so. Yet, some clients may want days or even weeks. And chance that compute could be restarted during this interval is pretty high, but in this case we could be not able to suspend some computes for weeks. After this commit, we won't initialize `last_active` on start, so `/status` could return an unset attribute. This means that there was no user activity since start. Control-plane should deal with it by taking `max()` out of all available activity timestamps: `started_at`, `last_active`, etc. compute_ctl part of neondatabase/cloud#4853
Compute node tools
Postgres wrapper (compute_ctl) is intended to be run as a Docker entrypoint or as a systemd
ExecStart option. It will handle all the Neon specifics during compute node
initialization:
compute_ctlaccepts cluster (compute node) specification as a JSON file.- Every start is a fresh start, so the data directory is removed and initialized again on each run.
- Next it will put configuration files into the
PGDATAdirectory. - Sync safekeepers and get commit LSN.
- Get
basebackupfrom pageserver using the returned on the previous step LSN. - Try to start
postgresand wait until it is ready to accept connections. - Check and alter/drop/create roles and databases.
- Hang waiting on the
postmasterprocess to exit.
Also compute_ctl spawns two separate service threads:
compute-monitorchecks the last Postgres activity timestamp and saves it into the sharedComputeNode;http-endpointruns a Hyper HTTP API server, which serves readiness and the last activity requests.
If the vm-informant binary is present at /bin/vm-informant, it will also be started. For VM
compute nodes, vm-informant communicates with the VM autoscaling system. It coordinates
downscaling and (eventually) will request immediate upscaling under resource pressure.
Usage example:
compute_ctl -D /var/db/postgres/compute \
-C 'postgresql://cloud_admin@localhost/postgres' \
-S /var/db/postgres/specs/current.json \
-b /usr/local/bin/postgres
Tests
Cargo formatter:
cargo fmt
Run tests:
cargo test
Clippy linter:
cargo clippy --all --all-targets -- -Dwarnings -Drust-2018-idioms
Cross-platform compilation
Imaging that you are on macOS (x86) and you want a Linux GNU (x86_64-unknown-linux-gnu platform in rust terminology) executable.
Using docker
You can use a throw-away Docker container (rustlang/rust image) for doing that:
docker run --rm \
-v $(pwd):/compute_tools \
-w /compute_tools \
-t rustlang/rust:nightly cargo build --release --target=x86_64-unknown-linux-gnu
or one-line:
docker run --rm -v $(pwd):/compute_tools -w /compute_tools -t rust:latest cargo build --release --target=x86_64-unknown-linux-gnu
Using rust native cross-compilation
Another way is to add x86_64-unknown-linux-gnu target on your host system:
rustup target add x86_64-unknown-linux-gnu
Install macOS cross-compiler toolchain:
brew tap SergioBenitez/osxct
brew install x86_64-unknown-linux-gnu
And finally run cargo build:
CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_LINKER=x86_64-unknown-linux-gnu-gcc cargo build --target=x86_64-unknown-linux-gnu --release