Files
neon/storage_controller/src/service.rs
Arpad Müller 552249607d apply clippy fixes for 1.88.0 beta (#12331)
The 1.88.0 stable release is near (this Thursday). We'd like to fix most
warnings beforehand so that the compiler upgrade doesn't require
approval from too many teams.

This is therefore a preparation PR (like similar PRs before it).

There is a lot of changes for this release, mostly because the
`uninlined_format_args` lint has been added to the `style` lint group.
One can read more about the lint
[here](https://rust-lang.github.io/rust-clippy/master/#/uninlined_format_args).

The PR is the result of `cargo +beta clippy --fix` and `cargo fmt`. One
remaining warning is left for the proxy team.

---------

Co-authored-by: Conrad Ludgate <conrad@neon.tech>
2025-06-24 10:12:42 +00:00

9869 lines
405 KiB
Rust

pub mod chaos_injector;
mod context_iterator;
pub(crate) mod safekeeper_reconciler;
mod safekeeper_service;
use std::borrow::Cow;
use std::cmp::Ordering;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::error::Error;
use std::num::NonZeroU32;
use std::ops::{Deref, DerefMut};
use std::path::PathBuf;
use std::str::FromStr;
use std::sync::{Arc, OnceLock};
use std::time::{Duration, Instant, SystemTime};
use anyhow::Context;
use context_iterator::TenantShardContextIterator;
use control_plane::storage_controller::{
AttachHookRequest, AttachHookResponse, InspectRequest, InspectResponse,
};
use diesel::result::DatabaseErrorKind;
use futures::StreamExt;
use futures::stream::FuturesUnordered;
use http_utils::error::ApiError;
use hyper::Uri;
use itertools::Itertools;
use pageserver_api::controller_api::{
AvailabilityZone, MetadataHealthRecord, MetadataHealthUpdateRequest, NodeAvailability,
NodeRegisterRequest, NodeSchedulingPolicy, NodeShard, NodeShardResponse, PlacementPolicy,
ShardSchedulingPolicy, ShardsPreferredAzsRequest, ShardsPreferredAzsResponse,
TenantCreateRequest, TenantCreateResponse, TenantCreateResponseShard, TenantDescribeResponse,
TenantDescribeResponseShard, TenantLocateResponse, TenantPolicyRequest,
TenantShardMigrateRequest, TenantShardMigrateResponse,
};
use pageserver_api::models::{
self, DetachBehavior, LocationConfig, LocationConfigListResponse, LocationConfigMode, LsnLease,
PageserverUtilization, SecondaryProgress, ShardImportStatus, ShardParameters, TenantConfig,
TenantConfigPatchRequest, TenantConfigRequest, TenantLocationConfigRequest,
TenantLocationConfigResponse, TenantShardLocation, TenantShardSplitRequest,
TenantShardSplitResponse, TenantSorting, TenantTimeTravelRequest,
TimelineArchivalConfigRequest, TimelineCreateRequest, TimelineCreateResponseStorcon,
TimelineInfo, TopTenantShardItem, TopTenantShardsRequest,
};
use pageserver_api::shard::{
DEFAULT_STRIPE_SIZE, ShardCount, ShardIdentity, ShardNumber, ShardStripeSize, TenantShardId,
};
use pageserver_api::upcall_api::{
PutTimelineImportStatusRequest, ReAttachRequest, ReAttachResponse, ReAttachResponseTenant,
TimelineImportStatusRequest, ValidateRequest, ValidateResponse, ValidateResponseTenant,
};
use pageserver_client::{BlockUnblock, mgmt_api};
use reqwest::{Certificate, StatusCode};
use safekeeper_api::models::SafekeeperUtilization;
use safekeeper_reconciler::SafekeeperReconcilers;
use tokio::sync::TryAcquireError;
use tokio::sync::mpsc::error::TrySendError;
use tokio_util::sync::CancellationToken;
use tracing::{Instrument, debug, error, info, info_span, instrument, warn};
use utils::completion::Barrier;
use utils::generation::Generation;
use utils::id::{NodeId, TenantId, TimelineId};
use utils::lsn::Lsn;
use utils::shard::ShardIndex;
use utils::sync::gate::{Gate, GateGuard};
use utils::{failpoint_support, pausable_failpoint};
use crate::background_node_operations::{
Drain, Fill, MAX_RECONCILES_PER_OPERATION, Operation, OperationError, OperationHandler,
};
use crate::compute_hook::{self, ComputeHook, NotifyError};
use crate::drain_utils::{self, TenantShardDrain, TenantShardIterator};
use crate::heartbeater::{Heartbeater, PageserverState, SafekeeperState};
use crate::id_lock_map::{
IdLockMap, TracingExclusiveGuard, trace_exclusive_lock, trace_shared_lock,
};
use crate::leadership::Leadership;
use crate::metrics;
use crate::node::{AvailabilityTransition, Node};
use crate::pageserver_client::PageserverClient;
use crate::peer_client::GlobalObservedState;
use crate::persistence::split_state::SplitState;
use crate::persistence::{
AbortShardSplitStatus, ControllerPersistence, DatabaseError, DatabaseResult,
MetadataHealthPersistence, Persistence, ShardGenerationState, TenantFilter,
TenantShardPersistence,
};
use crate::reconciler::{
ReconcileError, ReconcileUnits, ReconcilerConfig, ReconcilerConfigBuilder, ReconcilerPriority,
attached_location_conf,
};
use crate::safekeeper::Safekeeper;
use crate::scheduler::{
AttachedShardTag, MaySchedule, ScheduleContext, ScheduleError, ScheduleMode, Scheduler,
};
use crate::tenant_shard::{
IntentState, MigrateAttachment, ObservedState, ObservedStateDelta, ObservedStateLocation,
ReconcileNeeded, ReconcileResult, ReconcileWaitError, ReconcilerStatus, ReconcilerWaiter,
ScheduleOptimization, ScheduleOptimizationAction, TenantShard,
};
use crate::timeline_import::{
FinalizingImport, ImportResult, ShardImportStatuses, TimelineImport,
TimelineImportFinalizeError, TimelineImportState, UpcallClient,
};
const WAITER_FILL_DRAIN_POLL_TIMEOUT: Duration = Duration::from_millis(500);
// For operations that should be quick, like attaching a new tenant
const SHORT_RECONCILE_TIMEOUT: Duration = Duration::from_secs(5);
// For operations that might be slow, like migrating a tenant with
// some data in it.
pub const RECONCILE_TIMEOUT: Duration = Duration::from_secs(30);
// If we receive a call using Secondary mode initially, it will omit generation. We will initialize
// tenant shards into this generation, and as long as it remains in this generation, we will accept
// input generation from future requests as authoritative.
const INITIAL_GENERATION: Generation = Generation::new(0);
/// How long [`Service::startup_reconcile`] is allowed to take before it should give
/// up on unresponsive pageservers and proceed.
pub(crate) const STARTUP_RECONCILE_TIMEOUT: Duration = Duration::from_secs(30);
/// How long a node may be unresponsive to heartbeats before we declare it offline.
/// This must be long enough to cover node restarts as well as normal operations: in future
pub const MAX_OFFLINE_INTERVAL_DEFAULT: Duration = Duration::from_secs(30);
/// How long a node may be unresponsive to heartbeats during start up before we declare it
/// offline.
///
/// This is much more lenient than [`MAX_OFFLINE_INTERVAL_DEFAULT`] since the pageserver's
/// handling of the re-attach response may take a long time and blocks heartbeats from
/// being handled on the pageserver side.
pub const MAX_WARMING_UP_INTERVAL_DEFAULT: Duration = Duration::from_secs(300);
/// How often to send heartbeats to registered nodes?
pub const HEARTBEAT_INTERVAL_DEFAULT: Duration = Duration::from_secs(5);
/// How long is too long for a reconciliation?
pub const LONG_RECONCILE_THRESHOLD_DEFAULT: Duration = Duration::from_secs(120);
#[derive(Clone, strum_macros::Display)]
enum TenantOperations {
Create,
LocationConfig,
ConfigSet,
ConfigPatch,
TimeTravelRemoteStorage,
Delete,
UpdatePolicy,
ShardSplit,
SecondaryDownload,
TimelineCreate,
TimelineDelete,
AttachHook,
TimelineArchivalConfig,
TimelineDetachAncestor,
TimelineGcBlockUnblock,
DropDetached,
DownloadHeatmapLayers,
TimelineLsnLease,
}
#[derive(Clone, strum_macros::Display)]
enum NodeOperations {
Register,
Configure,
Delete,
DeleteTombstone,
}
/// The leadership status for the storage controller process.
/// Allowed transitions are:
/// 1. Leader -> SteppedDown
/// 2. Candidate -> Leader
#[derive(
Eq,
PartialEq,
Copy,
Clone,
strum_macros::Display,
strum_macros::EnumIter,
measured::FixedCardinalityLabel,
)]
#[strum(serialize_all = "snake_case")]
pub(crate) enum LeadershipStatus {
/// This is the steady state where the storage controller can produce
/// side effects in the cluster.
Leader,
/// We've been notified to step down by another candidate. No reconciliations
/// take place in this state.
SteppedDown,
/// Initial state for a new storage controller instance. Will attempt to assume leadership.
#[allow(unused)]
Candidate,
}
enum ShardGenerationValidity {
Valid,
Mismatched {
claimed: Generation,
actual: Option<Generation>,
},
}
pub const RECONCILER_CONCURRENCY_DEFAULT: usize = 128;
pub const PRIORITY_RECONCILER_CONCURRENCY_DEFAULT: usize = 256;
pub const SAFEKEEPER_RECONCILER_CONCURRENCY_DEFAULT: usize = 32;
// Depth of the channel used to enqueue shards for reconciliation when they can't do it immediately.
// This channel is finite-size to avoid using excessive memory if we get into a state where reconciles are finishing more slowly
// than they're being pushed onto the queue.
const MAX_DELAYED_RECONCILES: usize = 10000;
// Top level state available to all HTTP handlers
struct ServiceState {
leadership_status: LeadershipStatus,
tenants: BTreeMap<TenantShardId, TenantShard>,
nodes: Arc<HashMap<NodeId, Node>>,
safekeepers: Arc<HashMap<NodeId, Safekeeper>>,
safekeeper_reconcilers: SafekeeperReconcilers,
scheduler: Scheduler,
/// Ongoing background operation on the cluster if any is running.
/// Note that only one such operation may run at any given time,
/// hence the type choice.
ongoing_operation: Option<OperationHandler>,
/// Queue of tenants who are waiting for concurrency limits to permit them to reconcile
delayed_reconcile_rx: tokio::sync::mpsc::Receiver<TenantShardId>,
/// Tracks ongoing timeline import finalization tasks
imports_finalizing: BTreeMap<(TenantId, TimelineId), FinalizingImport>,
}
/// Transform an error from a pageserver into an error to return to callers of a storage
/// controller API.
fn passthrough_api_error(node: &Node, e: mgmt_api::Error) -> ApiError {
match e {
mgmt_api::Error::SendRequest(e) => {
// Presume errors sending requests are connectivity/availability issues
ApiError::ResourceUnavailable(format!("{node} error sending request: {e}").into())
}
mgmt_api::Error::ReceiveErrorBody(str) => {
// Presume errors receiving body are connectivity/availability issues
ApiError::ResourceUnavailable(
format!("{node} error receiving error body: {str}").into(),
)
}
mgmt_api::Error::ReceiveBody(err) if err.is_decode() => {
// Return 500 for decoding errors.
ApiError::InternalServerError(anyhow::Error::from(err).context("error decoding body"))
}
mgmt_api::Error::ReceiveBody(err) => {
// Presume errors receiving body are connectivity/availability issues except for decoding errors
let src_str = err.source().map(|e| e.to_string()).unwrap_or_default();
ApiError::ResourceUnavailable(
format!("{node} error receiving error body: {err} {src_str}").into(),
)
}
mgmt_api::Error::ApiError(StatusCode::NOT_FOUND, msg) => {
ApiError::NotFound(anyhow::anyhow!(format!("{node}: {msg}")).into())
}
mgmt_api::Error::ApiError(StatusCode::SERVICE_UNAVAILABLE, msg) => {
ApiError::ResourceUnavailable(format!("{node}: {msg}").into())
}
mgmt_api::Error::ApiError(status @ StatusCode::UNAUTHORIZED, msg)
| mgmt_api::Error::ApiError(status @ StatusCode::FORBIDDEN, msg) => {
// Auth errors talking to a pageserver are not auth errors for the caller: they are
// internal server errors, showing that something is wrong with the pageserver or
// storage controller's auth configuration.
ApiError::InternalServerError(anyhow::anyhow!("{node} {status}: {msg}"))
}
mgmt_api::Error::ApiError(status @ StatusCode::TOO_MANY_REQUESTS, msg) => {
// Pass through 429 errors: if pageserver is asking us to wait + retry, we in
// turn ask our clients to wait + retry
ApiError::Conflict(format!("{node} {status}: {status} {msg}"))
}
mgmt_api::Error::ApiError(status, msg) => {
// Presume general case of pageserver API errors is that we tried to do something
// that can't be done right now.
ApiError::Conflict(format!("{node} {status}: {status} {msg}"))
}
mgmt_api::Error::Cancelled => ApiError::ShuttingDown,
mgmt_api::Error::Timeout(e) => ApiError::Timeout(e.into()),
}
}
impl ServiceState {
fn new(
nodes: HashMap<NodeId, Node>,
safekeepers: HashMap<NodeId, Safekeeper>,
tenants: BTreeMap<TenantShardId, TenantShard>,
scheduler: Scheduler,
delayed_reconcile_rx: tokio::sync::mpsc::Receiver<TenantShardId>,
initial_leadership_status: LeadershipStatus,
reconcilers_cancel: CancellationToken,
) -> Self {
metrics::update_leadership_status(initial_leadership_status);
Self {
leadership_status: initial_leadership_status,
tenants,
nodes: Arc::new(nodes),
safekeepers: Arc::new(safekeepers),
safekeeper_reconcilers: SafekeeperReconcilers::new(reconcilers_cancel),
scheduler,
ongoing_operation: None,
delayed_reconcile_rx,
imports_finalizing: Default::default(),
}
}
fn parts_mut(
&mut self,
) -> (
&mut Arc<HashMap<NodeId, Node>>,
&mut BTreeMap<TenantShardId, TenantShard>,
&mut Scheduler,
) {
(&mut self.nodes, &mut self.tenants, &mut self.scheduler)
}
#[allow(clippy::type_complexity)]
fn parts_mut_sk(
&mut self,
) -> (
&mut Arc<HashMap<NodeId, Node>>,
&mut Arc<HashMap<NodeId, Safekeeper>>,
&mut BTreeMap<TenantShardId, TenantShard>,
&mut Scheduler,
) {
(
&mut self.nodes,
&mut self.safekeepers,
&mut self.tenants,
&mut self.scheduler,
)
}
fn get_leadership_status(&self) -> LeadershipStatus {
self.leadership_status
}
fn step_down(&mut self) {
self.leadership_status = LeadershipStatus::SteppedDown;
metrics::update_leadership_status(self.leadership_status);
}
fn become_leader(&mut self) {
self.leadership_status = LeadershipStatus::Leader;
metrics::update_leadership_status(self.leadership_status);
}
}
#[derive(Clone)]
pub struct Config {
// All pageservers managed by one instance of this service must have
// the same public key. This JWT token will be used to authenticate
// this service to the pageservers it manages.
pub pageserver_jwt_token: Option<String>,
// All safekeepers managed by one instance of this service must have
// the same public key. This JWT token will be used to authenticate
// this service to the safekeepers it manages.
pub safekeeper_jwt_token: Option<String>,
// This JWT token will be used to authenticate this service to the control plane.
pub control_plane_jwt_token: Option<String>,
// This JWT token will be used to authenticate with other storage controller instances
pub peer_jwt_token: Option<String>,
/// Prefix for storage API endpoints of the control plane. We use this prefix to compute
/// URLs that we use to send pageserver and safekeeper attachment locations.
/// If this is None, the compute hook will assume it is running in a test environment
/// and try to invoke neon_local instead.
pub control_plane_url: Option<String>,
/// Grace period within which a pageserver does not respond to heartbeats, but is still
/// considered active. Once the grace period elapses, the next heartbeat failure will
/// mark the pagseserver offline.
pub max_offline_interval: Duration,
/// Extended grace period within which pageserver may not respond to heartbeats.
/// This extended grace period kicks in after the node has been drained for restart
/// and/or upon handling the re-attach request from a node.
pub max_warming_up_interval: Duration,
/// How many normal-priority Reconcilers may be spawned concurrently
pub reconciler_concurrency: usize,
/// How many high-priority Reconcilers may be spawned concurrently
pub priority_reconciler_concurrency: usize,
/// How many safekeeper reconciles may happen concurrently (per safekeeper)
pub safekeeper_reconciler_concurrency: usize,
/// How many API requests per second to allow per tenant, across all
/// tenant-scoped API endpoints. Further API requests queue until ready.
pub tenant_rate_limit: NonZeroU32,
/// If a tenant shard's largest timeline (max_logical_size) exceeds this value, all tenant
/// shards will be split in 2 until they fall below split_threshold (up to max_split_shards).
///
/// This will greedily split into as many shards as necessary to fall below split_threshold, as
/// powers of 2: if a tenant shard is 7 times larger than split_threshold, it will split into 8
/// immediately, rather than first 2 then 4 then 8.
///
/// None or 0 disables auto-splitting.
///
/// TODO: consider using total logical size of all timelines instead.
pub split_threshold: Option<u64>,
/// The maximum number of shards a tenant can be split into during autosplits. Does not affect
/// manual split requests. 0 or 1 disables autosplits, as we already have 1 shard.
pub max_split_shards: u8,
/// The size at which an unsharded tenant should initially split. Ingestion is significantly
/// faster with multiple shards, so eagerly splitting below split_threshold will typically speed
/// up initial ingestion of large tenants.
///
/// This should be below split_threshold, but it is not required. If both split_threshold and
/// initial_split_threshold qualify, the largest number of target shards will be used.
///
/// Does not apply to already sharded tenants: changing initial_split_threshold or
/// initial_split_shards is not retroactive for already-sharded tenants.
///
/// None or 0 disables initial splits.
pub initial_split_threshold: Option<u64>,
/// The number of shards to split into when reaching initial_split_threshold. Will
/// be clamped to max_split_shards.
///
/// 0 or 1 disables initial splits. Has no effect if initial_split_threshold is disabled.
pub initial_split_shards: u8,
// TODO: make this cfg(feature = "testing")
pub neon_local_repo_dir: Option<PathBuf>,
// Maximum acceptable download lag for the secondary location
// while draining a node. If the secondary location is lagging
// by more than the configured amount, then the secondary is not
// upgraded to primary.
pub max_secondary_lag_bytes: Option<u64>,
pub heartbeat_interval: Duration,
pub address_for_peers: Option<Uri>,
pub start_as_candidate: bool,
pub long_reconcile_threshold: Duration,
pub use_https_pageserver_api: bool,
pub use_https_safekeeper_api: bool,
pub ssl_ca_certs: Vec<Certificate>,
pub timelines_onto_safekeepers: bool,
pub use_local_compute_notifications: bool,
/// Number of safekeepers to choose for a timeline when creating it.
/// Safekeepers will be choosen from different availability zones.
pub timeline_safekeeper_count: i64,
#[cfg(feature = "testing")]
pub kick_secondary_downloads: bool,
}
impl From<DatabaseError> for ApiError {
fn from(err: DatabaseError) -> ApiError {
match err {
DatabaseError::Query(e) => ApiError::InternalServerError(e.into()),
// FIXME: ApiError doesn't have an Unavailable variant, but ShuttingDown maps to 503.
DatabaseError::Connection(_) | DatabaseError::ConnectionPool(_) => {
ApiError::ShuttingDown
}
DatabaseError::Logical(reason) | DatabaseError::Migration(reason) => {
ApiError::InternalServerError(anyhow::anyhow!(reason))
}
}
}
}
enum InitialShardScheduleOutcome {
Scheduled(TenantCreateResponseShard),
NotScheduled,
ShardScheduleError(ScheduleError),
}
pub struct Service {
inner: Arc<std::sync::RwLock<ServiceState>>,
config: Config,
persistence: Arc<Persistence>,
compute_hook: Arc<ComputeHook>,
result_tx: tokio::sync::mpsc::UnboundedSender<ReconcileResultRequest>,
heartbeater_ps: Heartbeater<Node, PageserverState>,
heartbeater_sk: Heartbeater<Safekeeper, SafekeeperState>,
// Channel for background cleanup from failed operations that require cleanup, such as shard split
abort_tx: tokio::sync::mpsc::UnboundedSender<TenantShardSplitAbort>,
// Locking on a tenant granularity (covers all shards in the tenant):
// - Take exclusively for rare operations that mutate the tenant's persistent state (e.g. create/delete/split)
// - Take in shared mode for operations that need the set of shards to stay the same to complete reliably (e.g. timeline CRUD)
tenant_op_locks: IdLockMap<TenantId, TenantOperations>,
// Locking for node-mutating operations: take exclusively for operations that modify the node's persistent state, or
// that transition it to/from Active.
node_op_locks: IdLockMap<NodeId, NodeOperations>,
// Limit how many Reconcilers we will spawn concurrently for normal-priority tasks such as background reconciliations
// and reconciliation on startup.
reconciler_concurrency: Arc<tokio::sync::Semaphore>,
// Limit how many Reconcilers we will spawn concurrently for high-priority tasks such as tenant/timeline CRUD, which
// a human user might be waiting for.
priority_reconciler_concurrency: Arc<tokio::sync::Semaphore>,
/// Queue of tenants who are waiting for concurrency limits to permit them to reconcile
/// Send into this queue to promptly attempt to reconcile this shard next time units are available.
///
/// Note that this state logically lives inside ServiceState, but carrying Sender here makes the code simpler
/// by avoiding needing a &mut ref to something inside the ServiceState. This could be optimized to
/// use a VecDeque instead of a channel to reduce synchronization overhead, at the cost of some code complexity.
delayed_reconcile_tx: tokio::sync::mpsc::Sender<TenantShardId>,
// Process shutdown will fire this token
cancel: CancellationToken,
// Child token of [`Service::cancel`] used by reconcilers
reconcilers_cancel: CancellationToken,
// Background tasks will hold this gate
gate: Gate,
// Reconcilers background tasks will hold this gate
reconcilers_gate: Gate,
/// This waits for initial reconciliation with pageservers to complete. Until this barrier
/// passes, it isn't safe to do any actions that mutate tenants.
pub(crate) startup_complete: Barrier,
/// HTTP client with proper CA certs.
http_client: reqwest::Client,
/// Handle for the step down background task if one was ever requested
step_down_barrier: OnceLock<tokio::sync::watch::Receiver<Option<GlobalObservedState>>>,
}
impl From<ReconcileWaitError> for ApiError {
fn from(value: ReconcileWaitError) -> Self {
match value {
ReconcileWaitError::Shutdown => ApiError::ShuttingDown,
e @ ReconcileWaitError::Timeout(_) => ApiError::Timeout(format!("{e}").into()),
e @ ReconcileWaitError::Failed(..) => ApiError::InternalServerError(anyhow::anyhow!(e)),
}
}
}
impl From<OperationError> for ApiError {
fn from(value: OperationError) -> Self {
match value {
OperationError::NodeStateChanged(err) | OperationError::FinalizeError(err) => {
ApiError::InternalServerError(anyhow::anyhow!(err))
}
OperationError::Cancelled => ApiError::Conflict("Operation was cancelled".into()),
}
}
}
#[allow(clippy::large_enum_variant)]
enum TenantCreateOrUpdate {
Create(TenantCreateRequest),
Update(Vec<ShardUpdate>),
}
struct ShardSplitParams {
old_shard_count: ShardCount,
new_shard_count: ShardCount,
new_stripe_size: Option<ShardStripeSize>,
targets: Vec<ShardSplitTarget>,
policy: PlacementPolicy,
config: TenantConfig,
shard_ident: ShardIdentity,
preferred_az_id: Option<AvailabilityZone>,
}
// When preparing for a shard split, we may either choose to proceed with the split,
// or find that the work is already done and return NoOp.
enum ShardSplitAction {
Split(Box<ShardSplitParams>),
NoOp(TenantShardSplitResponse),
}
// A parent shard which will be split
struct ShardSplitTarget {
parent_id: TenantShardId,
node: Node,
child_ids: Vec<TenantShardId>,
}
/// When we tenant shard split operation fails, we may not be able to clean up immediately, because nodes
/// might not be available. We therefore use a queue of abort operations processed in the background.
struct TenantShardSplitAbort {
tenant_id: TenantId,
/// The target values from the request that failed
new_shard_count: ShardCount,
new_stripe_size: Option<ShardStripeSize>,
/// Until this abort op is complete, no other operations may be done on the tenant
_tenant_lock: TracingExclusiveGuard<TenantOperations>,
/// The reconciler gate for the duration of the split operation, and any included abort.
_gate: GateGuard,
}
#[derive(thiserror::Error, Debug)]
enum TenantShardSplitAbortError {
#[error(transparent)]
Database(#[from] DatabaseError),
#[error(transparent)]
Remote(#[from] mgmt_api::Error),
#[error("Unavailable")]
Unavailable,
}
/// Inputs for computing a target shard count for a tenant.
struct ShardSplitInputs {
/// Current shard count.
shard_count: ShardCount,
/// Total size of largest timeline summed across all shards.
max_logical_size: u64,
/// Size-based split threshold. Zero if size-based splits are disabled.
split_threshold: u64,
/// Upper bound on target shards. 0 or 1 disables splits.
max_split_shards: u8,
/// Initial split threshold. Zero if initial splits are disabled.
initial_split_threshold: u64,
/// Number of shards for initial splits. 0 or 1 disables initial splits.
initial_split_shards: u8,
}
struct ShardUpdate {
tenant_shard_id: TenantShardId,
placement_policy: PlacementPolicy,
tenant_config: TenantConfig,
/// If this is None, generation is not updated.
generation: Option<Generation>,
/// If this is None, scheduling policy is not updated.
scheduling_policy: Option<ShardSchedulingPolicy>,
}
enum StopReconciliationsReason {
ShuttingDown,
SteppingDown,
}
impl std::fmt::Display for StopReconciliationsReason {
fn fmt(&self, writer: &mut std::fmt::Formatter) -> std::fmt::Result {
let s = match self {
Self::ShuttingDown => "Shutting down",
Self::SteppingDown => "Stepping down",
};
write!(writer, "{s}")
}
}
pub(crate) enum ReconcileResultRequest {
ReconcileResult(ReconcileResult),
Stop,
}
#[derive(Clone)]
struct MutationLocation {
node: Node,
generation: Generation,
}
#[derive(Clone)]
struct ShardMutationLocations {
latest: MutationLocation,
other: Vec<MutationLocation>,
}
#[derive(Default, Clone)]
struct TenantMutationLocations(BTreeMap<TenantShardId, ShardMutationLocations>);
impl Service {
pub fn get_config(&self) -> &Config {
&self.config
}
pub fn get_http_client(&self) -> &reqwest::Client {
&self.http_client
}
/// Called once on startup, this function attempts to contact all pageservers to build an up-to-date
/// view of the world, and determine which pageservers are responsive.
#[instrument(skip_all)]
async fn startup_reconcile(
self: &Arc<Service>,
current_leader: Option<ControllerPersistence>,
leader_step_down_state: Option<GlobalObservedState>,
bg_compute_notify_result_tx: tokio::sync::mpsc::Sender<
Result<(), (TenantShardId, NotifyError)>,
>,
) {
// Startup reconciliation does I/O to other services: whether they
// are responsive or not, we should aim to finish within our deadline, because:
// - If we don't, a k8s readiness hook watching /ready will kill us.
// - While we're waiting for startup reconciliation, we are not fully
// available for end user operations like creating/deleting tenants and timelines.
//
// We set multiple deadlines to break up the time available between the phases of work: this is
// arbitrary, but avoids a situation where the first phase could burn our entire timeout period.
let start_at = Instant::now();
let node_scan_deadline = start_at
.checked_add(STARTUP_RECONCILE_TIMEOUT / 2)
.expect("Reconcile timeout is a modest constant");
let observed = if let Some(state) = leader_step_down_state {
tracing::info!(
"Using observed state received from leader at {}",
current_leader.as_ref().unwrap().address
);
state
} else {
self.build_global_observed_state(node_scan_deadline).await
};
// Accumulate a list of any tenant locations that ought to be detached
let mut cleanup = Vec::new();
// Send initial heartbeat requests to all nodes loaded from the database
let all_nodes = {
let locked = self.inner.read().unwrap();
locked.nodes.clone()
};
let (mut nodes_online, mut sks_online) =
self.initial_heartbeat_round(all_nodes.keys()).await;
// List of tenants for which we will attempt to notify compute of their location at startup
let mut compute_notifications = Vec::new();
// Populate intent and observed states for all tenants, based on reported state on pageservers
tracing::info!("Populating tenant shards' states from initial pageserver scan...");
let shard_count = {
let mut locked = self.inner.write().unwrap();
let (nodes, safekeepers, tenants, scheduler) = locked.parts_mut_sk();
// Mark nodes online if they responded to us: nodes are offline by default after a restart.
let mut new_nodes = (**nodes).clone();
for (node_id, node) in new_nodes.iter_mut() {
if let Some(utilization) = nodes_online.remove(node_id) {
node.set_availability(NodeAvailability::Active(utilization));
scheduler.node_upsert(node);
}
}
*nodes = Arc::new(new_nodes);
let mut new_sks = (**safekeepers).clone();
for (node_id, node) in new_sks.iter_mut() {
if let Some((utilization, last_seen_at)) = sks_online.remove(node_id) {
node.set_availability(SafekeeperState::Available {
utilization,
last_seen_at,
});
}
}
*safekeepers = Arc::new(new_sks);
for (tenant_shard_id, observed_state) in observed.0 {
let Some(tenant_shard) = tenants.get_mut(&tenant_shard_id) else {
for node_id in observed_state.locations.keys() {
cleanup.push((tenant_shard_id, *node_id));
}
continue;
};
tenant_shard.observed = observed_state;
}
// Populate each tenant's intent state
let mut schedule_context = ScheduleContext::default();
for (tenant_shard_id, tenant_shard) in tenants.iter_mut() {
if tenant_shard_id.shard_number == ShardNumber(0) {
// Reset scheduling context each time we advance to the next Tenant
schedule_context = ScheduleContext::default();
}
tenant_shard.intent_from_observed(scheduler);
if let Err(e) = tenant_shard.schedule(scheduler, &mut schedule_context) {
// Non-fatal error: we are unable to properly schedule the tenant, perhaps because
// not enough pageservers are available. The tenant may well still be available
// to clients.
tracing::error!("Failed to schedule tenant {tenant_shard_id} at startup: {e}");
} else {
// If we're both intending and observed to be attached at a particular node, we will
// emit a compute notification for this. In the case where our observed state does not
// yet match our intent, we will eventually reconcile, and that will emit a compute notification.
if let Some(attached_at) = tenant_shard.stably_attached() {
compute_notifications.push(compute_hook::ShardUpdate {
tenant_shard_id: *tenant_shard_id,
node_id: attached_at,
stripe_size: tenant_shard.shard.stripe_size,
preferred_az: tenant_shard
.preferred_az()
.map(|az| Cow::Owned(az.clone())),
});
}
}
}
tenants.len()
};
// Before making any obeservable changes to the cluster, persist self
// as leader in database and memory.
let leadership = Leadership::new(
self.persistence.clone(),
self.config.clone(),
self.cancel.child_token(),
);
if let Err(e) = leadership.become_leader(current_leader).await {
tracing::error!("Failed to persist self as leader: {e}. Aborting start-up ...");
std::process::exit(1);
}
let safekeepers = self.inner.read().unwrap().safekeepers.clone();
let sk_schedule_requests =
match safekeeper_reconciler::load_schedule_requests(self, &safekeepers).await {
Ok(v) => v,
Err(e) => {
tracing::warn!(
"Failed to load safekeeper pending ops at startup: {e}." // Don't abort for now: " Aborting start-up..."
);
// std::process::exit(1);
Vec::new()
}
};
{
let mut locked = self.inner.write().unwrap();
locked.become_leader();
for (sk_id, _sk) in locked.safekeepers.clone().iter() {
locked.safekeeper_reconcilers.start_reconciler(*sk_id, self);
}
locked
.safekeeper_reconcilers
.schedule_request_vec(sk_schedule_requests);
}
// TODO: if any tenant's intent now differs from its loaded generation_pageserver, we should clear that
// generation_pageserver in the database.
// Emit compute hook notifications for all tenants which are already stably attached. Other tenants
// will emit compute hook notifications when they reconcile.
//
// Ordering: our calls to notify_background synchronously establish a relative order for these notifications vs. any later
// calls into the ComputeHook for the same tenant: we can leave these to run to completion in the background and any later
// calls will be correctly ordered wrt these.
//
// Concurrency: we call notify_background for all tenants, which will create O(N) tokio tasks, but almost all of them
// will just wait on the ComputeHook::API_CONCURRENCY semaphore immediately, so very cheap until they get that semaphore
// unit and start doing I/O.
tracing::info!(
"Sending {} compute notifications",
compute_notifications.len()
);
self.compute_hook.notify_background(
compute_notifications,
bg_compute_notify_result_tx.clone(),
&self.cancel,
);
// Finally, now that the service is up and running, launch reconcile operations for any tenants
// which require it: under normal circumstances this should only include tenants that were in some
// transient state before we restarted, or any tenants whose compute hooks failed above.
tracing::info!("Checking for shards in need of reconciliation...");
let reconcile_tasks = self.reconcile_all();
// We will not wait for these reconciliation tasks to run here: we're now done with startup and
// normal operations may proceed.
// Clean up any tenants that were found on pageservers but are not known to us. Do this in the
// background because it does not need to complete in order to proceed with other work.
if !cleanup.is_empty() {
tracing::info!("Cleaning up {} locations in the background", cleanup.len());
tokio::task::spawn({
let cleanup_self = self.clone();
async move { cleanup_self.cleanup_locations(cleanup).await }
});
}
// Reconcile the timeline imports:
// 1. Mark each tenant shard of tenants with an importing timeline as importing.
// 2. Finalize the completed imports in the background. This handles the case where
// the previous storage controller instance shut down whilst finalizing imports.
let imports = self.persistence.list_timeline_imports().await;
match imports {
Ok(mut imports) => {
{
let mut locked = self.inner.write().unwrap();
for import in &imports {
locked
.tenants
.range_mut(TenantShardId::tenant_range(import.tenant_id))
.for_each(|(_id, shard)| {
shard.importing = TimelineImportState::Importing
});
}
}
imports.retain(|import| import.is_complete());
tokio::task::spawn({
let finalize_imports_self = self.clone();
async move {
finalize_imports_self
.finalize_timeline_imports(imports)
.await
}
});
}
Err(err) => {
tracing::error!("Could not retrieve completed imports from database: {err}");
}
}
tracing::info!(
"Startup complete, spawned {reconcile_tasks} reconciliation tasks ({shard_count} shards total)"
);
}
async fn initial_heartbeat_round<'a>(
&self,
node_ids: impl Iterator<Item = &'a NodeId>,
) -> (
HashMap<NodeId, PageserverUtilization>,
HashMap<NodeId, (SafekeeperUtilization, Instant)>,
) {
assert!(!self.startup_complete.is_ready());
let all_nodes = {
let locked = self.inner.read().unwrap();
locked.nodes.clone()
};
let mut nodes_to_heartbeat = HashMap::new();
for node_id in node_ids {
match all_nodes.get(node_id) {
Some(node) => {
nodes_to_heartbeat.insert(*node_id, node.clone());
}
None => {
tracing::warn!("Node {node_id} was removed during start-up");
}
}
}
let all_sks = {
let locked = self.inner.read().unwrap();
locked.safekeepers.clone()
};
tracing::info!("Sending initial heartbeats...");
let (res_ps, res_sk) = tokio::join!(
self.heartbeater_ps.heartbeat(Arc::new(nodes_to_heartbeat)),
self.heartbeater_sk.heartbeat(all_sks)
);
let mut online_nodes = HashMap::new();
if let Ok(deltas) = res_ps {
for (node_id, status) in deltas.0 {
match status {
PageserverState::Available { utilization, .. } => {
online_nodes.insert(node_id, utilization);
}
PageserverState::Offline => {}
PageserverState::WarmingUp { .. } => {
unreachable!("Nodes are never marked warming-up during startup reconcile")
}
}
}
}
let mut online_sks = HashMap::new();
if let Ok(deltas) = res_sk {
for (node_id, status) in deltas.0 {
match status {
SafekeeperState::Available {
utilization,
last_seen_at,
} => {
online_sks.insert(node_id, (utilization, last_seen_at));
}
SafekeeperState::Offline => {}
}
}
}
(online_nodes, online_sks)
}
/// Used during [`Self::startup_reconcile`]: issue GETs to all nodes concurrently, with a deadline.
///
/// The result includes only nodes which responded within the deadline
async fn scan_node_locations(
&self,
deadline: Instant,
) -> HashMap<NodeId, LocationConfigListResponse> {
let nodes = {
let locked = self.inner.read().unwrap();
locked.nodes.clone()
};
let mut node_results = HashMap::new();
let mut node_list_futs = FuturesUnordered::new();
tracing::info!("Scanning shards on {} nodes...", nodes.len());
for node in nodes.values() {
node_list_futs.push({
async move {
tracing::info!("Scanning shards on node {node}...");
let timeout = Duration::from_secs(5);
let response = node
.with_client_retries(
|client| async move { client.list_location_config().await },
&self.http_client,
&self.config.pageserver_jwt_token,
1,
5,
timeout,
&self.cancel,
)
.await;
(node.get_id(), response)
}
});
}
loop {
let (node_id, result) = tokio::select! {
next = node_list_futs.next() => {
match next {
Some(result) => result,
None =>{
// We got results for all our nodes
break;
}
}
},
_ = tokio::time::sleep(deadline.duration_since(Instant::now())) => {
// Give up waiting for anyone who hasn't responded: we will yield the results that we have
tracing::info!("Reached deadline while waiting for nodes to respond to location listing requests");
break;
}
};
let Some(list_response) = result else {
tracing::info!("Shutdown during startup_reconcile");
break;
};
match list_response {
Err(e) => {
tracing::warn!("Could not scan node {} ({e})", node_id);
}
Ok(listing) => {
node_results.insert(node_id, listing);
}
}
}
node_results
}
async fn build_global_observed_state(&self, deadline: Instant) -> GlobalObservedState {
let node_listings = self.scan_node_locations(deadline).await;
let mut observed = GlobalObservedState::default();
for (node_id, location_confs) in node_listings {
tracing::info!(
"Received {} shard statuses from pageserver {}",
location_confs.tenant_shards.len(),
node_id
);
for (tid, location_conf) in location_confs.tenant_shards {
let entry = observed.0.entry(tid).or_default();
entry.locations.insert(
node_id,
ObservedStateLocation {
conf: location_conf,
},
);
}
}
observed
}
/// Used during [`Self::startup_reconcile`] and shard splits: detach a list of unknown-to-us
/// tenants from pageservers.
///
/// This is safe to run in the background, because if we don't have this TenantShardId in our map of
/// tenants, then it is probably something incompletely deleted before: we will not fight with any
/// other task trying to attach it.
#[instrument(skip_all)]
async fn cleanup_locations(&self, cleanup: Vec<(TenantShardId, NodeId)>) {
let nodes = self.inner.read().unwrap().nodes.clone();
for (tenant_shard_id, node_id) in cleanup {
// A node reported a tenant_shard_id which is unknown to us: detach it.
let Some(node) = nodes.get(&node_id) else {
// This is legitimate; we run in the background and [`Self::startup_reconcile`] might have identified
// a location to clean up on a node that has since been removed.
tracing::info!(
"Not cleaning up location {node_id}/{tenant_shard_id}: node not found"
);
continue;
};
if self.cancel.is_cancelled() {
break;
}
let client = PageserverClient::new(
node.get_id(),
self.http_client.clone(),
node.base_url(),
self.config.pageserver_jwt_token.as_deref(),
);
match client
.location_config(
tenant_shard_id,
LocationConfig {
mode: LocationConfigMode::Detached,
generation: None,
secondary_conf: None,
shard_number: tenant_shard_id.shard_number.0,
shard_count: tenant_shard_id.shard_count.literal(),
shard_stripe_size: 0,
tenant_conf: models::TenantConfig::default(),
},
None,
false,
)
.await
{
Ok(()) => {
tracing::info!(
"Detached unknown shard {tenant_shard_id} on pageserver {node_id}"
);
}
Err(e) => {
// Non-fatal error: leaving a tenant shard behind that we are not managing shouldn't
// break anything.
tracing::error!(
"Failed to detach unknown shard {tenant_shard_id} on pageserver {node_id}: {e}"
);
}
}
}
}
/// Long running background task that periodically wakes up and looks for shards that need
/// reconciliation. Reconciliation is fallible, so any reconciliation tasks that fail during
/// e.g. a tenant create/attach/migrate must eventually be retried: this task is responsible
/// for those retries.
#[instrument(skip_all)]
async fn background_reconcile(self: &Arc<Self>) {
self.startup_complete.clone().wait().await;
const BACKGROUND_RECONCILE_PERIOD: Duration = Duration::from_secs(20);
let mut interval = tokio::time::interval(BACKGROUND_RECONCILE_PERIOD);
while !self.reconcilers_cancel.is_cancelled() {
tokio::select! {
_ = interval.tick() => {
let reconciles_spawned = self.reconcile_all();
if reconciles_spawned == 0 {
// Run optimizer only when we didn't find any other work to do
self.optimize_all().await;
}
// Always attempt autosplits. Sharding is crucial for bulk ingest performance, so we
// must be responsive when new projects begin ingesting and reach the threshold.
self.autosplit_tenants().await;
}
_ = self.reconcilers_cancel.cancelled() => return
}
}
}
/// Heartbeat all storage nodes once in a while.
#[instrument(skip_all)]
async fn spawn_heartbeat_driver(&self) {
self.startup_complete.clone().wait().await;
let mut interval = tokio::time::interval(self.config.heartbeat_interval);
while !self.cancel.is_cancelled() {
tokio::select! {
_ = interval.tick() => { }
_ = self.cancel.cancelled() => return
};
let nodes = {
let locked = self.inner.read().unwrap();
locked.nodes.clone()
};
let safekeepers = {
let locked = self.inner.read().unwrap();
locked.safekeepers.clone()
};
let (res_ps, res_sk) = tokio::join!(
self.heartbeater_ps.heartbeat(nodes),
self.heartbeater_sk.heartbeat(safekeepers)
);
if let Ok(deltas) = res_ps {
let mut to_handle = Vec::default();
for (node_id, state) in deltas.0 {
let new_availability = match state {
PageserverState::Available { utilization, .. } => {
NodeAvailability::Active(utilization)
}
PageserverState::WarmingUp { started_at } => {
NodeAvailability::WarmingUp(started_at)
}
PageserverState::Offline => {
// The node might have been placed in the WarmingUp state
// while the heartbeat round was on-going. Hence, filter out
// offline transitions for WarmingUp nodes that are still within
// their grace period.
if let Ok(NodeAvailability::WarmingUp(started_at)) = self
.get_node(node_id)
.await
.as_ref()
.map(|n| n.get_availability())
{
let now = Instant::now();
if now - *started_at >= self.config.max_warming_up_interval {
NodeAvailability::Offline
} else {
NodeAvailability::WarmingUp(*started_at)
}
} else {
NodeAvailability::Offline
}
}
};
let node_lock = trace_exclusive_lock(
&self.node_op_locks,
node_id,
NodeOperations::Configure,
)
.await;
pausable_failpoint!("heartbeat-pre-node-state-configure");
// This is the code path for geniune availability transitions (i.e node
// goes unavailable and/or comes back online).
let res = self
.node_state_configure(node_id, Some(new_availability), None, &node_lock)
.await;
match res {
Ok(transition) => {
// Keep hold of the lock until the availability transitions
// have been handled in
// [`Service::handle_node_availability_transitions`] in order avoid
// racing with [`Service::external_node_configure`].
to_handle.push((node_id, node_lock, transition));
}
Err(ApiError::NotFound(_)) => {
// This should be rare, but legitimate since the heartbeats are done
// on a snapshot of the nodes.
tracing::info!("Node {} was not found after heartbeat round", node_id);
}
Err(ApiError::ShuttingDown) => {
// No-op: we're shutting down, no need to try and update any nodes' statuses
}
Err(err) => {
// Transition to active involves reconciling: if a node responds to a heartbeat then
// becomes unavailable again, we may get an error here.
tracing::error!(
"Failed to update node state {} after heartbeat round: {}",
node_id,
err
);
}
}
}
// We collected all the transitions above and now we handle them.
let res = self.handle_node_availability_transitions(to_handle).await;
if let Err(errs) = res {
for (node_id, err) in errs {
match err {
ApiError::NotFound(_) => {
// This should be rare, but legitimate since the heartbeats are done
// on a snapshot of the nodes.
tracing::info!(
"Node {} was not found after heartbeat round",
node_id
);
}
err => {
tracing::error!(
"Failed to handle availability transition for {} after heartbeat round: {}",
node_id,
err
);
}
}
}
}
}
if let Ok(deltas) = res_sk {
let mut locked = self.inner.write().unwrap();
let mut safekeepers = (*locked.safekeepers).clone();
for (id, state) in deltas.0 {
let Some(sk) = safekeepers.get_mut(&id) else {
tracing::info!(
"Couldn't update safekeeper safekeeper state for id {id} from heartbeat={state:?}"
);
continue;
};
sk.set_availability(state);
}
locked.safekeepers = Arc::new(safekeepers);
}
}
}
/// Apply the contents of a [`ReconcileResult`] to our in-memory state: if the reconciliation
/// was successful and intent hasn't changed since the Reconciler was spawned, this will update
/// the observed state of the tenant such that subsequent calls to [`TenantShard::get_reconcile_needed`]
/// will indicate that reconciliation is not needed.
#[instrument(skip_all, fields(
seq=%result.sequence,
tenant_id=%result.tenant_shard_id.tenant_id,
shard_id=%result.tenant_shard_id.shard_slug(),
))]
fn process_result(&self, result: ReconcileResult) {
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, _scheduler) = locked.parts_mut();
let Some(tenant) = tenants.get_mut(&result.tenant_shard_id) else {
// A reconciliation result might race with removing a tenant: drop results for
// tenants that aren't in our map.
return;
};
// Usually generation should only be updated via this path, so the max() isn't
// needed, but it is used to handle out-of-band updates via. e.g. test hook.
tenant.generation = std::cmp::max(tenant.generation, result.generation);
// If the reconciler signals that it failed to notify compute, set this state on
// the shard so that a future [`TenantShard::maybe_reconcile`] will try again.
tenant.pending_compute_notification = result.pending_compute_notification;
// Let the TenantShard know it is idle.
tenant.reconcile_complete(result.sequence);
// In case a node was deleted while this reconcile is in flight, filter it out of the update we will
// make to the tenant
let deltas = result.observed_deltas.into_iter().flat_map(|delta| {
// In case a node was deleted while this reconcile is in flight, filter it out of the update we will
// make to the tenant
let node = nodes.get(delta.node_id())?;
if node.is_available() {
return Some(delta);
}
// In case a node became unavailable concurrently with the reconcile, observed
// locations on it are now uncertain. By convention, set them to None in order
// for them to get refreshed when the node comes back online.
Some(ObservedStateDelta::Upsert(Box::new((
node.get_id(),
ObservedStateLocation { conf: None },
))))
});
match result.result {
Ok(()) => {
tenant.apply_observed_deltas(deltas);
tenant.waiter.advance(result.sequence);
}
Err(e) => {
match e {
ReconcileError::Cancel => {
tracing::info!("Reconciler was cancelled");
}
ReconcileError::Remote(mgmt_api::Error::Cancelled) => {
// This might be due to the reconciler getting cancelled, or it might
// be due to the `Node` being marked offline.
tracing::info!("Reconciler cancelled during pageserver API call");
}
_ => {
tracing::warn!("Reconcile error: {}", e);
}
}
// Ordering: populate last_error before advancing error_seq,
// so that waiters will see the correct error after waiting.
tenant.set_last_error(result.sequence, e);
// Skip deletions on reconcile failures
let upsert_deltas =
deltas.filter(|delta| matches!(delta, ObservedStateDelta::Upsert(_)));
tenant.apply_observed_deltas(upsert_deltas);
}
}
// If we just finished detaching all shards for a tenant, it might be time to drop it from memory.
if tenant.policy == PlacementPolicy::Detached {
// We may only drop a tenant from memory while holding the exclusive lock on the tenant ID: this protects us
// from concurrent execution wrt a request handler that might expect the tenant to remain in memory for the
// duration of the request.
let guard = self.tenant_op_locks.try_exclusive(
tenant.tenant_shard_id.tenant_id,
TenantOperations::DropDetached,
);
if let Some(guard) = guard {
self.maybe_drop_tenant(tenant.tenant_shard_id.tenant_id, &mut locked, &guard);
}
}
// Maybe some other work can proceed now that this job finished.
//
// Only bother with this if we have some semaphore units available in the normal-priority semaphore (these
// reconciles are scheduled at `[ReconcilerPriority::Normal]`).
if self.reconciler_concurrency.available_permits() > 0 {
while let Ok(tenant_shard_id) = locked.delayed_reconcile_rx.try_recv() {
let (nodes, tenants, _scheduler) = locked.parts_mut();
if let Some(shard) = tenants.get_mut(&tenant_shard_id) {
shard.delayed_reconcile = false;
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::Normal);
}
if self.reconciler_concurrency.available_permits() == 0 {
break;
}
}
}
}
async fn process_results(
&self,
mut result_rx: tokio::sync::mpsc::UnboundedReceiver<ReconcileResultRequest>,
mut bg_compute_hook_result_rx: tokio::sync::mpsc::Receiver<
Result<(), (TenantShardId, NotifyError)>,
>,
) {
loop {
// Wait for the next result, or for cancellation
tokio::select! {
r = result_rx.recv() => {
match r {
Some(ReconcileResultRequest::ReconcileResult(result)) => {self.process_result(result);},
None | Some(ReconcileResultRequest::Stop) => {break;}
}
}
_ = async{
match bg_compute_hook_result_rx.recv().await {
Some(result) => {
if let Err((tenant_shard_id, notify_error)) = result {
tracing::warn!("Marking shard {tenant_shard_id} for notification retry, due to error {notify_error}");
let mut locked = self.inner.write().unwrap();
if let Some(shard) = locked.tenants.get_mut(&tenant_shard_id) {
shard.pending_compute_notification = true;
}
}
},
None => {
// This channel is dead, but we don't want to terminate the outer loop{}: just wait for shutdown
self.cancel.cancelled().await;
}
}
} => {},
_ = self.cancel.cancelled() => {
break;
}
};
}
}
async fn process_aborts(
&self,
mut abort_rx: tokio::sync::mpsc::UnboundedReceiver<TenantShardSplitAbort>,
) {
loop {
// Wait for the next result, or for cancellation
let op = tokio::select! {
r = abort_rx.recv() => {
match r {
Some(op) => {op},
None => {break;}
}
}
_ = self.cancel.cancelled() => {
break;
}
};
// Retry until shutdown: we must keep this request object alive until it is properly
// processed, as it holds a lock guard that prevents other operations trying to do things
// to the tenant while it is in a weird part-split state.
while !self.reconcilers_cancel.is_cancelled() {
match self.abort_tenant_shard_split(&op).await {
Ok(_) => break,
Err(e) => {
tracing::warn!(
"Failed to abort shard split on {}, will retry: {e}",
op.tenant_id
);
// If a node is unavailable, we hope that it has been properly marked Offline
// when we retry, so that the abort op will succeed. If the abort op is failing
// for some other reason, we will keep retrying forever, or until a human notices
// and does something about it (either fixing a pageserver or restarting the controller).
tokio::time::timeout(
Duration::from_secs(5),
self.reconcilers_cancel.cancelled(),
)
.await
.ok();
}
}
}
}
}
pub async fn spawn(config: Config, persistence: Arc<Persistence>) -> anyhow::Result<Arc<Self>> {
let (result_tx, result_rx) = tokio::sync::mpsc::unbounded_channel();
let (abort_tx, abort_rx) = tokio::sync::mpsc::unbounded_channel();
let leadership_cancel = CancellationToken::new();
let leadership = Leadership::new(persistence.clone(), config.clone(), leadership_cancel);
let (leader, leader_step_down_state) = leadership.step_down_current_leader().await?;
// Apply the migrations **after** the current leader has stepped down
// (or we've given up waiting for it), but **before** reading from the
// database. The only exception is reading the current leader before
// migrating.
persistence.migration_run().await?;
tracing::info!("Loading nodes from database...");
let nodes = persistence
.list_nodes()
.await?
.into_iter()
.map(|x| Node::from_persistent(x, config.use_https_pageserver_api))
.collect::<anyhow::Result<Vec<Node>>>()?;
let nodes: HashMap<NodeId, Node> = nodes.into_iter().map(|n| (n.get_id(), n)).collect();
tracing::info!("Loaded {} nodes from database.", nodes.len());
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_pageserver_nodes
.set(nodes.len() as i64);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_https_pageserver_nodes
.set(nodes.values().filter(|n| n.has_https_port()).count() as i64);
tracing::info!("Loading safekeepers from database...");
let safekeepers = persistence
.list_safekeepers()
.await?
.into_iter()
.map(|skp| {
Safekeeper::from_persistence(
skp,
CancellationToken::new(),
config.use_https_safekeeper_api,
)
})
.collect::<anyhow::Result<Vec<_>>>()?;
let safekeepers: HashMap<NodeId, Safekeeper> =
safekeepers.into_iter().map(|n| (n.get_id(), n)).collect();
tracing::info!("Loaded {} safekeepers from database.", safekeepers.len());
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_safekeeper_nodes
.set(safekeepers.len() as i64);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_https_safekeeper_nodes
.set(safekeepers.values().filter(|s| s.has_https_port()).count() as i64);
tracing::info!("Loading shards from database...");
let mut tenant_shard_persistence = persistence.load_active_tenant_shards().await?;
tracing::info!(
"Loaded {} shards from database.",
tenant_shard_persistence.len()
);
// If any shard splits were in progress, reset the database state to abort them
let mut tenant_shard_count_min_max: HashMap<TenantId, (ShardCount, ShardCount)> =
HashMap::new();
for tsp in &mut tenant_shard_persistence {
let shard = tsp.get_shard_identity()?;
let tenant_shard_id = tsp.get_tenant_shard_id()?;
let entry = tenant_shard_count_min_max
.entry(tenant_shard_id.tenant_id)
.or_insert_with(|| (shard.count, shard.count));
entry.0 = std::cmp::min(entry.0, shard.count);
entry.1 = std::cmp::max(entry.1, shard.count);
}
for (tenant_id, (count_min, count_max)) in tenant_shard_count_min_max {
if count_min != count_max {
// Aborting the split in the database and dropping the child shards is sufficient: the reconciliation in
// [`Self::startup_reconcile`] will implicitly drop the child shards on remote pageservers, or they'll
// be dropped later in [`Self::node_activate_reconcile`] if it isn't available right now.
tracing::info!("Aborting shard split {tenant_id} {count_min:?} -> {count_max:?}");
let abort_status = persistence.abort_shard_split(tenant_id, count_max).await?;
// We may never see the Complete status here: if the split was complete, we wouldn't have
// identified this tenant has having mismatching min/max counts.
assert!(matches!(abort_status, AbortShardSplitStatus::Aborted));
// Clear the splitting status in-memory, to reflect that we just aborted in the database
tenant_shard_persistence.iter_mut().for_each(|tsp| {
// Set idle split state on those shards that we will retain.
let tsp_tenant_id = TenantId::from_str(tsp.tenant_id.as_str()).unwrap();
if tsp_tenant_id == tenant_id
&& tsp.get_shard_identity().unwrap().count == count_min
{
tsp.splitting = SplitState::Idle;
} else if tsp_tenant_id == tenant_id {
// Leave the splitting state on the child shards: this will be used next to
// drop them.
tracing::info!(
"Shard {tsp_tenant_id} will be dropped after shard split abort",
);
}
});
// Drop shards for this tenant which we didn't just mark idle (i.e. child shards of the aborted split)
tenant_shard_persistence.retain(|tsp| {
TenantId::from_str(tsp.tenant_id.as_str()).unwrap() != tenant_id
|| tsp.splitting == SplitState::Idle
});
}
}
let mut tenants = BTreeMap::new();
let mut scheduler = Scheduler::new(nodes.values());
#[cfg(feature = "testing")]
{
use pageserver_api::controller_api::AvailabilityZone;
// Hack: insert scheduler state for all nodes referenced by shards, as compatibility
// tests only store the shards, not the nodes. The nodes will be loaded shortly
// after when pageservers start up and register.
let mut node_ids = HashSet::new();
for tsp in &tenant_shard_persistence {
if let Some(node_id) = tsp.generation_pageserver {
node_ids.insert(node_id);
}
}
for node_id in node_ids {
tracing::info!("Creating node {} in scheduler for tests", node_id);
let node = Node::new(
NodeId(node_id as u64),
"".to_string(),
123,
None,
"".to_string(),
123,
None,
None,
AvailabilityZone("test_az".to_string()),
false,
)
.unwrap();
scheduler.node_upsert(&node);
}
}
for tsp in tenant_shard_persistence {
let tenant_shard_id = tsp.get_tenant_shard_id()?;
// We will populate intent properly later in [`Self::startup_reconcile`], initially populate
// it with what we can infer: the node for which a generation was most recently issued.
let mut intent = IntentState::new(
tsp.preferred_az_id
.as_ref()
.map(|az| AvailabilityZone(az.clone())),
);
if let Some(generation_pageserver) = tsp.generation_pageserver.map(|n| NodeId(n as u64))
{
if nodes.contains_key(&generation_pageserver) {
intent.set_attached(&mut scheduler, Some(generation_pageserver));
} else {
// If a node was removed before being completely drained, it is legal for it to leave behind a `generation_pageserver` referring
// to a non-existent node, because node deletion doesn't block on completing the reconciliations that will issue new generations
// on different pageservers.
tracing::warn!(
"Tenant shard {tenant_shard_id} references non-existent node {generation_pageserver} in database, will be rescheduled"
);
}
}
let new_tenant = TenantShard::from_persistent(tsp, intent)?;
tenants.insert(tenant_shard_id, new_tenant);
}
let (startup_completion, startup_complete) = utils::completion::channel();
// This channel is continuously consumed by process_results, so doesn't need to be very large.
let (bg_compute_notify_result_tx, bg_compute_notify_result_rx) =
tokio::sync::mpsc::channel(512);
let (delayed_reconcile_tx, delayed_reconcile_rx) =
tokio::sync::mpsc::channel(MAX_DELAYED_RECONCILES);
let cancel = CancellationToken::new();
let reconcilers_cancel = cancel.child_token();
let mut http_client = reqwest::Client::builder();
// We intentionally disable the connection pool, so every request will create its own TCP connection.
// It's especially important for heartbeaters to notice more network problems.
//
// TODO: It makes sense to use this client only in heartbeaters and create a second one with
// connection pooling for everything else. But reqwest::Client may create a connection without
// ever using it (it uses hyper's Client under the hood):
// https://github.com/hyperium/hyper-util/blob/d51318df3461d40e5f5e5ca163cb3905ac960209/src/client/legacy/client.rs#L415
//
// Because of a bug in hyper0::Connection::graceful_shutdown such connections hang during
// graceful server shutdown: https://github.com/hyperium/hyper/issues/2730
//
// The bug has been fixed in hyper v1, so keep alive may be enabled only after we migrate to hyper1.
http_client = http_client.pool_max_idle_per_host(0);
for ssl_ca_cert in &config.ssl_ca_certs {
http_client = http_client.add_root_certificate(ssl_ca_cert.clone());
}
let http_client = http_client.build()?;
let heartbeater_ps = Heartbeater::new(
http_client.clone(),
config.pageserver_jwt_token.clone(),
config.max_offline_interval,
config.max_warming_up_interval,
cancel.clone(),
);
let heartbeater_sk = Heartbeater::new(
http_client.clone(),
config.safekeeper_jwt_token.clone(),
config.max_offline_interval,
config.max_warming_up_interval,
cancel.clone(),
);
let initial_leadership_status = if config.start_as_candidate {
LeadershipStatus::Candidate
} else {
LeadershipStatus::Leader
};
let this = Arc::new(Self {
inner: Arc::new(std::sync::RwLock::new(ServiceState::new(
nodes,
safekeepers,
tenants,
scheduler,
delayed_reconcile_rx,
initial_leadership_status,
reconcilers_cancel.clone(),
))),
config: config.clone(),
persistence,
compute_hook: Arc::new(ComputeHook::new(config.clone())?),
result_tx,
heartbeater_ps,
heartbeater_sk,
reconciler_concurrency: Arc::new(tokio::sync::Semaphore::new(
config.reconciler_concurrency,
)),
priority_reconciler_concurrency: Arc::new(tokio::sync::Semaphore::new(
config.priority_reconciler_concurrency,
)),
delayed_reconcile_tx,
abort_tx,
startup_complete: startup_complete.clone(),
cancel,
reconcilers_cancel,
gate: Gate::default(),
reconcilers_gate: Gate::default(),
tenant_op_locks: Default::default(),
node_op_locks: Default::default(),
http_client,
step_down_barrier: Default::default(),
});
let result_task_this = this.clone();
tokio::task::spawn(async move {
// Block shutdown until we're done (we must respect self.cancel)
if let Ok(_gate) = result_task_this.gate.enter() {
result_task_this
.process_results(result_rx, bg_compute_notify_result_rx)
.await
}
});
tokio::task::spawn({
let this = this.clone();
async move {
// Block shutdown until we're done (we must respect self.cancel)
if let Ok(_gate) = this.gate.enter() {
this.process_aborts(abort_rx).await
}
}
});
tokio::task::spawn({
let this = this.clone();
async move {
if let Ok(_gate) = this.gate.enter() {
loop {
tokio::select! {
_ = this.cancel.cancelled() => {
break;
},
_ = tokio::time::sleep(Duration::from_secs(60)) => {}
};
this.tenant_op_locks.housekeeping();
}
}
}
});
tokio::task::spawn({
let this = this.clone();
// We will block the [`Service::startup_complete`] barrier until [`Self::startup_reconcile`]
// is done.
let startup_completion = startup_completion.clone();
async move {
// Block shutdown until we're done (we must respect self.cancel)
let Ok(_gate) = this.gate.enter() else {
return;
};
this.startup_reconcile(leader, leader_step_down_state, bg_compute_notify_result_tx)
.await;
drop(startup_completion);
}
});
tokio::task::spawn({
let this = this.clone();
let startup_complete = startup_complete.clone();
async move {
startup_complete.wait().await;
this.background_reconcile().await;
}
});
tokio::task::spawn({
let this = this.clone();
let startup_complete = startup_complete.clone();
async move {
startup_complete.wait().await;
this.spawn_heartbeat_driver().await;
}
});
Ok(this)
}
pub(crate) async fn attach_hook(
&self,
attach_req: AttachHookRequest,
) -> anyhow::Result<AttachHookResponse> {
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
attach_req.tenant_shard_id.tenant_id,
TenantOperations::AttachHook,
)
.await;
// This is a test hook. To enable using it on tenants that were created directly with
// the pageserver API (not via this service), we will auto-create any missing tenant
// shards with default state.
let insert = {
match self
.maybe_load_tenant(attach_req.tenant_shard_id.tenant_id, &_tenant_lock)
.await
{
Ok(_) => false,
Err(ApiError::NotFound(_)) => true,
Err(e) => return Err(e.into()),
}
};
if insert {
let config = attach_req.config.clone().unwrap_or_default();
let tsp = TenantShardPersistence {
tenant_id: attach_req.tenant_shard_id.tenant_id.to_string(),
shard_number: attach_req.tenant_shard_id.shard_number.0 as i32,
shard_count: attach_req.tenant_shard_id.shard_count.literal() as i32,
shard_stripe_size: 0,
generation: attach_req.generation_override.or(Some(0)),
generation_pageserver: None,
placement_policy: serde_json::to_string(&PlacementPolicy::Attached(0)).unwrap(),
config: serde_json::to_string(&config).unwrap(),
splitting: SplitState::default(),
scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
.unwrap(),
preferred_az_id: None,
};
match self.persistence.insert_tenant_shards(vec![tsp]).await {
Err(e) => match e {
DatabaseError::Query(diesel::result::Error::DatabaseError(
DatabaseErrorKind::UniqueViolation,
_,
)) => {
tracing::info!(
"Raced with another request to insert tenant {}",
attach_req.tenant_shard_id
)
}
_ => return Err(e.into()),
},
Ok(()) => {
tracing::info!("Inserted shard {} in database", attach_req.tenant_shard_id);
let mut shard = TenantShard::new(
attach_req.tenant_shard_id,
ShardIdentity::unsharded(),
PlacementPolicy::Attached(0),
None,
);
shard.config = config;
let mut locked = self.inner.write().unwrap();
locked.tenants.insert(attach_req.tenant_shard_id, shard);
tracing::info!("Inserted shard {} in memory", attach_req.tenant_shard_id);
}
}
}
let new_generation = if let Some(req_node_id) = attach_req.node_id {
let maybe_tenant_conf = {
let locked = self.inner.write().unwrap();
locked
.tenants
.get(&attach_req.tenant_shard_id)
.map(|t| t.config.clone())
};
match maybe_tenant_conf {
Some(conf) => {
let new_generation = self
.persistence
.increment_generation(attach_req.tenant_shard_id, req_node_id)
.await?;
// Persist the placement policy update. This is required
// when we reattaching a detached tenant.
self.persistence
.update_tenant_shard(
TenantFilter::Shard(attach_req.tenant_shard_id),
Some(PlacementPolicy::Attached(0)),
Some(conf),
None,
None,
)
.await?;
Some(new_generation)
}
None => {
anyhow::bail!("Attach hook handling raced with tenant removal")
}
}
} else {
self.persistence.detach(attach_req.tenant_shard_id).await?;
None
};
let mut locked = self.inner.write().unwrap();
let (_nodes, tenants, scheduler) = locked.parts_mut();
let tenant_shard = tenants
.get_mut(&attach_req.tenant_shard_id)
.expect("Checked for existence above");
if let Some(new_generation) = new_generation {
tenant_shard.generation = Some(new_generation);
tenant_shard.policy = PlacementPolicy::Attached(0);
} else {
// This is a detach notification. We must update placement policy to avoid re-attaching
// during background scheduling/reconciliation, or during storage controller restart.
assert!(attach_req.node_id.is_none());
tenant_shard.policy = PlacementPolicy::Detached;
}
if let Some(attaching_pageserver) = attach_req.node_id.as_ref() {
tracing::info!(
tenant_id = %attach_req.tenant_shard_id,
ps_id = %attaching_pageserver,
generation = ?tenant_shard.generation,
"issuing",
);
} else if let Some(ps_id) = tenant_shard.intent.get_attached() {
tracing::info!(
tenant_id = %attach_req.tenant_shard_id,
%ps_id,
generation = ?tenant_shard.generation,
"dropping",
);
} else {
tracing::info!(
tenant_id = %attach_req.tenant_shard_id,
"no-op: tenant already has no pageserver");
}
tenant_shard
.intent
.set_attached(scheduler, attach_req.node_id);
tracing::info!(
"attach_hook: tenant {} set generation {:?}, pageserver {}, config {:?}",
attach_req.tenant_shard_id,
tenant_shard.generation,
// TODO: this is an odd number of 0xf's
attach_req.node_id.unwrap_or(utils::id::NodeId(0xfffffff)),
attach_req.config,
);
// Trick the reconciler into not doing anything for this tenant: this helps
// tests that manually configure a tenant on the pagesrever, and then call this
// attach hook: they don't want background reconciliation to modify what they
// did to the pageserver.
#[cfg(feature = "testing")]
{
if let Some(node_id) = attach_req.node_id {
tenant_shard.observed.locations = HashMap::from([(
node_id,
ObservedStateLocation {
conf: Some(attached_location_conf(
tenant_shard.generation.unwrap(),
&tenant_shard.shard,
&tenant_shard.config,
&PlacementPolicy::Attached(0),
tenant_shard.intent.get_secondary().len(),
)),
},
)]);
} else {
tenant_shard.observed.locations.clear();
}
}
Ok(AttachHookResponse {
generation: attach_req
.node_id
.map(|_| tenant_shard.generation.expect("Test hook, not used on tenants that are mid-onboarding with a NULL generation").into().unwrap()),
})
}
pub(crate) fn inspect(&self, inspect_req: InspectRequest) -> InspectResponse {
let locked = self.inner.read().unwrap();
let tenant_shard = locked.tenants.get(&inspect_req.tenant_shard_id);
InspectResponse {
attachment: tenant_shard.and_then(|s| {
s.intent
.get_attached()
.map(|ps| (s.generation.expect("Test hook, not used on tenants that are mid-onboarding with a NULL generation").into().unwrap(), ps))
}),
}
}
// When the availability state of a node transitions to active, we must do a full reconciliation
// of LocationConfigs on that node. This is because while a node was offline:
// - we might have proceeded through startup_reconcile without checking for extraneous LocationConfigs on this node
// - aborting a tenant shard split might have left rogue child shards behind on this node.
//
// This function must complete _before_ setting a `Node` to Active: once it is set to Active, other
// Reconcilers might communicate with the node, and these must not overlap with the work we do in
// this function.
//
// The reconciliation logic in here is very similar to what [`Self::startup_reconcile`] does, but
// for written for a single node rather than as a batch job for all nodes.
#[tracing::instrument(skip_all, fields(node_id=%node.get_id()))]
async fn node_activate_reconcile(
&self,
mut node: Node,
_lock: &TracingExclusiveGuard<NodeOperations>,
) -> Result<(), ApiError> {
// This Node is a mutable local copy: we will set it active so that we can use its
// API client to reconcile with the node. The Node in [`Self::nodes`] will get updated
// later.
node.set_availability(NodeAvailability::Active(PageserverUtilization::full()));
let configs = match node
.with_client_retries(
|client| async move { client.list_location_config().await },
&self.http_client,
&self.config.pageserver_jwt_token,
1,
5,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await
{
None => {
// We're shutting down (the Node's cancellation token can't have fired, because
// we're the only scope that has a reference to it, and we didn't fire it).
return Err(ApiError::ShuttingDown);
}
Some(Err(e)) => {
// This node didn't succeed listing its locations: it may not proceed to active state
// as it is apparently unavailable.
return Err(ApiError::PreconditionFailed(
format!("Failed to query node location configs, cannot activate ({e})").into(),
));
}
Some(Ok(configs)) => configs,
};
tracing::info!("Loaded {} LocationConfigs", configs.tenant_shards.len());
let mut cleanup = Vec::new();
let mut mismatched_locations = 0;
{
let mut locked = self.inner.write().unwrap();
for (tenant_shard_id, reported) in configs.tenant_shards {
let Some(tenant_shard) = locked.tenants.get_mut(&tenant_shard_id) else {
cleanup.push(tenant_shard_id);
continue;
};
let on_record = &mut tenant_shard
.observed
.locations
.entry(node.get_id())
.or_insert_with(|| ObservedStateLocation { conf: None })
.conf;
// If the location reported by the node does not match our observed state,
// then we mark it as uncertain and let the background reconciliation loop
// deal with it.
//
// Note that this also covers net new locations reported by the node.
if *on_record != reported {
mismatched_locations += 1;
*on_record = None;
}
}
}
if mismatched_locations > 0 {
tracing::info!(
"Set observed state to None for {mismatched_locations} mismatched locations"
);
}
for tenant_shard_id in cleanup {
tracing::info!("Detaching {tenant_shard_id}");
match node
.with_client_retries(
|client| async move {
let config = LocationConfig {
mode: LocationConfigMode::Detached,
generation: None,
secondary_conf: None,
shard_number: tenant_shard_id.shard_number.0,
shard_count: tenant_shard_id.shard_count.literal(),
shard_stripe_size: 0,
tenant_conf: models::TenantConfig::default(),
};
client
.location_config(tenant_shard_id, config, None, false)
.await
},
&self.http_client,
&self.config.pageserver_jwt_token,
1,
5,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await
{
None => {
// We're shutting down (the Node's cancellation token can't have fired, because
// we're the only scope that has a reference to it, and we didn't fire it).
return Err(ApiError::ShuttingDown);
}
Some(Err(e)) => {
// Do not let the node proceed to Active state if it is not responsive to requests
// to detach. This could happen if e.g. a shutdown bug in the pageserver is preventing
// detach completing: we should not let this node back into the set of nodes considered
// okay for scheduling.
return Err(ApiError::Conflict(format!(
"Node {node} failed to detach {tenant_shard_id}: {e}"
)));
}
Some(Ok(_)) => {}
};
}
Ok(())
}
pub(crate) async fn re_attach(
&self,
reattach_req: ReAttachRequest,
) -> Result<ReAttachResponse, ApiError> {
if let Some(register_req) = reattach_req.register {
self.node_register(register_req).await?;
}
// Ordering: we must persist generation number updates before making them visible in the in-memory state
let incremented_generations = self.persistence.re_attach(reattach_req.node_id).await?;
tracing::info!(
node_id=%reattach_req.node_id,
"Incremented {} tenant shards' generations",
incremented_generations.len()
);
// Apply the updated generation to our in-memory state, and
// gather discover secondary locations.
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let mut response = ReAttachResponse {
tenants: Vec::new(),
};
// TODO: cancel/restart any running reconciliation for this tenant, it might be trying
// to call location_conf API with an old generation. Wait for cancellation to complete
// before responding to this request. Requires well implemented CancellationToken logic
// all the way to where we call location_conf. Even then, there can still be a location_conf
// request in flight over the network: TODO handle that by making location_conf API refuse
// to go backward in generations.
// Scan through all shards, applying updates for ones where we updated generation
// and identifying shards that intend to have a secondary location on this node.
for (tenant_shard_id, shard) in tenants {
if let Some(new_gen) = incremented_generations.get(tenant_shard_id) {
let new_gen = *new_gen;
response.tenants.push(ReAttachResponseTenant {
id: *tenant_shard_id,
r#gen: Some(new_gen.into().unwrap()),
// A tenant is only put into multi or stale modes in the middle of a [`Reconciler::live_migrate`]
// execution. If a pageserver is restarted during that process, then the reconcile pass will
// fail, and start from scratch, so it doesn't make sense for us to try and preserve
// the stale/multi states at this point.
mode: LocationConfigMode::AttachedSingle,
stripe_size: shard.shard.stripe_size,
});
shard.generation = std::cmp::max(shard.generation, Some(new_gen));
if let Some(observed) = shard.observed.locations.get_mut(&reattach_req.node_id) {
// Why can we update `observed` even though we're not sure our response will be received
// by the pageserver? Because the pageserver will not proceed with startup until
// it has processed response: if it loses it, we'll see another request and increment
// generation again, avoiding any uncertainty about dirtiness of tenant's state.
if let Some(conf) = observed.conf.as_mut() {
conf.generation = new_gen.into();
}
} else {
// This node has no observed state for the shard: perhaps it was offline
// when the pageserver restarted. Insert a None, so that the Reconciler
// will be prompted to learn the location's state before it makes changes.
shard
.observed
.locations
.insert(reattach_req.node_id, ObservedStateLocation { conf: None });
}
} else if shard.intent.get_secondary().contains(&reattach_req.node_id) {
// Ordering: pageserver will not accept /location_config requests until it has
// finished processing the response from re-attach. So we can update our in-memory state
// now, and be confident that we are not stamping on the result of some later location config.
// TODO: however, we are not strictly ordered wrt ReconcileResults queue,
// so we might update observed state here, and then get over-written by some racing
// ReconcileResult. The impact is low however, since we have set state on pageserver something
// that matches intent, so worst case if we race then we end up doing a spurious reconcile.
response.tenants.push(ReAttachResponseTenant {
id: *tenant_shard_id,
r#gen: None,
mode: LocationConfigMode::Secondary,
stripe_size: shard.shard.stripe_size,
});
// We must not update observed, because we have no guarantee that our
// response will be received by the pageserver. This could leave it
// falsely dirty, but the resulting reconcile should be idempotent.
}
}
// We consider a node Active once we have composed a re-attach response, but we
// do not call [`Self::node_activate_reconcile`]: the handling of the re-attach response
// implicitly synchronizes the LocationConfigs on the node.
//
// Setting a node active unblocks any Reconcilers that might write to the location config API,
// but those requests will not be accepted by the node until it has finished processing
// the re-attach response.
//
// Additionally, reset the nodes scheduling policy to match the conditional update done
// in [`Persistence::re_attach`].
if let Some(node) = nodes.get(&reattach_req.node_id) {
let reset_scheduling = matches!(
node.get_scheduling(),
NodeSchedulingPolicy::PauseForRestart
| NodeSchedulingPolicy::Draining
| NodeSchedulingPolicy::Filling
);
let mut new_nodes = (**nodes).clone();
if let Some(node) = new_nodes.get_mut(&reattach_req.node_id) {
if reset_scheduling {
node.set_scheduling(NodeSchedulingPolicy::Active);
}
tracing::info!("Marking {} warming-up on reattach", reattach_req.node_id);
node.set_availability(NodeAvailability::WarmingUp(std::time::Instant::now()));
scheduler.node_upsert(node);
let new_nodes = Arc::new(new_nodes);
*nodes = new_nodes;
} else {
tracing::error!(
"Reattaching node {} was removed while processing the request",
reattach_req.node_id
);
}
}
Ok(response)
}
pub(crate) async fn validate(
&self,
validate_req: ValidateRequest,
) -> Result<ValidateResponse, DatabaseError> {
// Fast in-memory check: we may reject validation on anything that doesn't match our
// in-memory generation for a shard
let in_memory_result = {
let mut in_memory_result = Vec::new();
let locked = self.inner.read().unwrap();
for req_tenant in validate_req.tenants {
if let Some(tenant_shard) = locked.tenants.get(&req_tenant.id) {
let valid = tenant_shard.generation == Some(Generation::new(req_tenant.r#gen));
tracing::info!(
"handle_validate: {}(gen {}): valid={valid} (latest {:?})",
req_tenant.id,
req_tenant.r#gen,
tenant_shard.generation
);
in_memory_result.push((
req_tenant.id,
Generation::new(req_tenant.r#gen),
valid,
));
} else {
// This is legal: for example during a shard split the pageserver may still
// have deletions in its queue from the old pre-split shard, or after deletion
// of a tenant that was busy with compaction/gc while being deleted.
tracing::info!(
"Refusing deletion validation for missing shard {}",
req_tenant.id
);
}
}
in_memory_result
};
// Database calls to confirm validity for anything that passed the in-memory check. We must do this
// in case of controller split-brain, where some other controller process might have incremented the generation.
let db_generations = self
.persistence
.shard_generations(
in_memory_result
.iter()
.filter_map(|i| if i.2 { Some(&i.0) } else { None }),
)
.await?;
let db_generations = db_generations.into_iter().collect::<HashMap<_, _>>();
let mut response = ValidateResponse {
tenants: Vec::new(),
};
for (tenant_shard_id, validate_generation, valid) in in_memory_result.into_iter() {
let valid = if valid {
let db_generation = db_generations.get(&tenant_shard_id);
db_generation == Some(&Some(validate_generation))
} else {
// If in-memory state says it's invalid, trust that. It's always safe to fail a validation, at worst
// this prevents a pageserver from cleaning up an object in S3.
false
};
response.tenants.push(ValidateResponseTenant {
id: tenant_shard_id,
valid,
})
}
Ok(response)
}
pub(crate) async fn tenant_create(
&self,
create_req: TenantCreateRequest,
) -> Result<TenantCreateResponse, ApiError> {
let tenant_id = create_req.new_tenant_id.tenant_id;
// Exclude any concurrent attempts to create/access the same tenant ID
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
create_req.new_tenant_id.tenant_id,
TenantOperations::Create,
)
.await;
let (response, waiters) = self.do_tenant_create(create_req).await?;
if let Err(e) = self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
// Avoid deadlock: reconcile may fail while notifying compute, if the cloud control plane refuses to
// accept compute notifications while it is in the process of creating. Reconciliation will
// be retried in the background.
tracing::warn!(%tenant_id, "Reconcile not done yet while creating tenant ({e})");
}
Ok(response)
}
pub(crate) async fn do_tenant_create(
&self,
create_req: TenantCreateRequest,
) -> Result<(TenantCreateResponse, Vec<ReconcilerWaiter>), ApiError> {
let placement_policy = create_req
.placement_policy
.clone()
// As a default, zero secondaries is convenient for tests that don't choose a policy.
.unwrap_or(PlacementPolicy::Attached(0));
// This service expects to handle sharding itself: it is an error to try and directly create
// a particular shard here.
let tenant_id = if !create_req.new_tenant_id.is_unsharded() {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Attempted to create a specific shard, this API is for creating the whole tenant"
)));
} else {
create_req.new_tenant_id.tenant_id
};
tracing::info!(
"Creating tenant {}, shard_count={:?}",
create_req.new_tenant_id,
create_req.shard_parameters.count,
);
let create_ids = (0..create_req.shard_parameters.count.count())
.map(|i| TenantShardId {
tenant_id,
shard_number: ShardNumber(i),
shard_count: create_req.shard_parameters.count,
})
.collect::<Vec<_>>();
// If the caller specifies a None generation, it means "start from default". This is different
// to [`Self::tenant_location_config`], where a None generation is used to represent
// an incompletely-onboarded tenant.
let initial_generation = if matches!(placement_policy, PlacementPolicy::Secondary) {
tracing::info!(
"tenant_create: secondary mode, generation is_some={}",
create_req.generation.is_some()
);
create_req.generation.map(Generation::new)
} else {
tracing::info!(
"tenant_create: not secondary mode, generation is_some={}",
create_req.generation.is_some()
);
Some(
create_req
.generation
.map(Generation::new)
.unwrap_or(INITIAL_GENERATION),
)
};
let preferred_az_id = {
let locked = self.inner.read().unwrap();
// Idempotency: take the existing value if the tenant already exists
if let Some(shard) = locked.tenants.get(create_ids.first().unwrap()) {
shard.preferred_az().cloned()
} else {
locked.scheduler.get_az_for_new_tenant()
}
};
// Ordering: we persist tenant shards before creating them on the pageserver. This enables a caller
// to clean up after themselves by issuing a tenant deletion if something goes wrong and we restart
// during the creation, rather than risking leaving orphan objects in S3.
let persist_tenant_shards = create_ids
.iter()
.map(|tenant_shard_id| TenantShardPersistence {
tenant_id: tenant_shard_id.tenant_id.to_string(),
shard_number: tenant_shard_id.shard_number.0 as i32,
shard_count: tenant_shard_id.shard_count.literal() as i32,
shard_stripe_size: create_req.shard_parameters.stripe_size.0 as i32,
generation: initial_generation.map(|g| g.into().unwrap() as i32),
// The pageserver is not known until scheduling happens: we will set this column when
// incrementing the generation the first time we attach to a pageserver.
generation_pageserver: None,
placement_policy: serde_json::to_string(&placement_policy).unwrap(),
config: serde_json::to_string(&create_req.config).unwrap(),
splitting: SplitState::default(),
scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
.unwrap(),
preferred_az_id: preferred_az_id.as_ref().map(|az| az.to_string()),
})
.collect();
match self
.persistence
.insert_tenant_shards(persist_tenant_shards)
.await
{
Ok(_) => {}
Err(DatabaseError::Query(diesel::result::Error::DatabaseError(
DatabaseErrorKind::UniqueViolation,
_,
))) => {
// Unique key violation: this is probably a retry. Because the shard count is part of the unique key,
// if we see a unique key violation it means that the creation request's shard count matches the previous
// creation's shard count.
tracing::info!(
"Tenant shards already present in database, proceeding with idempotent creation..."
);
}
// Any other database error is unexpected and a bug.
Err(e) => return Err(ApiError::InternalServerError(anyhow::anyhow!(e))),
};
let mut schedule_context = ScheduleContext::default();
let mut schedule_error = None;
let mut response_shards = Vec::new();
for tenant_shard_id in create_ids {
tracing::info!("Creating shard {tenant_shard_id}...");
let outcome = self
.do_initial_shard_scheduling(
tenant_shard_id,
initial_generation,
&create_req.shard_parameters,
create_req.config.clone(),
placement_policy.clone(),
preferred_az_id.as_ref(),
&mut schedule_context,
)
.await;
match outcome {
InitialShardScheduleOutcome::Scheduled(resp) => response_shards.push(resp),
InitialShardScheduleOutcome::NotScheduled => {}
InitialShardScheduleOutcome::ShardScheduleError(err) => {
schedule_error = Some(err);
}
}
}
// If we failed to schedule shards, then they are still created in the controller,
// but we return an error to the requester to avoid a silent failure when someone
// tries to e.g. create a tenant whose placement policy requires more nodes than
// are present in the system. We do this here rather than in the above loop, to
// avoid situations where we only create a subset of shards in the tenant.
if let Some(e) = schedule_error {
return Err(ApiError::Conflict(format!(
"Failed to schedule shard(s): {e}"
)));
}
let waiters = {
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, _scheduler) = locked.parts_mut();
let config = ReconcilerConfigBuilder::new(ReconcilerPriority::High)
.tenant_creation_hint(true)
.build();
tenants
.range_mut(TenantShardId::tenant_range(tenant_id))
.filter_map(|(_shard_id, shard)| {
self.maybe_configured_reconcile_shard(shard, nodes, config)
})
.collect::<Vec<_>>()
};
Ok((
TenantCreateResponse {
shards: response_shards,
},
waiters,
))
}
/// Helper for tenant creation that does the scheduling for an individual shard. Covers both the
/// case of a new tenant and a pre-existing one.
#[allow(clippy::too_many_arguments)]
async fn do_initial_shard_scheduling(
&self,
tenant_shard_id: TenantShardId,
initial_generation: Option<Generation>,
shard_params: &ShardParameters,
config: TenantConfig,
placement_policy: PlacementPolicy,
preferred_az_id: Option<&AvailabilityZone>,
schedule_context: &mut ScheduleContext,
) -> InitialShardScheduleOutcome {
let mut locked = self.inner.write().unwrap();
let (_nodes, tenants, scheduler) = locked.parts_mut();
use std::collections::btree_map::Entry;
match tenants.entry(tenant_shard_id) {
Entry::Occupied(mut entry) => {
tracing::info!("Tenant shard {tenant_shard_id} already exists while creating");
if let Err(err) = entry.get_mut().schedule(scheduler, schedule_context) {
return InitialShardScheduleOutcome::ShardScheduleError(err);
}
if let Some(node_id) = entry.get().intent.get_attached() {
let generation = entry
.get()
.generation
.expect("Generation is set when in attached mode");
InitialShardScheduleOutcome::Scheduled(TenantCreateResponseShard {
shard_id: tenant_shard_id,
node_id: *node_id,
generation: generation.into().unwrap(),
})
} else {
InitialShardScheduleOutcome::NotScheduled
}
}
Entry::Vacant(entry) => {
let state = entry.insert(TenantShard::new(
tenant_shard_id,
ShardIdentity::from_params(tenant_shard_id.shard_number, shard_params),
placement_policy,
preferred_az_id.cloned(),
));
state.generation = initial_generation;
state.config = config;
if let Err(e) = state.schedule(scheduler, schedule_context) {
return InitialShardScheduleOutcome::ShardScheduleError(e);
}
// Only include shards in result if we are attaching: the purpose
// of the response is to tell the caller where the shards are attached.
if let Some(node_id) = state.intent.get_attached() {
let generation = state
.generation
.expect("Generation is set when in attached mode");
InitialShardScheduleOutcome::Scheduled(TenantCreateResponseShard {
shard_id: tenant_shard_id,
node_id: *node_id,
generation: generation.into().unwrap(),
})
} else {
InitialShardScheduleOutcome::NotScheduled
}
}
}
}
/// Helper for functions that reconcile a number of shards, and would like to do a timeout-bounded
/// wait for reconciliation to complete before responding.
async fn await_waiters(
&self,
waiters: Vec<ReconcilerWaiter>,
timeout: Duration,
) -> Result<(), ReconcileWaitError> {
let deadline = Instant::now().checked_add(timeout).unwrap();
for waiter in waiters {
let timeout = deadline.duration_since(Instant::now());
waiter.wait_timeout(timeout).await?;
}
Ok(())
}
/// Same as [`Service::await_waiters`], but returns the waiters which are still
/// in progress
async fn await_waiters_remainder(
&self,
waiters: Vec<ReconcilerWaiter>,
timeout: Duration,
) -> Vec<ReconcilerWaiter> {
let deadline = Instant::now().checked_add(timeout).unwrap();
for waiter in waiters.iter() {
let timeout = deadline.duration_since(Instant::now());
let _ = waiter.wait_timeout(timeout).await;
}
waiters
.into_iter()
.filter(|waiter| matches!(waiter.get_status(), ReconcilerStatus::InProgress))
.collect::<Vec<_>>()
}
/// Part of [`Self::tenant_location_config`]: dissect an incoming location config request,
/// and transform it into either a tenant creation of a series of shard updates.
///
/// If the incoming request makes no changes, a [`TenantCreateOrUpdate::Update`] result will
/// still be returned.
fn tenant_location_config_prepare(
&self,
tenant_id: TenantId,
req: TenantLocationConfigRequest,
) -> TenantCreateOrUpdate {
let mut updates = Vec::new();
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, _scheduler) = locked.parts_mut();
let tenant_shard_id = TenantShardId::unsharded(tenant_id);
// Use location config mode as an indicator of policy.
let placement_policy = match req.config.mode {
LocationConfigMode::Detached => PlacementPolicy::Detached,
LocationConfigMode::Secondary => PlacementPolicy::Secondary,
LocationConfigMode::AttachedMulti
| LocationConfigMode::AttachedSingle
| LocationConfigMode::AttachedStale => {
if nodes.len() > 1 {
PlacementPolicy::Attached(1)
} else {
// Convenience for dev/test: if we just have one pageserver, import
// tenants into non-HA mode so that scheduling will succeed.
PlacementPolicy::Attached(0)
}
}
};
// Ordinarily we do not update scheduling policy, but when making major changes
// like detaching or demoting to secondary-only, we need to force the scheduling
// mode to Active, or the caller's expected outcome (detach it) will not happen.
let scheduling_policy = match req.config.mode {
LocationConfigMode::Detached | LocationConfigMode::Secondary => {
// Special case: when making major changes like detaching or demoting to secondary-only,
// we need to force the scheduling mode to Active, or nothing will happen.
Some(ShardSchedulingPolicy::Active)
}
LocationConfigMode::AttachedMulti
| LocationConfigMode::AttachedSingle
| LocationConfigMode::AttachedStale => {
// While attached, continue to respect whatever the existing scheduling mode is.
None
}
};
let mut create = true;
for (shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
// Saw an existing shard: this is not a creation
create = false;
// Shards may have initially been created by a Secondary request, where we
// would have left generation as None.
//
// We only update generation the first time we see an attached-mode request,
// and if there is no existing generation set. The caller is responsible for
// ensuring that no non-storage-controller pageserver ever uses a higher
// generation than they passed in here.
use LocationConfigMode::*;
let set_generation = match req.config.mode {
AttachedMulti | AttachedSingle | AttachedStale if shard.generation.is_none() => {
req.config.generation.map(Generation::new)
}
_ => None,
};
updates.push(ShardUpdate {
tenant_shard_id: *shard_id,
placement_policy: placement_policy.clone(),
tenant_config: req.config.tenant_conf.clone(),
generation: set_generation,
scheduling_policy,
});
}
if create {
use LocationConfigMode::*;
let generation = match req.config.mode {
AttachedMulti | AttachedSingle | AttachedStale => req.config.generation,
// If a caller provided a generation in a non-attached request, ignore it
// and leave our generation as None: this enables a subsequent update to set
// the generation when setting an attached mode for the first time.
_ => None,
};
TenantCreateOrUpdate::Create(
// Synthesize a creation request
TenantCreateRequest {
new_tenant_id: tenant_shard_id,
generation,
shard_parameters: ShardParameters {
count: tenant_shard_id.shard_count,
// We only import un-sharded or single-sharded tenants, so stripe
// size can be made up arbitrarily here.
stripe_size: DEFAULT_STRIPE_SIZE,
},
placement_policy: Some(placement_policy),
config: req.config.tenant_conf,
},
)
} else {
assert!(!updates.is_empty());
TenantCreateOrUpdate::Update(updates)
}
}
/// For APIs that might act on tenants with [`PlacementPolicy::Detached`], first check if
/// the tenant is present in memory. If not, load it from the database. If it is found
/// in neither location, return a NotFound error.
///
/// Caller must demonstrate they hold a lock guard, as otherwise two callers might try and load
/// it at the same time, or we might race with [`Self::maybe_drop_tenant`]
async fn maybe_load_tenant(
&self,
tenant_id: TenantId,
_guard: &TracingExclusiveGuard<TenantOperations>,
) -> Result<(), ApiError> {
// Check if the tenant is present in memory, and select an AZ to use when loading
// if we will load it.
let load_in_az = {
let locked = self.inner.read().unwrap();
let existing = locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.next();
// If the tenant is not present in memory, we expect to load it from database,
// so let's figure out what AZ to load it into while we have self.inner locked.
if existing.is_none() {
locked
.scheduler
.get_az_for_new_tenant()
.ok_or(ApiError::BadRequest(anyhow::anyhow!(
"No AZ with nodes found to load tenant"
)))?
} else {
// We already have this tenant in memory
return Ok(());
}
};
let tenant_shards = self.persistence.load_tenant(tenant_id).await?;
if tenant_shards.is_empty() {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
));
}
// Update the persistent shards with the AZ that we are about to apply to in-memory state
self.persistence
.set_tenant_shard_preferred_azs(
tenant_shards
.iter()
.map(|t| {
(
t.get_tenant_shard_id().expect("Corrupt shard in database"),
Some(load_in_az.clone()),
)
})
.collect(),
)
.await?;
let mut locked = self.inner.write().unwrap();
tracing::info!(
"Loaded {} shards for tenant {}",
tenant_shards.len(),
tenant_id
);
locked.tenants.extend(tenant_shards.into_iter().map(|p| {
let intent = IntentState::new(Some(load_in_az.clone()));
let shard =
TenantShard::from_persistent(p, intent).expect("Corrupt shard row in database");
// Sanity check: when loading on-demand, we should always be loaded something Detached
debug_assert!(shard.policy == PlacementPolicy::Detached);
if shard.policy != PlacementPolicy::Detached {
tracing::error!(
"Tenant shard {} loaded on-demand, but has non-Detached policy {:?}",
shard.tenant_shard_id,
shard.policy
);
}
(shard.tenant_shard_id, shard)
}));
Ok(())
}
/// If all shards for a tenant are detached, and in a fully quiescent state (no observed locations on pageservers),
/// and have no reconciler running, then we can drop the tenant from memory. It will be reloaded on-demand
/// if we are asked to attach it again (see [`Self::maybe_load_tenant`]).
///
/// Caller must demonstrate they hold a lock guard, as otherwise it is unsafe to drop a tenant from
/// memory while some other function might assume it continues to exist while not holding the lock on Self::inner.
fn maybe_drop_tenant(
&self,
tenant_id: TenantId,
locked: &mut std::sync::RwLockWriteGuard<ServiceState>,
_guard: &TracingExclusiveGuard<TenantOperations>,
) {
let mut tenant_shards = locked.tenants.range(TenantShardId::tenant_range(tenant_id));
if tenant_shards.all(|(_id, shard)| {
shard.policy == PlacementPolicy::Detached
&& shard.reconciler.is_none()
&& shard.observed.is_empty()
}) {
let keys = locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.map(|(id, _)| id)
.copied()
.collect::<Vec<_>>();
for key in keys {
tracing::info!("Dropping detached tenant shard {} from memory", key);
locked.tenants.remove(&key);
}
}
}
/// This API is used by the cloud control plane to migrate unsharded tenants that it created
/// directly with pageservers into this service.
///
/// Cloud control plane MUST NOT continue issuing GENERATION NUMBERS for this tenant once it
/// has attempted to call this API. Failure to oblige to this rule may lead to S3 corruption.
/// Think of the first attempt to call this API as a transfer of absolute authority over the
/// tenant's source of generation numbers.
///
/// The mode in this request coarse-grained control of tenants:
/// - Call with mode Attached* to upsert the tenant.
/// - Call with mode Secondary to either onboard a tenant without attaching it, or
/// to set an existing tenant to PolicyMode::Secondary
/// - Call with mode Detached to switch to PolicyMode::Detached
pub(crate) async fn tenant_location_config(
&self,
tenant_shard_id: TenantShardId,
req: TenantLocationConfigRequest,
) -> Result<TenantLocationConfigResponse, ApiError> {
// We require an exclusive lock, because we are updating both persistent and in-memory state
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
tenant_shard_id.tenant_id,
TenantOperations::LocationConfig,
)
.await;
let tenant_id = if !tenant_shard_id.is_unsharded() {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"This API is for importing single-sharded or unsharded tenants"
)));
} else {
tenant_shard_id.tenant_id
};
// In case we are waking up a Detached tenant
match self.maybe_load_tenant(tenant_id, &_tenant_lock).await {
Ok(()) | Err(ApiError::NotFound(_)) => {
// This is a creation or an update
}
Err(e) => {
return Err(e);
}
};
// First check if this is a creation or an update
let create_or_update = self.tenant_location_config_prepare(tenant_id, req);
let mut result = TenantLocationConfigResponse {
shards: Vec::new(),
stripe_size: None,
};
let waiters = match create_or_update {
TenantCreateOrUpdate::Create(create_req) => {
let (create_resp, waiters) = self.do_tenant_create(create_req).await?;
result.shards = create_resp
.shards
.into_iter()
.map(|s| TenantShardLocation {
node_id: s.node_id,
shard_id: s.shard_id,
})
.collect();
waiters
}
TenantCreateOrUpdate::Update(updates) => {
// Persist updates
// Ordering: write to the database before applying changes in-memory, so that
// we will not appear time-travel backwards on a restart.
let mut schedule_context = ScheduleContext::default();
for ShardUpdate {
tenant_shard_id,
placement_policy,
tenant_config,
generation,
scheduling_policy,
} in &updates
{
self.persistence
.update_tenant_shard(
TenantFilter::Shard(*tenant_shard_id),
Some(placement_policy.clone()),
Some(tenant_config.clone()),
*generation,
*scheduling_policy,
)
.await?;
}
// Apply updates in-memory
let mut waiters = Vec::new();
{
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
for ShardUpdate {
tenant_shard_id,
placement_policy,
tenant_config,
generation: update_generation,
scheduling_policy,
} in updates
{
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
tracing::warn!("Shard {tenant_shard_id} removed while updating");
continue;
};
// Update stripe size
if result.stripe_size.is_none() && shard.shard.count.count() > 1 {
result.stripe_size = Some(shard.shard.stripe_size);
}
shard.policy = placement_policy;
shard.config = tenant_config;
if let Some(generation) = update_generation {
shard.generation = Some(generation);
}
if let Some(scheduling_policy) = scheduling_policy {
shard.set_scheduling_policy(scheduling_policy);
}
shard.schedule(scheduler, &mut schedule_context)?;
let maybe_waiter =
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High);
if let Some(waiter) = maybe_waiter {
waiters.push(waiter);
}
if let Some(node_id) = shard.intent.get_attached() {
result.shards.push(TenantShardLocation {
shard_id: tenant_shard_id,
node_id: *node_id,
})
}
}
}
waiters
}
};
if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
// Do not treat a reconcile error as fatal: we have already applied any requested
// Intent changes, and the reconcile can fail for external reasons like unavailable
// compute notification API. In these cases, it is important that we do not
// cause the cloud control plane to retry forever on this API.
tracing::warn!(
"Failed to reconcile after /location_config: {e}, returning success anyway"
);
}
// Logging the full result is useful because it lets us cross-check what the cloud control
// plane's tenant_shards table should contain.
tracing::info!("Complete, returning {result:?}");
Ok(result)
}
pub(crate) async fn tenant_config_patch(
&self,
req: TenantConfigPatchRequest,
) -> Result<(), ApiError> {
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
req.tenant_id,
TenantOperations::ConfigPatch,
)
.await;
let tenant_id = req.tenant_id;
let patch = req.config;
self.maybe_load_tenant(tenant_id, &_tenant_lock).await?;
let base = {
let locked = self.inner.read().unwrap();
let shards = locked
.tenants
.range(TenantShardId::tenant_range(req.tenant_id));
let mut configs = shards.map(|(_sid, shard)| &shard.config).peekable();
let first = match configs.peek() {
Some(first) => (*first).clone(),
None => {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant {} not found", req.tenant_id).into(),
));
}
};
if !configs.all_equal() {
tracing::error!("Tenant configs for {} are mismatched. ", req.tenant_id);
// This can't happen because we atomically update the database records
// of all shards to the new value in [`Self::set_tenant_config_and_reconcile`].
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Tenant configs for {} are mismatched",
req.tenant_id
)));
}
first
};
let updated_config = base
.apply_patch(patch)
.map_err(|err| ApiError::BadRequest(anyhow::anyhow!(err)))?;
self.set_tenant_config_and_reconcile(tenant_id, updated_config)
.await
}
pub(crate) async fn tenant_config_set(&self, req: TenantConfigRequest) -> Result<(), ApiError> {
// We require an exclusive lock, because we are updating persistent and in-memory state
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
req.tenant_id,
TenantOperations::ConfigSet,
)
.await;
self.maybe_load_tenant(req.tenant_id, &_tenant_lock).await?;
self.set_tenant_config_and_reconcile(req.tenant_id, req.config)
.await
}
async fn set_tenant_config_and_reconcile(
&self,
tenant_id: TenantId,
config: TenantConfig,
) -> Result<(), ApiError> {
self.persistence
.update_tenant_shard(
TenantFilter::Tenant(tenant_id),
None,
Some(config.clone()),
None,
None,
)
.await?;
let waiters = {
let mut waiters = Vec::new();
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, _scheduler) = locked.parts_mut();
for (_shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
shard.config = config.clone();
if let Some(waiter) =
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
{
waiters.push(waiter);
}
}
waiters
};
if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
// Treat this as success because we have stored the configuration. If e.g.
// a node was unavailable at this time, it should not stop us accepting a
// configuration change.
tracing::warn!(%tenant_id, "Accepted configuration update but reconciliation failed: {e}");
}
Ok(())
}
pub(crate) fn tenant_config_get(
&self,
tenant_id: TenantId,
) -> Result<HashMap<&str, serde_json::Value>, ApiError> {
let config = {
let locked = self.inner.read().unwrap();
match locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.next()
{
Some((_tenant_shard_id, shard)) => shard.config.clone(),
None => {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant not found").into(),
));
}
}
};
// Unlike the pageserver, we do not have a set of global defaults: the config is
// entirely per-tenant. Therefore the distinction between `tenant_specific_overrides`
// and `effective_config` in the response is meaningless, but we retain that syntax
// in order to remain compatible with the pageserver API.
let response = HashMap::from([
(
"tenant_specific_overrides",
serde_json::to_value(&config)
.context("serializing tenant specific overrides")
.map_err(ApiError::InternalServerError)?,
),
(
"effective_config",
serde_json::to_value(&config)
.context("serializing effective config")
.map_err(ApiError::InternalServerError)?,
),
]);
Ok(response)
}
pub(crate) async fn tenant_time_travel_remote_storage(
&self,
time_travel_req: &TenantTimeTravelRequest,
tenant_id: TenantId,
timestamp: Cow<'_, str>,
done_if_after: Cow<'_, str>,
) -> Result<(), ApiError> {
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::TimeTravelRemoteStorage,
)
.await;
let node = {
let mut locked = self.inner.write().unwrap();
// Just a sanity check to prevent misuse: the API expects that the tenant is fully
// detached everywhere, and nothing writes to S3 storage. Here, we verify that,
// but only at the start of the process, so it's really just to prevent operator
// mistakes.
for (shard_id, shard) in locked.tenants.range(TenantShardId::tenant_range(tenant_id)) {
if shard.intent.get_attached().is_some() || !shard.intent.get_secondary().is_empty()
{
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"We want tenant to be attached in shard with tenant_shard_id={shard_id}"
)));
}
let maybe_attached = shard
.observed
.locations
.iter()
.filter_map(|(node_id, observed_location)| {
observed_location
.conf
.as_ref()
.map(|loc| (node_id, observed_location, loc.mode))
})
.find(|(_, _, mode)| *mode != LocationConfigMode::Detached);
if let Some((node_id, _observed_location, mode)) = maybe_attached {
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"We observed attached={mode:?} tenant in node_id={node_id} shard with tenant_shard_id={shard_id}"
)));
}
}
let scheduler = &mut locked.scheduler;
// Right now we only perform the operation on a single node without parallelization
// TODO fan out the operation to multiple nodes for better performance
let node_id = scheduler.any_available_node()?;
let node = locked
.nodes
.get(&node_id)
.expect("Pageservers may not be deleted while lock is active");
node.clone()
};
// The shard count is encoded in the remote storage's URL, so we need to handle all historically used shard counts
let mut counts = time_travel_req
.shard_counts
.iter()
.copied()
.collect::<HashSet<_>>()
.into_iter()
.collect::<Vec<_>>();
counts.sort_unstable();
for count in counts {
let shard_ids = (0..count.count())
.map(|i| TenantShardId {
tenant_id,
shard_number: ShardNumber(i),
shard_count: count,
})
.collect::<Vec<_>>();
for tenant_shard_id in shard_ids {
let client = PageserverClient::new(
node.get_id(),
self.http_client.clone(),
node.base_url(),
self.config.pageserver_jwt_token.as_deref(),
);
tracing::info!("Doing time travel recovery for shard {tenant_shard_id}",);
client
.tenant_time_travel_remote_storage(
tenant_shard_id,
&timestamp,
&done_if_after,
)
.await
.map_err(|e| {
ApiError::InternalServerError(anyhow::anyhow!(
"Error doing time travel recovery for shard {tenant_shard_id} on node {}: {e}",
node
))
})?;
}
}
Ok(())
}
pub(crate) async fn tenant_secondary_download(
&self,
tenant_id: TenantId,
wait: Option<Duration>,
) -> Result<(StatusCode, SecondaryProgress), ApiError> {
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::SecondaryDownload,
)
.await;
// Acquire lock and yield the collection of shard-node tuples which we will send requests onward to
let targets = {
let locked = self.inner.read().unwrap();
let mut targets = Vec::new();
for (tenant_shard_id, shard) in
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
{
for node_id in shard.intent.get_secondary() {
let node = locked
.nodes
.get(node_id)
.expect("Pageservers may not be deleted while referenced");
targets.push((*tenant_shard_id, node.clone()));
}
}
targets
};
// Issue concurrent requests to all shards' locations
let mut futs = FuturesUnordered::new();
for (tenant_shard_id, node) in targets {
let client = PageserverClient::new(
node.get_id(),
self.http_client.clone(),
node.base_url(),
self.config.pageserver_jwt_token.as_deref(),
);
futs.push(async move {
let result = client
.tenant_secondary_download(tenant_shard_id, wait)
.await;
(result, node, tenant_shard_id)
})
}
// Handle any errors returned by pageservers. This includes cases like this request racing with
// a scheduling operation, such that the tenant shard we're calling doesn't exist on that pageserver any more, as
// well as more general cases like 503s, 500s, or timeouts.
let mut aggregate_progress = SecondaryProgress::default();
let mut aggregate_status: Option<StatusCode> = None;
let mut error: Option<mgmt_api::Error> = None;
while let Some((result, node, tenant_shard_id)) = futs.next().await {
match result {
Err(e) => {
// Secondary downloads are always advisory: if something fails, we nevertheless report success, so that whoever
// is calling us will proceed with whatever migration they're doing, albeit with a slightly less warm cache
// than they had hoped for.
tracing::warn!("Secondary download error from pageserver {node}: {e}",);
error = Some(e)
}
Ok((status_code, progress)) => {
tracing::info!(%tenant_shard_id, "Shard status={status_code} progress: {progress:?}");
aggregate_progress.layers_downloaded += progress.layers_downloaded;
aggregate_progress.layers_total += progress.layers_total;
aggregate_progress.bytes_downloaded += progress.bytes_downloaded;
aggregate_progress.bytes_total += progress.bytes_total;
aggregate_progress.heatmap_mtime =
std::cmp::max(aggregate_progress.heatmap_mtime, progress.heatmap_mtime);
aggregate_status = match aggregate_status {
None => Some(status_code),
Some(StatusCode::OK) => Some(status_code),
Some(cur) => {
// Other status codes (e.g. 202) -- do not overwrite.
Some(cur)
}
};
}
}
}
// If any of the shards return 202, indicate our result as 202.
match aggregate_status {
None => {
match error {
Some(e) => {
// No successes, and an error: surface it
Err(ApiError::Conflict(format!("Error from pageserver: {e}")))
}
None => {
// No shards found
Err(ApiError::NotFound(
anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
))
}
}
}
Some(aggregate_status) => Ok((aggregate_status, aggregate_progress)),
}
}
pub(crate) async fn tenant_delete(
self: &Arc<Self>,
tenant_id: TenantId,
) -> Result<StatusCode, ApiError> {
let _tenant_lock =
trace_exclusive_lock(&self.tenant_op_locks, tenant_id, TenantOperations::Delete).await;
self.maybe_load_tenant(tenant_id, &_tenant_lock).await?;
// Detach all shards. This also deletes local pageserver shard data.
let (detach_waiters, node) = {
let mut detach_waiters = Vec::new();
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
for (_, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
// Update the tenant's intent to remove all attachments
shard.policy = PlacementPolicy::Detached;
shard
.schedule(scheduler, &mut ScheduleContext::default())
.expect("De-scheduling is infallible");
debug_assert!(shard.intent.get_attached().is_none());
debug_assert!(shard.intent.get_secondary().is_empty());
if let Some(waiter) =
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
{
detach_waiters.push(waiter);
}
}
// Pick an arbitrary node to use for remote deletions (does not have to be where the tenant
// was attached, just has to be able to see the S3 content)
let node_id = scheduler.any_available_node()?;
let node = nodes
.get(&node_id)
.expect("Pageservers may not be deleted while lock is active");
(detach_waiters, node.clone())
};
// This reconcile wait can fail in a few ways:
// A there is a very long queue for the reconciler semaphore
// B some pageserver is failing to handle a detach promptly
// C some pageserver goes offline right at the moment we send it a request.
//
// A and C are transient: the semaphore will eventually become available, and once a node is marked offline
// the next attempt to reconcile will silently skip detaches for an offline node and succeed. If B happens,
// it's a bug, and needs resolving at the pageserver level (we shouldn't just leave attachments behind while
// deleting the underlying data).
self.await_waiters(detach_waiters, RECONCILE_TIMEOUT)
.await?;
// Delete the entire tenant (all shards) from remote storage via a random pageserver.
// Passing an unsharded tenant ID will cause the pageserver to remove all remote paths with
// the tenant ID prefix, including all shards (even possibly stale ones).
match node
.with_client_retries(
|client| async move {
client
.tenant_delete(TenantShardId::unsharded(tenant_id))
.await
},
&self.http_client,
&self.config.pageserver_jwt_token,
1,
3,
RECONCILE_TIMEOUT,
&self.cancel,
)
.await
.unwrap_or(Err(mgmt_api::Error::Cancelled))
{
Ok(_) => {}
Err(mgmt_api::Error::Cancelled) => {
return Err(ApiError::ShuttingDown);
}
Err(e) => {
// This is unexpected: remote deletion should be infallible, unless the object store
// at large is unavailable.
tracing::error!("Error deleting via node {node}: {e}");
return Err(ApiError::InternalServerError(anyhow::anyhow!(e)));
}
}
// Fall through: deletion of the tenant on pageservers is complete, we may proceed to drop
// our in-memory state and database state.
// Ordering: we delete persistent state first: if we then
// crash, we will drop the in-memory state.
// Drop persistent state.
self.persistence.delete_tenant(tenant_id).await?;
// Drop in-memory state
{
let mut locked = self.inner.write().unwrap();
let (_nodes, tenants, scheduler) = locked.parts_mut();
// Dereference Scheduler from shards before dropping them
for (_tenant_shard_id, shard) in
tenants.range_mut(TenantShardId::tenant_range(tenant_id))
{
shard.intent.clear(scheduler);
}
tenants.retain(|tenant_shard_id, _shard| tenant_shard_id.tenant_id != tenant_id);
tracing::info!(
"Deleted tenant {tenant_id}, now have {} tenants",
locked.tenants.len()
);
};
// Delete the tenant from safekeepers (if needed)
self.tenant_delete_safekeepers(tenant_id)
.instrument(tracing::info_span!("tenant_delete_safekeepers", %tenant_id))
.await?;
// Success is represented as 404, to imitate the existing pageserver deletion API
Ok(StatusCode::NOT_FOUND)
}
/// Naming: this configures the storage controller's policies for a tenant, whereas [`Self::tenant_config_set`] is "set the TenantConfig"
/// for a tenant. The TenantConfig is passed through to pageservers, whereas this function modifies
/// the tenant's policies (configuration) within the storage controller
pub(crate) async fn tenant_update_policy(
&self,
tenant_id: TenantId,
req: TenantPolicyRequest,
) -> Result<(), ApiError> {
// We require an exclusive lock, because we are updating persistent and in-memory state
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::UpdatePolicy,
)
.await;
self.maybe_load_tenant(tenant_id, &_tenant_lock).await?;
failpoint_support::sleep_millis_async!("tenant-update-policy-exclusive-lock");
let TenantPolicyRequest {
placement,
mut scheduling,
} = req;
if let Some(PlacementPolicy::Detached | PlacementPolicy::Secondary) = placement {
// When someone configures a tenant to detach, we force the scheduling policy to enable
// this to take effect.
if scheduling.is_none() {
scheduling = Some(ShardSchedulingPolicy::Active);
}
}
self.persistence
.update_tenant_shard(
TenantFilter::Tenant(tenant_id),
placement.clone(),
None,
None,
scheduling,
)
.await?;
let mut schedule_context = ScheduleContext::default();
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
for (shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
if let Some(placement) = &placement {
shard.policy = placement.clone();
tracing::info!(tenant_id=%shard_id.tenant_id, shard_id=%shard_id.shard_slug(),
"Updated placement policy to {placement:?}");
}
if let Some(scheduling) = &scheduling {
shard.set_scheduling_policy(*scheduling);
tracing::info!(tenant_id=%shard_id.tenant_id, shard_id=%shard_id.shard_slug(),
"Updated scheduling policy to {scheduling:?}");
}
// In case scheduling is being switched back on, try it now.
shard.schedule(scheduler, &mut schedule_context).ok();
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High);
}
Ok(())
}
pub(crate) async fn tenant_timeline_create_pageservers(
&self,
tenant_id: TenantId,
mut create_req: TimelineCreateRequest,
) -> Result<TimelineInfo, ApiError> {
tracing::info!(
"Creating timeline {}/{}",
tenant_id,
create_req.new_timeline_id,
);
self.tenant_remote_mutation(tenant_id, move |mut targets| async move {
if targets.0.is_empty() {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant not found").into(),
));
};
let (shard_zero_tid, shard_zero_locations) =
targets.0.pop_first().expect("Must have at least one shard");
assert!(shard_zero_tid.is_shard_zero());
async fn create_one(
tenant_shard_id: TenantShardId,
locations: ShardMutationLocations,
http_client: reqwest::Client,
jwt: Option<String>,
mut create_req: TimelineCreateRequest,
) -> Result<TimelineInfo, ApiError> {
let latest = locations.latest.node;
tracing::info!(
"Creating timeline on shard {}/{}, attached to node {latest} in generation {:?}",
tenant_shard_id,
create_req.new_timeline_id,
locations.latest.generation
);
let client =
PageserverClient::new(latest.get_id(), http_client.clone(), latest.base_url(), jwt.as_deref());
let timeline_info = client
.timeline_create(tenant_shard_id, &create_req)
.await
.map_err(|e| passthrough_api_error(&latest, e))?;
// If we are going to create the timeline on some stale locations for shard 0, then ask them to re-use
// the initdb generated by the latest location, rather than generating their own. This avoids racing uploads
// of initdb to S3 which might not be binary-identical if different pageservers have different postgres binaries.
if tenant_shard_id.is_shard_zero() {
if let models::TimelineCreateRequestMode::Bootstrap { existing_initdb_timeline_id, .. } = &mut create_req.mode {
*existing_initdb_timeline_id = Some(create_req.new_timeline_id);
}
}
// We propagate timeline creations to all attached locations such that a compute
// for the new timeline is able to start regardless of the current state of the
// tenant shard reconciliation.
for location in locations.other {
tracing::info!(
"Creating timeline on shard {}/{}, stale attached to node {} in generation {:?}",
tenant_shard_id,
create_req.new_timeline_id,
location.node,
location.generation
);
let client = PageserverClient::new(
location.node.get_id(),
http_client.clone(),
location.node.base_url(),
jwt.as_deref(),
);
let res = client
.timeline_create(tenant_shard_id, &create_req)
.await;
if let Err(e) = res {
match e {
mgmt_api::Error::ApiError(StatusCode::NOT_FOUND, _) => {
// Tenant might have been detached from the stale location,
// so ignore 404s.
},
_ => {
return Err(passthrough_api_error(&location.node, e));
}
}
}
}
Ok(timeline_info)
}
// Because the caller might not provide an explicit LSN, we must do the creation first on a single shard, and then
// use whatever LSN that shard picked when creating on subsequent shards. We arbitrarily use shard zero as the shard
// that will get the first creation request, and propagate the LSN to all the >0 shards.
//
// This also enables non-zero shards to use the initdb that shard 0 generated and uploaded to S3, rather than
// independently generating their own initdb. This guarantees that shards cannot end up with different initial
// states if e.g. they have different postgres binary versions.
let timeline_info = create_one(
shard_zero_tid,
shard_zero_locations,
self.http_client.clone(),
self.config.pageserver_jwt_token.clone(),
create_req.clone(),
)
.await?;
// Update the create request for shards >= 0
match &mut create_req.mode {
models::TimelineCreateRequestMode::Branch { ancestor_start_lsn, .. } if ancestor_start_lsn.is_none() => {
// Propagate the LSN that shard zero picked, if caller didn't provide one
*ancestor_start_lsn = timeline_info.ancestor_lsn;
},
models::TimelineCreateRequestMode::Bootstrap { existing_initdb_timeline_id, .. } => {
// For shards >= 0, do not run initdb: use the one that shard 0 uploaded to S3
*existing_initdb_timeline_id = Some(create_req.new_timeline_id)
}
_ => {}
}
// Create timeline on remaining shards with number >0
if !targets.0.is_empty() {
// If we had multiple shards, issue requests for the remainder now.
let jwt = &self.config.pageserver_jwt_token;
self.tenant_for_shards(
targets
.0
.iter()
.map(|t| (*t.0, t.1.latest.node.clone()))
.collect(),
|tenant_shard_id: TenantShardId, _node: Node| {
let create_req = create_req.clone();
let mutation_locations = targets.0.remove(&tenant_shard_id).unwrap();
Box::pin(create_one(
tenant_shard_id,
mutation_locations,
self.http_client.clone(),
jwt.clone(),
create_req,
))
},
)
.await?;
}
Ok(timeline_info)
})
.await?
}
pub(crate) async fn tenant_timeline_create(
self: &Arc<Self>,
tenant_id: TenantId,
create_req: TimelineCreateRequest,
) -> Result<TimelineCreateResponseStorcon, ApiError> {
let safekeepers = self.config.timelines_onto_safekeepers;
let timeline_id = create_req.new_timeline_id;
tracing::info!(
mode=%create_req.mode_tag(),
%safekeepers,
"Creating timeline {}/{}",
tenant_id,
timeline_id,
);
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::TimelineCreate,
)
.await;
failpoint_support::sleep_millis_async!("tenant-create-timeline-shared-lock");
let is_import = create_req.is_import();
let read_only = matches!(
create_req.mode,
models::TimelineCreateRequestMode::Branch {
read_only: true,
..
}
);
if is_import {
// Ensure that there is no split on-going.
// [`Self::tenant_shard_split`] holds the exclusive tenant lock
// for the duration of the split, but here we handle the case
// where we restarted and the split is being aborted.
let locked = self.inner.read().unwrap();
let splitting = locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.any(|(_id, shard)| shard.splitting != SplitState::Idle);
if splitting {
return Err(ApiError::Conflict("Tenant is splitting shard".to_string()));
}
}
let timeline_info = self
.tenant_timeline_create_pageservers(tenant_id, create_req)
.await?;
let selected_safekeepers = if is_import {
let shards = {
let locked = self.inner.read().unwrap();
locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.map(|(ts_id, _)| ts_id.to_index())
.collect::<Vec<_>>()
};
if !shards
.iter()
.map(|shard_index| shard_index.shard_count)
.all_equal()
{
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Inconsistent shard count"
)));
}
let import = TimelineImport {
tenant_id,
timeline_id,
shard_statuses: ShardImportStatuses::new(shards),
};
let inserted = self
.persistence
.insert_timeline_import(import.to_persistent())
.await
.context("timeline import insert")
.map_err(ApiError::InternalServerError)?;
// Set the importing flag on the tenant shards
self.inner
.write()
.unwrap()
.tenants
.range_mut(TenantShardId::tenant_range(tenant_id))
.for_each(|(_id, shard)| shard.importing = TimelineImportState::Importing);
match inserted {
true => {
tracing::info!(%tenant_id, %timeline_id, "Inserted timeline import");
}
false => {
tracing::info!(%tenant_id, %timeline_id, "Timeline import entry already present");
}
}
None
} else if safekeepers || read_only {
// Note that for imported timelines, we do not create the timeline on the safekeepers
// straight away. Instead, we do it once the import finalized such that we know what
// start LSN to provide for the safekeepers. This is done in
// [`Self::finalize_timeline_import`].
let res = self
.tenant_timeline_create_safekeepers(tenant_id, &timeline_info, read_only)
.instrument(tracing::info_span!("timeline_create_safekeepers", %tenant_id, timeline_id=%timeline_info.timeline_id))
.await?;
Some(res)
} else {
None
};
Ok(TimelineCreateResponseStorcon {
timeline_info,
safekeepers: selected_safekeepers,
})
}
#[instrument(skip_all, fields(
tenant_id=%req.tenant_shard_id.tenant_id,
shard_id=%req.tenant_shard_id.shard_slug(),
timeline_id=%req.timeline_id,
))]
pub(crate) async fn handle_timeline_shard_import_progress(
self: &Arc<Self>,
req: TimelineImportStatusRequest,
) -> Result<ShardImportStatus, ApiError> {
let validity = self
.validate_shard_generation(req.tenant_shard_id, req.generation)
.await?;
match validity {
ShardGenerationValidity::Valid => {
// fallthrough
}
ShardGenerationValidity::Mismatched { claimed, actual } => {
tracing::info!(
claimed=?claimed.into(),
actual=?actual.and_then(|g| g.into()),
"Rejecting import progress fetch from stale generation"
);
return Err(ApiError::BadRequest(anyhow::anyhow!("Invalid generation")));
}
}
let maybe_import = self
.persistence
.get_timeline_import(req.tenant_shard_id.tenant_id, req.timeline_id)
.await?;
let import = maybe_import.ok_or_else(|| {
ApiError::NotFound(
format!(
"import for {}/{} not found",
req.tenant_shard_id.tenant_id, req.timeline_id
)
.into(),
)
})?;
import
.shard_statuses
.0
.get(&req.tenant_shard_id.to_index())
.cloned()
.ok_or_else(|| {
ApiError::NotFound(
format!("shard {} not found", req.tenant_shard_id.shard_slug()).into(),
)
})
}
#[instrument(skip_all, fields(
tenant_id=%req.tenant_shard_id.tenant_id,
shard_id=%req.tenant_shard_id.shard_slug(),
timeline_id=%req.timeline_id,
))]
pub(crate) async fn handle_timeline_shard_import_progress_upcall(
self: &Arc<Self>,
req: PutTimelineImportStatusRequest,
) -> Result<(), ApiError> {
let validity = self
.validate_shard_generation(req.tenant_shard_id, req.generation)
.await?;
match validity {
ShardGenerationValidity::Valid => {
// fallthrough
}
ShardGenerationValidity::Mismatched { claimed, actual } => {
tracing::info!(
claimed=?claimed.into(),
actual=?actual.and_then(|g| g.into()),
"Rejecting import progress update from stale generation"
);
return Err(ApiError::PreconditionFailed("Invalid generation".into()));
}
}
let res = self
.persistence
.update_timeline_import(req.tenant_shard_id, req.timeline_id, req.status)
.await;
let timeline_import = match res {
Ok(Ok(Some(timeline_import))) => timeline_import,
Ok(Ok(None)) => {
// Idempotency: we've already seen and handled this update.
return Ok(());
}
Ok(Err(logical_err)) => {
return Err(logical_err.into());
}
Err(db_err) => {
return Err(db_err.into());
}
};
tracing::info!(
tenant_id=%req.tenant_shard_id.tenant_id,
timeline_id=%req.timeline_id,
shard_id=%req.tenant_shard_id.shard_slug(),
"Updated timeline import status to: {timeline_import:?}");
if timeline_import.is_complete() {
tokio::task::spawn({
let this = self.clone();
async move { this.finalize_timeline_import(timeline_import).await }
});
}
Ok(())
}
/// Check that a provided generation for some tenant shard is the most recent one.
///
/// Validate with the in-mem state first, and, if that passes, validate with the
/// database state which is authoritative.
async fn validate_shard_generation(
self: &Arc<Self>,
tenant_shard_id: TenantShardId,
generation: Generation,
) -> Result<ShardGenerationValidity, ApiError> {
{
let locked = self.inner.read().unwrap();
let tenant_shard =
locked
.tenants
.get(&tenant_shard_id)
.ok_or(ApiError::InternalServerError(anyhow::anyhow!(
"{} shard not found",
tenant_shard_id
)))?;
if tenant_shard.generation != Some(generation) {
return Ok(ShardGenerationValidity::Mismatched {
claimed: generation,
actual: tenant_shard.generation,
});
}
}
let mut db_generations = self
.persistence
.shard_generations(std::iter::once(&tenant_shard_id))
.await?;
let (_tid, db_generation) =
db_generations
.pop()
.ok_or(ApiError::InternalServerError(anyhow::anyhow!(
"{} shard not found",
tenant_shard_id
)))?;
if db_generation != Some(generation) {
return Ok(ShardGenerationValidity::Mismatched {
claimed: generation,
actual: db_generation,
});
}
Ok(ShardGenerationValidity::Valid)
}
/// Finalize the import of a timeline
///
/// This method should be called once all shards have reported that the import is complete.
/// Firstly, it polls the post import timeline activation endpoint exposed by the pageserver.
/// Once the timeline is active on all shards, the timeline also gets created on the
/// safekeepers. Finally, notify cplane of the import completion (whether failed or
/// successful), and remove the import from the database and in-memory.
///
/// If this method gets pre-empted by shut down, it will be called again at start-up (on-going
/// imports are stored in the database).
///
/// # Cancel-Safety
/// Not cancel safe.
/// If the caller stops polling, the import will not be removed from
/// [`ServiceState::imports_finalizing`].
#[instrument(skip_all, fields(
tenant_id=%import.tenant_id,
timeline_id=%import.timeline_id,
))]
async fn finalize_timeline_import(
self: &Arc<Self>,
import: TimelineImport,
) -> Result<(), TimelineImportFinalizeError> {
let tenant_timeline = (import.tenant_id, import.timeline_id);
let (_finalize_import_guard, cancel) = {
let mut locked = self.inner.write().unwrap();
let gate = Gate::default();
let cancel = CancellationToken::default();
let guard = gate.enter().unwrap();
locked.imports_finalizing.insert(
tenant_timeline,
FinalizingImport {
gate,
cancel: cancel.clone(),
},
);
(guard, cancel)
};
let res = tokio::select! {
res = self.finalize_timeline_import_impl(import) => {
res
},
_ = cancel.cancelled() => {
Err(TimelineImportFinalizeError::Cancelled)
}
};
let mut locked = self.inner.write().unwrap();
locked.imports_finalizing.remove(&tenant_timeline);
res
}
async fn finalize_timeline_import_impl(
self: &Arc<Self>,
import: TimelineImport,
) -> Result<(), TimelineImportFinalizeError> {
tracing::info!("Finalizing timeline import");
pausable_failpoint!("timeline-import-pre-cplane-notification");
let tenant_id = import.tenant_id;
let timeline_id = import.timeline_id;
let import_error = import.completion_error();
match import_error {
Some(err) => {
self.notify_cplane_and_delete_import(tenant_id, timeline_id, Err(err))
.await?;
tracing::warn!("Timeline import completed with shard errors");
Ok(())
}
None => match self.activate_timeline_post_import(&import).await {
Ok(timeline_info) => {
tracing::info!("Post import timeline activation complete");
if self.config.timelines_onto_safekeepers {
// Now that we know the start LSN of this timeline, create it on the
// safekeepers.
self.tenant_timeline_create_safekeepers_until_success(
import.tenant_id,
timeline_info,
)
.await?;
}
self.notify_cplane_and_delete_import(tenant_id, timeline_id, Ok(()))
.await?;
tracing::info!("Timeline import completed successfully");
Ok(())
}
Err(TimelineImportFinalizeError::ShuttingDown) => {
// We got pre-empted by shut down and will resume after the restart.
Err(TimelineImportFinalizeError::ShuttingDown)
}
Err(err) => {
// Any finalize error apart from shut down is permanent and requires us to notify
// cplane such that it can clean up.
tracing::error!("Import finalize failed with permanent error: {err}");
self.notify_cplane_and_delete_import(
tenant_id,
timeline_id,
Err(err.to_string()),
)
.await?;
Err(err)
}
},
}
}
async fn notify_cplane_and_delete_import(
self: &Arc<Self>,
tenant_id: TenantId,
timeline_id: TimelineId,
import_result: ImportResult,
) -> Result<(), TimelineImportFinalizeError> {
let import_failed = import_result.is_err();
tracing::info!(%import_failed, "Notifying cplane of import completion");
let client = UpcallClient::new(self.get_config(), self.cancel.child_token());
client
.notify_import_complete(tenant_id, timeline_id, import_result)
.await
.map_err(|_err| TimelineImportFinalizeError::ShuttingDown)?;
if let Err(err) = self
.persistence
.delete_timeline_import(tenant_id, timeline_id)
.await
{
tracing::warn!("Failed to delete timeline import entry from database: {err}");
}
self.inner
.write()
.unwrap()
.tenants
.range_mut(TenantShardId::tenant_range(tenant_id))
.for_each(|(_id, shard)| shard.importing = TimelineImportState::Idle);
Ok(())
}
/// Activate an imported timeline on all shards once the import is complete.
/// Returns the [`TimelineInfo`] reported by shard zero.
async fn activate_timeline_post_import(
self: &Arc<Self>,
import: &TimelineImport,
) -> Result<TimelineInfo, TimelineImportFinalizeError> {
const TIMELINE_ACTIVATE_TIMEOUT: Duration = Duration::from_millis(128);
let mut shards_to_activate: HashSet<ShardIndex> =
import.shard_statuses.0.keys().cloned().collect();
let mut shard_zero_timeline_info = None;
while !shards_to_activate.is_empty() {
if self.cancel.is_cancelled() {
return Err(TimelineImportFinalizeError::ShuttingDown);
}
let targets = {
let locked = self.inner.read().unwrap();
let mut targets = Vec::new();
for (tenant_shard_id, shard) in locked
.tenants
.range(TenantShardId::tenant_range(import.tenant_id))
{
if !import
.shard_statuses
.0
.contains_key(&tenant_shard_id.to_index())
{
return Err(TimelineImportFinalizeError::MismatchedShards(
tenant_shard_id.to_index(),
));
}
if let Some(node_id) = shard.intent.get_attached() {
let node = locked
.nodes
.get(node_id)
.expect("Pageservers may not be deleted while referenced");
targets.push((*tenant_shard_id, node.clone()));
}
}
targets
};
let targeted_tenant_shards: Vec<_> = targets.iter().map(|(tid, _node)| *tid).collect();
let results = self
.tenant_for_shards_api(
targets,
|tenant_shard_id, client| async move {
client
.activate_post_import(
tenant_shard_id,
import.timeline_id,
TIMELINE_ACTIVATE_TIMEOUT,
)
.await
},
1,
1,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await;
let mut failed = 0;
for (tid, result) in targeted_tenant_shards.iter().zip(results.into_iter()) {
match result {
Ok(ok) => {
if tid.is_shard_zero() {
shard_zero_timeline_info = Some(ok);
}
shards_to_activate.remove(&tid.to_index());
}
Err(_err) => {
failed += 1;
}
}
}
if failed > 0 {
tracing::info!(
"Failed to activate timeline on {failed} shards post import. Will retry"
);
}
tokio::select! {
_ = tokio::time::sleep(Duration::from_millis(250)) => {},
_ = self.cancel.cancelled() => {
return Err(TimelineImportFinalizeError::ShuttingDown);
}
}
}
Ok(shard_zero_timeline_info.expect("All shards replied"))
}
async fn finalize_timeline_imports(self: &Arc<Self>, imports: Vec<TimelineImport>) {
futures::future::join_all(
imports
.into_iter()
.map(|import| self.finalize_timeline_import(import)),
)
.await;
}
/// Delete a timeline import if it exists
///
/// Firstly, delete the entry from the database. Any updates
/// from pageservers after the update will fail with a 404, so the
/// import cannot progress into finalizing state if it's not there already.
/// Secondly, cancel the finalization if one is in progress.
pub(crate) async fn maybe_delete_timeline_import(
self: &Arc<Self>,
tenant_id: TenantId,
timeline_id: TimelineId,
) -> Result<(), DatabaseError> {
let tenant_has_ongoing_import = {
let locked = self.inner.read().unwrap();
locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.any(|(_tid, shard)| shard.importing == TimelineImportState::Importing)
};
if !tenant_has_ongoing_import {
return Ok(());
}
self.persistence
.delete_timeline_import(tenant_id, timeline_id)
.await?;
let maybe_finalizing = {
let mut locked = self.inner.write().unwrap();
locked.imports_finalizing.remove(&(tenant_id, timeline_id))
};
if let Some(finalizing) = maybe_finalizing {
finalizing.cancel.cancel();
finalizing.gate.close().await;
}
Ok(())
}
pub(crate) async fn tenant_timeline_archival_config(
&self,
tenant_id: TenantId,
timeline_id: TimelineId,
req: TimelineArchivalConfigRequest,
) -> Result<(), ApiError> {
tracing::info!(
"Setting archival config of timeline {tenant_id}/{timeline_id} to '{:?}'",
req.state
);
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::TimelineArchivalConfig,
)
.await;
self.tenant_remote_mutation(tenant_id, move |targets| async move {
if targets.0.is_empty() {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant not found").into(),
));
}
async fn config_one(
tenant_shard_id: TenantShardId,
timeline_id: TimelineId,
node: Node,
http_client: reqwest::Client,
jwt: Option<String>,
req: TimelineArchivalConfigRequest,
) -> Result<(), ApiError> {
tracing::info!(
"Setting archival config of timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
);
let client = PageserverClient::new(node.get_id(), http_client, node.base_url(), jwt.as_deref());
client
.timeline_archival_config(tenant_shard_id, timeline_id, &req)
.await
.map_err(|e| match e {
mgmt_api::Error::ApiError(StatusCode::PRECONDITION_FAILED, msg) => {
ApiError::PreconditionFailed(msg.into_boxed_str())
}
_ => passthrough_api_error(&node, e),
})
}
// no shard needs to go first/last; the operation should be idempotent
// TODO: it would be great to ensure that all shards return the same error
let locations = targets.0.iter().map(|t| (*t.0, t.1.latest.node.clone())).collect();
let results = self
.tenant_for_shards(locations, |tenant_shard_id, node| {
futures::FutureExt::boxed(config_one(
tenant_shard_id,
timeline_id,
node,
self.http_client.clone(),
self.config.pageserver_jwt_token.clone(),
req.clone(),
))
})
.await?;
assert!(!results.is_empty(), "must have at least one result");
Ok(())
}).await?
}
pub(crate) async fn tenant_timeline_detach_ancestor(
&self,
tenant_id: TenantId,
timeline_id: TimelineId,
behavior: Option<DetachBehavior>,
) -> Result<models::detach_ancestor::AncestorDetached, ApiError> {
tracing::info!("Detaching timeline {tenant_id}/{timeline_id}",);
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::TimelineDetachAncestor,
)
.await;
self.tenant_remote_mutation(tenant_id, move |targets| async move {
if targets.0.is_empty() {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant not found").into(),
));
}
async fn detach_one(
tenant_shard_id: TenantShardId,
timeline_id: TimelineId,
node: Node,
http_client: reqwest::Client,
jwt: Option<String>,
behavior: Option<DetachBehavior>,
) -> Result<(ShardNumber, models::detach_ancestor::AncestorDetached), ApiError> {
tracing::info!(
"Detaching timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
);
let client = PageserverClient::new(node.get_id(), http_client, node.base_url(), jwt.as_deref());
client
.timeline_detach_ancestor(tenant_shard_id, timeline_id, behavior)
.await
.map_err(|e| {
use mgmt_api::Error;
match e {
// no ancestor (ever)
Error::ApiError(StatusCode::CONFLICT, msg) => ApiError::Conflict(format!(
"{node}: {}",
msg.strip_prefix("Conflict: ").unwrap_or(&msg)
)),
// too many ancestors
Error::ApiError(StatusCode::BAD_REQUEST, msg) => {
ApiError::BadRequest(anyhow::anyhow!("{node}: {msg}"))
}
Error::ApiError(StatusCode::INTERNAL_SERVER_ERROR, msg) => {
// avoid turning these into conflicts to remain compatible with
// pageservers, 500 errors are sadly retryable with timeline ancestor
// detach
ApiError::InternalServerError(anyhow::anyhow!("{node}: {msg}"))
}
// rest can be mapped as usual
other => passthrough_api_error(&node, other),
}
})
.map(|res| (tenant_shard_id.shard_number, res))
}
// no shard needs to go first/last; the operation should be idempotent
let locations = targets.0.iter().map(|t| (*t.0, t.1.latest.node.clone())).collect();
let mut results = self
.tenant_for_shards(locations, |tenant_shard_id, node| {
futures::FutureExt::boxed(detach_one(
tenant_shard_id,
timeline_id,
node,
self.http_client.clone(),
self.config.pageserver_jwt_token.clone(),
behavior,
))
})
.await?;
let any = results.pop().expect("we must have at least one response");
let mismatching = results
.iter()
.filter(|(_, res)| res != &any.1)
.collect::<Vec<_>>();
if !mismatching.is_empty() {
// this can be hit by races which should not happen because operation lock on cplane
let matching = results.len() - mismatching.len();
tracing::error!(
matching,
compared_against=?any,
?mismatching,
"shards returned different results"
);
return Err(ApiError::InternalServerError(anyhow::anyhow!("pageservers returned mixed results for ancestor detach; manual intervention is required.")));
}
Ok(any.1)
}).await?
}
pub(crate) async fn tenant_timeline_block_unblock_gc(
&self,
tenant_id: TenantId,
timeline_id: TimelineId,
dir: BlockUnblock,
) -> Result<(), ApiError> {
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::TimelineGcBlockUnblock,
)
.await;
self.tenant_remote_mutation(tenant_id, move |targets| async move {
if targets.0.is_empty() {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant not found").into(),
));
}
async fn do_one(
tenant_shard_id: TenantShardId,
timeline_id: TimelineId,
node: Node,
http_client: reqwest::Client,
jwt: Option<String>,
dir: BlockUnblock,
) -> Result<(), ApiError> {
let client = PageserverClient::new(
node.get_id(),
http_client,
node.base_url(),
jwt.as_deref(),
);
client
.timeline_block_unblock_gc(tenant_shard_id, timeline_id, dir)
.await
.map_err(|e| passthrough_api_error(&node, e))
}
// no shard needs to go first/last; the operation should be idempotent
let locations = targets
.0
.iter()
.map(|t| (*t.0, t.1.latest.node.clone()))
.collect();
self.tenant_for_shards(locations, |tenant_shard_id, node| {
futures::FutureExt::boxed(do_one(
tenant_shard_id,
timeline_id,
node,
self.http_client.clone(),
self.config.pageserver_jwt_token.clone(),
dir,
))
})
.await
})
.await??;
Ok(())
}
pub(crate) async fn tenant_timeline_lsn_lease(
&self,
tenant_id: TenantId,
timeline_id: TimelineId,
lsn: Lsn,
) -> Result<LsnLease, ApiError> {
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::TimelineLsnLease,
)
.await;
let targets = {
let locked = self.inner.read().unwrap();
let mut targets = Vec::new();
// If the request got an unsharded tenant id, then apply
// the operation to all shards. Otherwise, apply it to a specific shard.
let shards_range = TenantShardId::tenant_range(tenant_id);
for (tenant_shard_id, shard) in locked.tenants.range(shards_range) {
if let Some(node_id) = shard.intent.get_attached() {
let node = locked
.nodes
.get(node_id)
.expect("Pageservers may not be deleted while referenced");
targets.push((*tenant_shard_id, node.clone()));
}
}
targets
};
let res = self
.tenant_for_shards_api(
targets,
|tenant_shard_id, client| async move {
client
.timeline_lease_lsn(tenant_shard_id, timeline_id, lsn)
.await
},
1,
1,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await;
let mut valid_until = None;
for r in res {
match r {
Ok(lease) => {
if let Some(ref mut valid_until) = valid_until {
*valid_until = std::cmp::min(*valid_until, lease.valid_until);
} else {
valid_until = Some(lease.valid_until);
}
}
Err(e) => {
return Err(ApiError::InternalServerError(anyhow::anyhow!(e)));
}
}
}
Ok(LsnLease {
valid_until: valid_until.unwrap_or_else(SystemTime::now),
})
}
pub(crate) async fn tenant_timeline_download_heatmap_layers(
&self,
tenant_shard_id: TenantShardId,
timeline_id: TimelineId,
concurrency: Option<usize>,
recurse: bool,
) -> Result<(), ApiError> {
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_shard_id.tenant_id,
TenantOperations::DownloadHeatmapLayers,
)
.await;
let targets = {
let locked = self.inner.read().unwrap();
let mut targets = Vec::new();
// If the request got an unsharded tenant id, then apply
// the operation to all shards. Otherwise, apply it to a specific shard.
let shards_range = if tenant_shard_id.is_unsharded() {
TenantShardId::tenant_range(tenant_shard_id.tenant_id)
} else {
tenant_shard_id.range()
};
for (tenant_shard_id, shard) in locked.tenants.range(shards_range) {
if let Some(node_id) = shard.intent.get_attached() {
let node = locked
.nodes
.get(node_id)
.expect("Pageservers may not be deleted while referenced");
targets.push((*tenant_shard_id, node.clone()));
}
}
targets
};
self.tenant_for_shards_api(
targets,
|tenant_shard_id, client| async move {
client
.timeline_download_heatmap_layers(
tenant_shard_id,
timeline_id,
concurrency,
recurse,
)
.await
},
1,
1,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await;
Ok(())
}
/// Helper for concurrently calling a pageserver API on a number of shards, such as timeline creation.
///
/// On success, the returned vector contains exactly the same number of elements as the input `locations`
/// and returned element at index `i` is the result for `req_fn(op(locations[i])`.
async fn tenant_for_shards<F, R>(
&self,
locations: Vec<(TenantShardId, Node)>,
mut req_fn: F,
) -> Result<Vec<R>, ApiError>
where
F: FnMut(
TenantShardId,
Node,
)
-> std::pin::Pin<Box<dyn futures::Future<Output = Result<R, ApiError>> + Send>>,
{
let mut futs = FuturesUnordered::new();
let mut results = Vec::with_capacity(locations.len());
for (idx, (tenant_shard_id, node)) in locations.into_iter().enumerate() {
let fut = req_fn(tenant_shard_id, node);
futs.push(async move { (idx, fut.await) });
}
while let Some((idx, r)) = futs.next().await {
results.push((idx, r?));
}
results.sort_by_key(|(idx, _)| *idx);
Ok(results.into_iter().map(|(_, r)| r).collect())
}
/// Concurrently invoke a pageserver API call on many shards at once.
///
/// The returned Vec has the same length as the `locations` Vec,
/// and returned element at index `i` is the result for `op(locations[i])`.
pub(crate) async fn tenant_for_shards_api<T, O, F>(
&self,
locations: Vec<(TenantShardId, Node)>,
op: O,
warn_threshold: u32,
max_retries: u32,
timeout: Duration,
cancel: &CancellationToken,
) -> Vec<mgmt_api::Result<T>>
where
O: Fn(TenantShardId, PageserverClient) -> F + Copy,
F: std::future::Future<Output = mgmt_api::Result<T>>,
{
let mut futs = FuturesUnordered::new();
let mut results = Vec::with_capacity(locations.len());
for (idx, (tenant_shard_id, node)) in locations.into_iter().enumerate() {
futs.push(async move {
let r = node
.with_client_retries(
|client| op(tenant_shard_id, client),
&self.http_client,
&self.config.pageserver_jwt_token,
warn_threshold,
max_retries,
timeout,
cancel,
)
.await;
(idx, r)
});
}
while let Some((idx, r)) = futs.next().await {
results.push((idx, r.unwrap_or(Err(mgmt_api::Error::Cancelled))));
}
results.sort_by_key(|(idx, _)| *idx);
results.into_iter().map(|(_, r)| r).collect()
}
/// Helper for safely working with the shards in a tenant remotely on pageservers, for example
/// when creating and deleting timelines:
/// - Makes sure shards are attached somewhere if they weren't already
/// - Looks up the shards and the nodes where they were most recently attached
/// - Guarantees that after the inner function returns, the shards' generations haven't moved on: this
/// ensures that the remote operation acted on the most recent generation, and is therefore durable.
async fn tenant_remote_mutation<R, O, F>(
&self,
tenant_id: TenantId,
op: O,
) -> Result<R, ApiError>
where
O: FnOnce(TenantMutationLocations) -> F,
F: std::future::Future<Output = R>,
{
let mutation_locations = {
let mut locations = TenantMutationLocations::default();
// Load the currently attached pageservers for the latest generation of each shard. This can
// run concurrently with reconciliations, and it is not guaranteed that the node we find here
// will still be the latest when we're done: we will check generations again at the end of
// this function to handle that.
let generations = self.persistence.tenant_generations(tenant_id).await?;
if generations
.iter()
.any(|i| i.generation.is_none() || i.generation_pageserver.is_none())
{
let shard_generations = generations
.into_iter()
.map(|i| (i.tenant_shard_id, (i.generation, i.generation_pageserver)))
.collect::<HashMap<_, _>>();
// One or more shards has not been attached to a pageserver. Check if this is because it's configured
// to be detached (409: caller should give up), or because it's meant to be attached but isn't yet (503: caller should retry)
let locked = self.inner.read().unwrap();
for (shard_id, shard) in
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
{
match shard.policy {
PlacementPolicy::Attached(_) => {
// This shard is meant to be attached: the caller is not wrong to try and
// use this function, but we can't service the request right now.
let Some(generation) = shard_generations.get(shard_id) else {
// This can only happen if there is a split brain controller modifying the database. This should
// never happen when testing, and if it happens in production we can only log the issue.
debug_assert!(false);
tracing::error!(
"Shard {shard_id} not found in generation state! Is another rogue controller running?"
);
continue;
};
let (generation, generation_pageserver) = generation;
if let Some(generation) = generation {
if generation_pageserver.is_none() {
// This is legitimate only in a very narrow window where the shard was only just configured into
// Attached mode after being created in Secondary or Detached mode, and it has had its generation
// set but not yet had a Reconciler run (reconciler is the only thing that sets generation_pageserver).
tracing::warn!(
"Shard {shard_id} generation is set ({generation:?}) but generation_pageserver is None, reconciler not run yet?"
);
}
} else {
// This should never happen: a shard with no generation is only permitted when it was created in some state
// other than PlacementPolicy::Attached (and generation is always written to DB before setting Attached in memory)
debug_assert!(false);
tracing::error!(
"Shard {shard_id} generation is None, but it is in PlacementPolicy::Attached mode!"
);
continue;
}
}
PlacementPolicy::Secondary | PlacementPolicy::Detached => {
return Err(ApiError::Conflict(format!(
"Shard {shard_id} tenant has policy {:?}",
shard.policy
)));
}
}
}
return Err(ApiError::ResourceUnavailable(
"One or more shards in tenant is not yet attached".into(),
));
}
let locked = self.inner.read().unwrap();
for ShardGenerationState {
tenant_shard_id,
generation,
generation_pageserver,
} in generations
{
let node_id = generation_pageserver.expect("We checked for None above");
let node = locked
.nodes
.get(&node_id)
.ok_or(ApiError::Conflict(format!(
"Raced with removal of node {node_id}"
)))?;
let generation = generation.expect("Checked above");
let tenant = locked.tenants.get(&tenant_shard_id);
// TODO(vlad): Abstract the logic that finds stale attached locations
// from observed state into a [`Service`] method.
let other_locations = match tenant {
Some(tenant) => {
let mut other = tenant.attached_locations();
let latest_location_index =
other.iter().position(|&l| l == (node.get_id(), generation));
if let Some(idx) = latest_location_index {
other.remove(idx);
}
other
}
None => Vec::default(),
};
let location = ShardMutationLocations {
latest: MutationLocation {
node: node.clone(),
generation,
},
other: other_locations
.into_iter()
.filter_map(|(node_id, generation)| {
let node = locked.nodes.get(&node_id)?;
Some(MutationLocation {
node: node.clone(),
generation,
})
})
.collect(),
};
locations.0.insert(tenant_shard_id, location);
}
locations
};
let result = op(mutation_locations.clone()).await;
// Post-check: are all the generations of all the shards the same as they were initially? This proves that
// our remote operation executed on the latest generation and is therefore persistent.
{
let latest_generations = self.persistence.tenant_generations(tenant_id).await?;
if latest_generations
.into_iter()
.map(
|ShardGenerationState {
tenant_shard_id,
generation,
generation_pageserver: _,
}| (tenant_shard_id, generation),
)
.collect::<Vec<_>>()
!= mutation_locations
.0
.into_iter()
.map(|i| (i.0, Some(i.1.latest.generation)))
.collect::<Vec<_>>()
{
// We raced with something that incremented the generation, and therefore cannot be
// confident that our actions are persistent (they might have hit an old generation).
//
// This is safe but requires a retry: ask the client to do that by giving them a 503 response.
return Err(ApiError::ResourceUnavailable(
"Tenant attachment changed, please retry".into(),
));
}
}
Ok(result)
}
pub(crate) async fn tenant_timeline_delete(
self: &Arc<Self>,
tenant_id: TenantId,
timeline_id: TimelineId,
) -> Result<StatusCode, ApiError> {
tracing::info!("Deleting timeline {}/{}", tenant_id, timeline_id,);
let _tenant_lock = trace_shared_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::TimelineDelete,
)
.await;
let status_code = self.tenant_remote_mutation(tenant_id, move |mut targets| async move {
if targets.0.is_empty() {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant not found").into(),
));
}
let (shard_zero_tid, shard_zero_locations) = targets.0.pop_first().expect("Must have at least one shard");
assert!(shard_zero_tid.is_shard_zero());
async fn delete_one(
tenant_shard_id: TenantShardId,
timeline_id: TimelineId,
node: Node,
http_client: reqwest::Client,
jwt: Option<String>,
) -> Result<StatusCode, ApiError> {
tracing::info!(
"Deleting timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
);
let client = PageserverClient::new(node.get_id(), http_client, node.base_url(), jwt.as_deref());
let res = client
.timeline_delete(tenant_shard_id, timeline_id)
.await;
match res {
Ok(ok) => Ok(ok),
Err(mgmt_api::Error::ApiError(StatusCode::CONFLICT, _)) => Ok(StatusCode::CONFLICT),
Err(mgmt_api::Error::ApiError(StatusCode::SERVICE_UNAVAILABLE, msg)) => Err(ApiError::ResourceUnavailable(msg.into())),
Err(e) => {
Err(
ApiError::InternalServerError(anyhow::anyhow!(
"Error deleting timeline {timeline_id} on {tenant_shard_id} on node {node}: {e}",
))
)
}
}
}
let locations = targets.0.iter().map(|t| (*t.0, t.1.latest.node.clone())).collect();
let statuses = self
.tenant_for_shards(locations, |tenant_shard_id: TenantShardId, node: Node| {
Box::pin(delete_one(
tenant_shard_id,
timeline_id,
node,
self.http_client.clone(),
self.config.pageserver_jwt_token.clone(),
))
})
.await?;
// If any shards >0 haven't finished deletion yet, don't start deletion on shard zero.
// We return 409 (Conflict) if deletion was already in progress on any of the shards
// and 202 (Accepted) if deletion was not already in progress on any of the shards.
if statuses.iter().any(|s| s == &StatusCode::CONFLICT) {
return Ok(StatusCode::CONFLICT);
}
if statuses.iter().any(|s| s != &StatusCode::NOT_FOUND) {
return Ok(StatusCode::ACCEPTED);
}
// Delete shard zero last: this is not strictly necessary, but since a caller's GET on a timeline will be routed
// to shard zero, it gives a more obvious behavior that a GET returns 404 once the deletion is done.
let shard_zero_status = delete_one(
shard_zero_tid,
timeline_id,
shard_zero_locations.latest.node,
self.http_client.clone(),
self.config.pageserver_jwt_token.clone(),
)
.await?;
Ok(shard_zero_status)
}).await?;
self.tenant_timeline_delete_safekeepers(tenant_id, timeline_id)
.await?;
status_code
}
/// When you know the TenantId but not a specific shard, and would like to get the node holding shard 0.
pub(crate) async fn tenant_shard0_node(
&self,
tenant_id: TenantId,
) -> Result<(Node, TenantShardId), ApiError> {
let tenant_shard_id = {
let locked = self.inner.read().unwrap();
let Some((tenant_shard_id, _shard)) = locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.next()
else {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant {tenant_id} not found").into(),
));
};
*tenant_shard_id
};
self.tenant_shard_node(tenant_shard_id)
.await
.map(|node| (node, tenant_shard_id))
}
/// When you need to send an HTTP request to the pageserver that holds a shard of a tenant, this
/// function looks up and returns node. If the shard isn't found, returns Err(ApiError::NotFound)
pub(crate) async fn tenant_shard_node(
&self,
tenant_shard_id: TenantShardId,
) -> Result<Node, ApiError> {
// Look up in-memory state and maybe use the node from there.
{
let locked = self.inner.read().unwrap();
let Some(shard) = locked.tenants.get(&tenant_shard_id) else {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant shard {tenant_shard_id} not found").into(),
));
};
let Some(intent_node_id) = shard.intent.get_attached() else {
tracing::warn!(
tenant_id=%tenant_shard_id.tenant_id, shard_id=%tenant_shard_id.shard_slug(),
"Shard not scheduled (policy {:?}), cannot generate pass-through URL",
shard.policy
);
return Err(ApiError::Conflict(
"Cannot call timeline API on non-attached tenant".to_string(),
));
};
if shard.reconciler.is_none() {
// Optimization: while no reconcile is in flight, we may trust our in-memory state
// to tell us which pageserver to use. Otherwise we will fall through and hit the database
let Some(node) = locked.nodes.get(intent_node_id) else {
// This should never happen
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Shard refers to nonexistent node"
)));
};
return Ok(node.clone());
}
};
// Look up the latest attached pageserver location from the database
// generation state: this will reflect the progress of any ongoing migration.
// Note that it is not guaranteed to _stay_ here, our caller must still handle
// the case where they call through to the pageserver and get a 404.
let db_result = self
.persistence
.tenant_generations(tenant_shard_id.tenant_id)
.await?;
let Some(ShardGenerationState {
tenant_shard_id: _,
generation: _,
generation_pageserver: Some(node_id),
}) = db_result
.into_iter()
.find(|s| s.tenant_shard_id == tenant_shard_id)
else {
// This can happen if we raced with a tenant deletion or a shard split. On a retry
// the caller will either succeed (shard split case), get a proper 404 (deletion case),
// or a conflict response (case where tenant was detached in background)
return Err(ApiError::ResourceUnavailable(
format!("Shard {tenant_shard_id} not found in database, or is not attached").into(),
));
};
let locked = self.inner.read().unwrap();
let Some(node) = locked.nodes.get(&node_id) else {
// This should never happen
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Shard refers to nonexistent node"
)));
};
Ok(node.clone())
}
pub(crate) fn tenant_locate(
&self,
tenant_id: TenantId,
) -> Result<TenantLocateResponse, ApiError> {
let locked = self.inner.read().unwrap();
tracing::info!("Locating shards for tenant {tenant_id}");
let mut result = Vec::new();
let mut shard_params: Option<ShardParameters> = None;
for (tenant_shard_id, shard) in locked.tenants.range(TenantShardId::tenant_range(tenant_id))
{
let node_id =
shard
.intent
.get_attached()
.ok_or(ApiError::BadRequest(anyhow::anyhow!(
"Cannot locate a tenant that is not attached"
)))?;
let node = locked
.nodes
.get(&node_id)
.expect("Pageservers may not be deleted while referenced");
result.push(node.shard_location(*tenant_shard_id));
match &shard_params {
None => {
shard_params = Some(ShardParameters {
stripe_size: shard.shard.stripe_size,
count: shard.shard.count,
});
}
Some(params) => {
if params.stripe_size != shard.shard.stripe_size {
// This should never happen. We enforce at runtime because it's simpler than
// adding an extra per-tenant data structure to store the things that should be the same
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Inconsistent shard stripe size parameters!"
)));
}
}
}
}
if result.is_empty() {
return Err(ApiError::NotFound(
anyhow::anyhow!("No shards for this tenant ID found").into(),
));
}
let shard_params = shard_params.expect("result is non-empty, therefore this is set");
tracing::info!(
"Located tenant {} with params {:?} on shards {}",
tenant_id,
shard_params,
result
.iter()
.map(|s| format!("{s:?}"))
.collect::<Vec<_>>()
.join(",")
);
Ok(TenantLocateResponse {
shards: result,
shard_params,
})
}
/// Returns None if the input iterator of shards does not include a shard with number=0
fn tenant_describe_impl<'a>(
&self,
shards: impl Iterator<Item = &'a TenantShard>,
) -> Option<TenantDescribeResponse> {
let mut shard_zero = None;
let mut describe_shards = Vec::new();
for shard in shards {
if shard.tenant_shard_id.is_shard_zero() {
shard_zero = Some(shard);
}
describe_shards.push(TenantDescribeResponseShard {
tenant_shard_id: shard.tenant_shard_id,
node_attached: *shard.intent.get_attached(),
node_secondary: shard.intent.get_secondary().to_vec(),
last_error: shard
.last_error
.lock()
.unwrap()
.as_ref()
.map(|e| format!("{e}"))
.unwrap_or("".to_string())
.clone(),
is_reconciling: shard.reconciler.is_some(),
is_pending_compute_notification: shard.pending_compute_notification,
is_splitting: matches!(shard.splitting, SplitState::Splitting),
is_importing: shard.importing == TimelineImportState::Importing,
scheduling_policy: shard.get_scheduling_policy(),
preferred_az_id: shard.preferred_az().map(ToString::to_string),
})
}
let shard_zero = shard_zero?;
Some(TenantDescribeResponse {
tenant_id: shard_zero.tenant_shard_id.tenant_id,
shards: describe_shards,
stripe_size: shard_zero.shard.stripe_size,
policy: shard_zero.policy.clone(),
config: shard_zero.config.clone(),
})
}
pub(crate) fn tenant_describe(
&self,
tenant_id: TenantId,
) -> Result<TenantDescribeResponse, ApiError> {
let locked = self.inner.read().unwrap();
self.tenant_describe_impl(
locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.map(|(_k, v)| v),
)
.ok_or_else(|| ApiError::NotFound(anyhow::anyhow!("Tenant {tenant_id} not found").into()))
}
/// limit & offset are pagination parameters. Since we are walking an in-memory HashMap, `offset` does not
/// avoid traversing data, it just avoid returning it. This is suitable for our purposes, since our in memory
/// maps are small enough to traverse fast, our pagination is just to avoid serializing huge JSON responses
/// in our external API.
pub(crate) fn tenant_list(
&self,
limit: Option<usize>,
start_after: Option<TenantId>,
) -> Vec<TenantDescribeResponse> {
let locked = self.inner.read().unwrap();
// Apply start_from parameter
let shard_range = match start_after {
None => locked.tenants.range(..),
Some(tenant_id) => locked.tenants.range(
TenantShardId {
tenant_id,
shard_number: ShardNumber(u8::MAX),
shard_count: ShardCount(u8::MAX),
}..,
),
};
let mut result = Vec::new();
for (_tenant_id, tenant_shards) in &shard_range.group_by(|(id, _shard)| id.tenant_id) {
result.push(
self.tenant_describe_impl(tenant_shards.map(|(_k, v)| v))
.expect("Groups are always non-empty"),
);
// Enforce `limit` parameter
if let Some(limit) = limit {
if result.len() >= limit {
break;
}
}
}
result
}
#[instrument(skip_all, fields(tenant_id=%op.tenant_id))]
async fn abort_tenant_shard_split(
&self,
op: &TenantShardSplitAbort,
) -> Result<(), TenantShardSplitAbortError> {
// Cleaning up a split:
// - Parent shards are not destroyed during a split, just detached.
// - Failed pageserver split API calls can leave the remote node with just the parent attached,
// just the children attached, or both.
//
// Therefore our work to do is to:
// 1. Clean up storage controller's internal state to just refer to parents, no children
// 2. Call out to pageservers to ensure that children are detached
// 3. Call out to pageservers to ensure that parents are attached.
//
// Crash safety:
// - If the storage controller stops running during this cleanup *after* clearing the splitting state
// from our database, then [`Self::startup_reconcile`] will regard child attachments as garbage
// and detach them.
// - TODO: If the storage controller stops running during this cleanup *before* clearing the splitting state
// from our database, then we will re-enter this cleanup routine on startup.
let TenantShardSplitAbort {
tenant_id,
new_shard_count,
new_stripe_size,
..
} = op;
// First abort persistent state, if any exists.
match self
.persistence
.abort_shard_split(*tenant_id, *new_shard_count)
.await?
{
AbortShardSplitStatus::Aborted => {
// Proceed to roll back any child shards created on pageservers
}
AbortShardSplitStatus::Complete => {
// The split completed (we might hit that path if e.g. our database transaction
// to write the completion landed in the database, but we dropped connection
// before seeing the result).
//
// We must update in-memory state to reflect the successful split.
self.tenant_shard_split_commit_inmem(
*tenant_id,
*new_shard_count,
*new_stripe_size,
);
return Ok(());
}
}
// Clean up in-memory state, and accumulate the list of child locations that need detaching
let detach_locations: Vec<(Node, TenantShardId)> = {
let mut detach_locations = Vec::new();
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
for (tenant_shard_id, shard) in
tenants.range_mut(TenantShardId::tenant_range(op.tenant_id))
{
if shard.shard.count == op.new_shard_count {
// Surprising: the phase of [`Self::do_tenant_shard_split`] which inserts child shards in-memory
// is infallible, so if we got an error we shouldn't have got that far.
tracing::warn!(
"During split abort, child shard {tenant_shard_id} found in-memory"
);
continue;
}
// Add the children of this shard to this list of things to detach
if let Some(node_id) = shard.intent.get_attached() {
for child_id in tenant_shard_id.split(*new_shard_count) {
detach_locations.push((
nodes
.get(node_id)
.expect("Intent references nonexistent node")
.clone(),
child_id,
));
}
} else {
tracing::warn!(
"During split abort, shard {tenant_shard_id} has no attached location"
);
}
tracing::info!("Restoring parent shard {tenant_shard_id}");
// Drop any intents that refer to unavailable nodes, to enable this abort to proceed even
// if the original attachment location is offline.
if let Some(node_id) = shard.intent.get_attached() {
if !nodes.get(node_id).unwrap().is_available() {
tracing::info!(
"Demoting attached intent for {tenant_shard_id} on unavailable node {node_id}"
);
shard.intent.demote_attached(scheduler, *node_id);
}
}
for node_id in shard.intent.get_secondary().clone() {
if !nodes.get(&node_id).unwrap().is_available() {
tracing::info!(
"Dropping secondary intent for {tenant_shard_id} on unavailable node {node_id}"
);
shard.intent.remove_secondary(scheduler, node_id);
}
}
shard.splitting = SplitState::Idle;
if let Err(e) = shard.schedule(scheduler, &mut ScheduleContext::default()) {
// If this shard can't be scheduled now (perhaps due to offline nodes or
// capacity issues), that must not prevent us rolling back a split. In this
// case it should be eventually scheduled in the background.
tracing::warn!("Failed to schedule {tenant_shard_id} during shard abort: {e}")
}
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High);
}
// We don't expect any new_shard_count shards to exist here, but drop them just in case
tenants
.retain(|id, s| !(id.tenant_id == *tenant_id && s.shard.count == *new_shard_count));
detach_locations
};
for (node, child_id) in detach_locations {
if !node.is_available() {
// An unavailable node cannot be cleaned up now: to avoid blocking forever, we will permit this, and
// rely on the reconciliation that happens when a node transitions to Active to clean up. Since we have
// removed child shards from our in-memory state and database, the reconciliation will implicitly remove
// them from the node.
tracing::warn!(
"Node {node} unavailable, can't clean up during split abort. It will be cleaned up when it is reactivated."
);
continue;
}
// Detach the remote child. If the pageserver split API call is still in progress, this call will get
// a 503 and retry, up to our limit.
tracing::info!("Detaching {child_id} on {node}...");
match node
.with_client_retries(
|client| async move {
let config = LocationConfig {
mode: LocationConfigMode::Detached,
generation: None,
secondary_conf: None,
shard_number: child_id.shard_number.0,
shard_count: child_id.shard_count.literal(),
// Stripe size and tenant config don't matter when detaching
shard_stripe_size: 0,
tenant_conf: TenantConfig::default(),
};
client.location_config(child_id, config, None, false).await
},
&self.http_client,
&self.config.pageserver_jwt_token,
1,
10,
Duration::from_secs(5),
&self.reconcilers_cancel,
)
.await
{
Some(Ok(_)) => {}
Some(Err(e)) => {
// We failed to communicate with the remote node. This is problematic: we may be
// leaving it with a rogue child shard.
tracing::warn!(
"Failed to detach child {child_id} from node {node} during abort"
);
return Err(e.into());
}
None => {
// Cancellation: we were shutdown or the node went offline. Shutdown is fine, we'll
// clean up on restart. The node going offline requires a retry.
return Err(TenantShardSplitAbortError::Unavailable);
}
};
}
tracing::info!("Successfully aborted split");
Ok(())
}
/// Infallible final stage of [`Self::tenant_shard_split`]: update the contents
/// of the tenant map to reflect the child shards that exist after the split.
fn tenant_shard_split_commit_inmem(
&self,
tenant_id: TenantId,
new_shard_count: ShardCount,
new_stripe_size: Option<ShardStripeSize>,
) -> (
TenantShardSplitResponse,
Vec<(TenantShardId, NodeId, ShardStripeSize)>,
Vec<ReconcilerWaiter>,
) {
let mut response = TenantShardSplitResponse {
new_shards: Vec::new(),
};
let mut child_locations = Vec::new();
let mut waiters = Vec::new();
{
let mut locked = self.inner.write().unwrap();
let parent_ids = locked
.tenants
.range(TenantShardId::tenant_range(tenant_id))
.map(|(shard_id, _)| *shard_id)
.collect::<Vec<_>>();
let (nodes, tenants, scheduler) = locked.parts_mut();
for parent_id in parent_ids {
let child_ids = parent_id.split(new_shard_count);
let (
pageserver,
generation,
policy,
parent_ident,
config,
preferred_az,
secondary_count,
) = {
let mut old_state = tenants
.remove(&parent_id)
.expect("It was present, we just split it");
// A non-splitting state is impossible, because [`Self::tenant_shard_split`] holds
// a TenantId lock and passes it through to [`TenantShardSplitAbort`] in case of cleanup:
// nothing else can clear this.
assert!(matches!(old_state.splitting, SplitState::Splitting));
let old_attached = old_state.intent.get_attached().unwrap();
old_state.intent.clear(scheduler);
let generation = old_state.generation.expect("Shard must have been attached");
(
old_attached,
generation,
old_state.policy.clone(),
old_state.shard,
old_state.config.clone(),
old_state.preferred_az().cloned(),
old_state.intent.get_secondary().len(),
)
};
let mut schedule_context = ScheduleContext::default();
for child in child_ids {
let mut child_shard = parent_ident;
child_shard.number = child.shard_number;
child_shard.count = child.shard_count;
if let Some(stripe_size) = new_stripe_size {
child_shard.stripe_size = stripe_size;
}
let mut child_observed: HashMap<NodeId, ObservedStateLocation> = HashMap::new();
child_observed.insert(
pageserver,
ObservedStateLocation {
conf: Some(attached_location_conf(
generation,
&child_shard,
&config,
&policy,
secondary_count,
)),
},
);
let mut child_state =
TenantShard::new(child, child_shard, policy.clone(), preferred_az.clone());
child_state.intent =
IntentState::single(scheduler, Some(pageserver), preferred_az.clone());
child_state.observed = ObservedState {
locations: child_observed,
};
child_state.generation = Some(generation);
child_state.config = config.clone();
// The child's TenantShard::splitting is intentionally left at the default value of Idle,
// as at this point in the split process we have succeeded and this part is infallible:
// we will never need to do any special recovery from this state.
child_locations.push((child, pageserver, child_shard.stripe_size));
if let Err(e) = child_state.schedule(scheduler, &mut schedule_context) {
// This is not fatal, because we've implicitly already got an attached
// location for the child shard. Failure here just means we couldn't
// find a secondary (e.g. because cluster is overloaded).
tracing::warn!("Failed to schedule child shard {child}: {e}");
}
// In the background, attach secondary locations for the new shards
if let Some(waiter) = self.maybe_reconcile_shard(
&mut child_state,
nodes,
ReconcilerPriority::High,
) {
waiters.push(waiter);
}
tenants.insert(child, child_state);
response.new_shards.push(child);
}
}
(response, child_locations, waiters)
}
}
async fn tenant_shard_split_start_secondaries(
&self,
tenant_id: TenantId,
waiters: Vec<ReconcilerWaiter>,
) {
// Wait for initial reconcile of child shards, this creates the secondary locations
if let Err(e) = self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
// This is not a failure to split: it's some issue reconciling the new child shards, perhaps
// their secondaries couldn't be attached.
tracing::warn!("Failed to reconcile after split: {e}");
return;
}
// Take the state lock to discover the attached & secondary intents for all shards
let (attached, secondary) = {
let locked = self.inner.read().unwrap();
let mut attached = Vec::new();
let mut secondary = Vec::new();
for (tenant_shard_id, shard) in
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
{
let Some(node_id) = shard.intent.get_attached() else {
// Unexpected. Race with a PlacementPolicy change?
tracing::warn!(
"No attached node on {tenant_shard_id} immediately after shard split!"
);
continue;
};
let Some(secondary_node_id) = shard.intent.get_secondary().first() else {
// No secondary location. Nothing for us to do.
continue;
};
let attached_node = locked
.nodes
.get(node_id)
.expect("Pageservers may not be deleted while referenced");
let secondary_node = locked
.nodes
.get(secondary_node_id)
.expect("Pageservers may not be deleted while referenced");
attached.push((*tenant_shard_id, attached_node.clone()));
secondary.push((*tenant_shard_id, secondary_node.clone()));
}
(attached, secondary)
};
if secondary.is_empty() {
// No secondary locations; nothing for us to do
return;
}
for result in self
.tenant_for_shards_api(
attached,
|tenant_shard_id, client| async move {
client.tenant_heatmap_upload(tenant_shard_id).await
},
1,
1,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await
{
if let Err(e) = result {
tracing::warn!("Error calling heatmap upload after shard split: {e}");
return;
}
}
for result in self
.tenant_for_shards_api(
secondary,
|tenant_shard_id, client| async move {
client
.tenant_secondary_download(tenant_shard_id, Some(Duration::ZERO))
.await
},
1,
1,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await
{
if let Err(e) = result {
tracing::warn!("Error calling secondary download after shard split: {e}");
return;
}
}
}
pub(crate) async fn tenant_shard_split(
&self,
tenant_id: TenantId,
split_req: TenantShardSplitRequest,
) -> Result<TenantShardSplitResponse, ApiError> {
// TODO: return 503 if we get stuck waiting for this lock
// (issue https://github.com/neondatabase/neon/issues/7108)
let _tenant_lock = trace_exclusive_lock(
&self.tenant_op_locks,
tenant_id,
TenantOperations::ShardSplit,
)
.await;
let _gate = self
.reconcilers_gate
.enter()
.map_err(|_| ApiError::ShuttingDown)?;
// Timeline imports on the pageserver side can't handle shard-splits.
// If the tenant is importing a timeline, dont't shard split it.
match self
.persistence
.is_tenant_importing_timeline(tenant_id)
.await
{
Ok(importing) => {
if importing {
return Err(ApiError::Conflict(
"Cannot shard split during timeline import".to_string(),
));
}
}
Err(err) => {
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Failed to check for running imports: {err}"
)));
}
}
let new_shard_count = ShardCount::new(split_req.new_shard_count);
let new_stripe_size = split_req.new_stripe_size;
// Validate the request and construct parameters. This phase is fallible, but does not require
// rollback on errors, as it does no I/O and mutates no state.
let shard_split_params = match self.prepare_tenant_shard_split(tenant_id, split_req)? {
ShardSplitAction::NoOp(resp) => return Ok(resp),
ShardSplitAction::Split(params) => params,
};
// Execute this split: this phase mutates state and does remote I/O on pageservers. If it fails,
// we must roll back.
let r = self
.do_tenant_shard_split(tenant_id, shard_split_params)
.await;
let (response, waiters) = match r {
Ok(r) => r,
Err(e) => {
// Split might be part-done, we must do work to abort it.
tracing::warn!("Enqueuing background abort of split on {tenant_id}");
self.abort_tx
.send(TenantShardSplitAbort {
tenant_id,
new_shard_count,
new_stripe_size,
_tenant_lock,
_gate,
})
// Ignore error sending: that just means we're shutting down: aborts are ephemeral so it's fine to drop it.
.ok();
return Err(e);
}
};
// The split is now complete. As an optimization, we will trigger all the child shards to upload
// a heatmap immediately, and all their secondary locations to start downloading: this avoids waiting
// for the background heatmap/download interval before secondaries get warm enough to migrate shards
// in [`Self::optimize_all`]
self.tenant_shard_split_start_secondaries(tenant_id, waiters)
.await;
Ok(response)
}
fn prepare_tenant_shard_split(
&self,
tenant_id: TenantId,
split_req: TenantShardSplitRequest,
) -> Result<ShardSplitAction, ApiError> {
fail::fail_point!("shard-split-validation", |_| Err(ApiError::BadRequest(
anyhow::anyhow!("failpoint")
)));
let mut policy = None;
let mut config = None;
let mut shard_ident = None;
let mut preferred_az_id = None;
// Validate input, and calculate which shards we will create
let (old_shard_count, targets) =
{
let locked = self.inner.read().unwrap();
let pageservers = locked.nodes.clone();
let mut targets = Vec::new();
// In case this is a retry, count how many already-split shards we found
let mut children_found = Vec::new();
let mut old_shard_count = None;
for (tenant_shard_id, shard) in
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
{
match shard.shard.count.count().cmp(&split_req.new_shard_count) {
Ordering::Equal => {
// Already split this
children_found.push(*tenant_shard_id);
continue;
}
Ordering::Greater => {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Requested count {} but already have shards at count {}",
split_req.new_shard_count,
shard.shard.count.count()
)));
}
Ordering::Less => {
// Fall through: this shard has lower count than requested,
// is a candidate for splitting.
}
}
match old_shard_count {
None => old_shard_count = Some(shard.shard.count),
Some(old_shard_count) => {
if old_shard_count != shard.shard.count {
// We may hit this case if a caller asked for two splits to
// different sizes, before the first one is complete.
// e.g. 1->2, 2->4, where the 4 call comes while we have a mixture
// of shard_count=1 and shard_count=2 shards in the map.
return Err(ApiError::Conflict(
"Cannot split, currently mid-split".to_string(),
));
}
}
}
if policy.is_none() {
policy = Some(shard.policy.clone());
}
if shard_ident.is_none() {
shard_ident = Some(shard.shard);
}
if config.is_none() {
config = Some(shard.config.clone());
}
if preferred_az_id.is_none() {
preferred_az_id = shard.preferred_az().cloned();
}
if tenant_shard_id.shard_count.count() == split_req.new_shard_count {
tracing::info!(
"Tenant shard {} already has shard count {}",
tenant_shard_id,
split_req.new_shard_count
);
continue;
}
let node_id = shard.intent.get_attached().ok_or(ApiError::BadRequest(
anyhow::anyhow!("Cannot split a tenant that is not attached"),
))?;
let node = pageservers
.get(&node_id)
.expect("Pageservers may not be deleted while referenced");
targets.push(ShardSplitTarget {
parent_id: *tenant_shard_id,
node: node.clone(),
child_ids: tenant_shard_id
.split(ShardCount::new(split_req.new_shard_count)),
});
}
if targets.is_empty() {
if children_found.len() == split_req.new_shard_count as usize {
return Ok(ShardSplitAction::NoOp(TenantShardSplitResponse {
new_shards: children_found,
}));
} else {
// No shards found to split, and no existing children found: the
// tenant doesn't exist at all.
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
));
}
}
(old_shard_count, targets)
};
// unwrap safety: we would have returned above if we didn't find at least one shard to split
let old_shard_count = old_shard_count.unwrap();
let shard_ident = if let Some(new_stripe_size) = split_req.new_stripe_size {
// This ShardIdentity will be used as the template for all children, so this implicitly
// applies the new stripe size to the children.
let mut shard_ident = shard_ident.unwrap();
if shard_ident.count.count() > 1 && shard_ident.stripe_size != new_stripe_size {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Attempted to change stripe size ({:?}->{new_stripe_size:?}) on a tenant with multiple shards",
shard_ident.stripe_size
)));
}
shard_ident.stripe_size = new_stripe_size;
tracing::info!("applied stripe size {}", shard_ident.stripe_size.0);
shard_ident
} else {
shard_ident.unwrap()
};
let policy = policy.unwrap();
let config = config.unwrap();
Ok(ShardSplitAction::Split(Box::new(ShardSplitParams {
old_shard_count,
new_shard_count: ShardCount::new(split_req.new_shard_count),
new_stripe_size: split_req.new_stripe_size,
targets,
policy,
config,
shard_ident,
preferred_az_id,
})))
}
async fn do_tenant_shard_split(
&self,
tenant_id: TenantId,
params: Box<ShardSplitParams>,
) -> Result<(TenantShardSplitResponse, Vec<ReconcilerWaiter>), ApiError> {
// FIXME: we have dropped self.inner lock, and not yet written anything to the database: another
// request could occur here, deleting or mutating the tenant. begin_shard_split checks that the
// parent shards exist as expected, but it would be neater to do the above pre-checks within the
// same database transaction rather than pre-check in-memory and then maybe-fail the database write.
// (https://github.com/neondatabase/neon/issues/6676)
let ShardSplitParams {
old_shard_count,
new_shard_count,
new_stripe_size,
mut targets,
policy,
config,
shard_ident,
preferred_az_id,
} = *params;
// Drop any secondary locations: pageservers do not support splitting these, and in any case the
// end-state for a split tenant will usually be to have secondary locations on different nodes.
// The reconciliation calls in this block also implicitly cancel+barrier wrt any ongoing reconciliation
// at the time of split.
let waiters = {
let mut locked = self.inner.write().unwrap();
let mut waiters = Vec::new();
let (nodes, tenants, scheduler) = locked.parts_mut();
for target in &mut targets {
let Some(shard) = tenants.get_mut(&target.parent_id) else {
// Paranoia check: this shouldn't happen: we have the oplock for this tenant ID.
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Shard {} not found",
target.parent_id
)));
};
if shard.intent.get_attached() != &Some(target.node.get_id()) {
// Paranoia check: this shouldn't happen: we have the oplock for this tenant ID.
return Err(ApiError::Conflict(format!(
"Shard {} unexpectedly rescheduled during split",
target.parent_id
)));
}
// Irrespective of PlacementPolicy, clear secondary locations from intent
shard.intent.clear_secondary(scheduler);
// Run Reconciler to execute detach fo secondary locations.
if let Some(waiter) =
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
{
waiters.push(waiter);
}
}
waiters
};
self.await_waiters(waiters, RECONCILE_TIMEOUT).await?;
// Before creating any new child shards in memory or on the pageservers, persist them: this
// enables us to ensure that we will always be able to clean up if something goes wrong. This also
// acts as the protection against two concurrent attempts to split: one of them will get a database
// error trying to insert the child shards.
let mut child_tsps = Vec::new();
for target in &targets {
let mut this_child_tsps = Vec::new();
for child in &target.child_ids {
let mut child_shard = shard_ident;
child_shard.number = child.shard_number;
child_shard.count = child.shard_count;
tracing::info!(
"Create child shard persistence with stripe size {}",
shard_ident.stripe_size.0
);
this_child_tsps.push(TenantShardPersistence {
tenant_id: child.tenant_id.to_string(),
shard_number: child.shard_number.0 as i32,
shard_count: child.shard_count.literal() as i32,
shard_stripe_size: shard_ident.stripe_size.0 as i32,
// Note: this generation is a placeholder, [`Persistence::begin_shard_split`] will
// populate the correct generation as part of its transaction, to protect us
// against racing with changes in the state of the parent.
generation: None,
generation_pageserver: Some(target.node.get_id().0 as i64),
placement_policy: serde_json::to_string(&policy).unwrap(),
config: serde_json::to_string(&config).unwrap(),
splitting: SplitState::Splitting,
// Scheduling policies and preferred AZ do not carry through to children
scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
.unwrap(),
preferred_az_id: preferred_az_id.as_ref().map(|az| az.0.clone()),
});
}
child_tsps.push((target.parent_id, this_child_tsps));
}
if let Err(e) = self
.persistence
.begin_shard_split(old_shard_count, tenant_id, child_tsps)
.await
{
match e {
DatabaseError::Query(diesel::result::Error::DatabaseError(
DatabaseErrorKind::UniqueViolation,
_,
)) => {
// Inserting a child shard violated a unique constraint: we raced with another call to
// this function
tracing::warn!("Conflicting attempt to split {tenant_id}: {e}");
return Err(ApiError::Conflict("Tenant is already splitting".into()));
}
_ => return Err(ApiError::InternalServerError(e.into())),
}
}
fail::fail_point!("shard-split-post-begin", |_| Err(
ApiError::InternalServerError(anyhow::anyhow!("failpoint"))
));
// Now that I have persisted the splitting state, apply it in-memory. This is infallible, so
// callers may assume that if splitting is set in memory, then it was persisted, and if splitting
// is not set in memory, then it was not persisted.
{
let mut locked = self.inner.write().unwrap();
for target in &targets {
if let Some(parent_shard) = locked.tenants.get_mut(&target.parent_id) {
parent_shard.splitting = SplitState::Splitting;
// Put the observed state to None, to reflect that it is indeterminate once we start the
// split operation.
parent_shard
.observed
.locations
.insert(target.node.get_id(), ObservedStateLocation { conf: None });
}
}
}
// TODO: issue split calls concurrently (this only matters once we're splitting
// N>1 shards into M shards -- initially we're usually splitting 1 shard into N).
for target in &targets {
let ShardSplitTarget {
parent_id,
node,
child_ids,
} = target;
let client = PageserverClient::new(
node.get_id(),
self.http_client.clone(),
node.base_url(),
self.config.pageserver_jwt_token.as_deref(),
);
let response = client
.tenant_shard_split(
*parent_id,
TenantShardSplitRequest {
new_shard_count: new_shard_count.literal(),
new_stripe_size,
},
)
.await
.map_err(|e| ApiError::Conflict(format!("Failed to split {parent_id}: {e}")))?;
fail::fail_point!("shard-split-post-remote", |_| Err(ApiError::Conflict(
"failpoint".to_string()
)));
failpoint_support::sleep_millis_async!(
"shard-split-post-remote-sleep",
&self.reconcilers_cancel
);
tracing::info!(
"Split {} into {}",
parent_id,
response
.new_shards
.iter()
.map(|s| format!("{s:?}"))
.collect::<Vec<_>>()
.join(",")
);
if &response.new_shards != child_ids {
// This should never happen: the pageserver should agree with us on how shard splits work.
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Splitting shard {} resulted in unexpected IDs: {:?} (expected {:?})",
parent_id,
response.new_shards,
child_ids
)));
}
}
fail::fail_point!("shard-split-pre-complete", |_| Err(ApiError::Conflict(
"failpoint".to_string()
)));
pausable_failpoint!("shard-split-pre-complete-pause");
// TODO: if the pageserver restarted concurrently with our split API call,
// the actual generation of the child shard might differ from the generation
// we expect it to have. In order for our in-database generation to end up
// correct, we should carry the child generation back in the response and apply it here
// in complete_shard_split (and apply the correct generation in memory)
// (or, we can carry generation in the request and reject the request if
// it doesn't match, but that requires more retry logic on this side)
self.persistence
.complete_shard_split(tenant_id, old_shard_count, new_shard_count)
.await?;
fail::fail_point!("shard-split-post-complete", |_| Err(
ApiError::InternalServerError(anyhow::anyhow!("failpoint"))
));
// Replace all the shards we just split with their children: this phase is infallible.
let (response, child_locations, waiters) =
self.tenant_shard_split_commit_inmem(tenant_id, new_shard_count, new_stripe_size);
// Notify all page servers to detach and clean up the old shards because they will no longer
// be needed. This is best-effort: if it fails, it will be cleaned up on a subsequent
// Pageserver re-attach/startup.
let shards_to_cleanup = targets
.iter()
.map(|target| (target.parent_id, target.node.get_id()))
.collect();
self.cleanup_locations(shards_to_cleanup).await;
// Send compute notifications for all the new shards
let mut failed_notifications = Vec::new();
for (child_id, child_ps, stripe_size) in child_locations {
if let Err(e) = self
.compute_hook
.notify(
compute_hook::ShardUpdate {
tenant_shard_id: child_id,
node_id: child_ps,
stripe_size,
preferred_az: preferred_az_id.as_ref().map(Cow::Borrowed),
},
&self.reconcilers_cancel,
)
.await
{
tracing::warn!(
"Failed to update compute of {}->{} during split, proceeding anyway to complete split ({e})",
child_id,
child_ps
);
failed_notifications.push(child_id);
}
}
// If we failed any compute notifications, make a note to retry later.
if !failed_notifications.is_empty() {
let mut locked = self.inner.write().unwrap();
for failed in failed_notifications {
if let Some(shard) = locked.tenants.get_mut(&failed) {
shard.pending_compute_notification = true;
}
}
}
Ok((response, waiters))
}
/// A graceful migration: update the preferred node and let optimisation handle the migration
/// in the background (may take a long time as it will fully warm up a location before cutting over)
///
/// Our external API calls this a 'prewarm=true' migration, but internally it isn't a special prewarm step: it's
/// just a migration that uses the same graceful procedure as our background scheduling optimisations would use.
fn tenant_shard_migrate_with_prewarm(
&self,
migrate_req: &TenantShardMigrateRequest,
shard: &mut TenantShard,
scheduler: &mut Scheduler,
schedule_context: ScheduleContext,
) -> Result<Option<ScheduleOptimization>, ApiError> {
shard.set_preferred_node(Some(migrate_req.node_id));
// Generate whatever the initial change to the intent is: this could be creation of a secondary, or
// cutting over to an existing secondary. Caller is responsible for validating this before applying it,
// e.g. by checking secondary is warm enough.
Ok(shard.optimize_attachment(scheduler, &schedule_context))
}
/// Immediate migration: directly update the intent state and kick off a reconciler
fn tenant_shard_migrate_immediate(
&self,
migrate_req: &TenantShardMigrateRequest,
nodes: &Arc<HashMap<NodeId, Node>>,
shard: &mut TenantShard,
scheduler: &mut Scheduler,
) -> Result<Option<ReconcilerWaiter>, ApiError> {
// Non-graceful migration: update the intent state immediately
let old_attached = *shard.intent.get_attached();
match shard.policy {
PlacementPolicy::Attached(n) => {
// If our new attached node was a secondary, it no longer should be.
shard
.intent
.remove_secondary(scheduler, migrate_req.node_id);
shard
.intent
.set_attached(scheduler, Some(migrate_req.node_id));
// If we were already attached to something, demote that to a secondary
if let Some(old_attached) = old_attached {
if n > 0 {
// Remove other secondaries to make room for the location we'll demote
while shard.intent.get_secondary().len() >= n {
shard.intent.pop_secondary(scheduler);
}
shard.intent.push_secondary(scheduler, old_attached);
}
}
}
PlacementPolicy::Secondary => {
shard.intent.clear(scheduler);
shard.intent.push_secondary(scheduler, migrate_req.node_id);
}
PlacementPolicy::Detached => {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Cannot migrate a tenant that is PlacementPolicy::Detached: configure it to an attached policy first"
)));
}
}
tracing::info!("Migrating: new intent {:?}", shard.intent);
shard.sequence = shard.sequence.next();
shard.set_preferred_node(None); // Abort any in-flight graceful migration
Ok(self.maybe_configured_reconcile_shard(
shard,
nodes,
(&migrate_req.migration_config).into(),
))
}
pub(crate) async fn tenant_shard_migrate(
&self,
tenant_shard_id: TenantShardId,
migrate_req: TenantShardMigrateRequest,
) -> Result<TenantShardMigrateResponse, ApiError> {
// Depending on whether the migration is a change and whether it's graceful or immediate, we might
// get a different outcome to handle
enum MigrationOutcome {
Optimization(Option<ScheduleOptimization>),
Reconcile(Option<ReconcilerWaiter>),
}
let outcome = {
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let Some(node) = nodes.get(&migrate_req.node_id) else {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Node {} not found",
migrate_req.node_id
)));
};
// Migration to unavavailable node requires force flag
if !node.is_available() {
if migrate_req.migration_config.override_scheduler {
// Warn but proceed: the caller may intend to manually adjust the placement of
// a shard even if the node is down, e.g. if intervening during an incident.
tracing::warn!("Forcibly migrating to unavailable node {node}");
} else {
tracing::warn!("Node {node} is unavailable, refusing migration");
return Err(ApiError::PreconditionFailed(
format!("Node {node} is unavailable").into_boxed_str(),
));
}
}
// Calculate the ScheduleContext for this tenant
let mut schedule_context = ScheduleContext::default();
for (_shard_id, shard) in
tenants.range(TenantShardId::tenant_range(tenant_shard_id.tenant_id))
{
schedule_context.avoid(&shard.intent.all_pageservers());
}
// Look up the specific shard we will migrate
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant shard not found").into(),
));
};
// Migration to a node with unfavorable scheduling score requires a force flag, because it might just
// be migrated back by the optimiser.
if let Some(better_node) = shard.find_better_location::<AttachedShardTag>(
scheduler,
&schedule_context,
migrate_req.node_id,
&[],
) {
if !migrate_req.migration_config.override_scheduler {
return Err(ApiError::PreconditionFailed(
"Migration to a worse-scoring node".into(),
));
} else {
tracing::info!(
"Migrating to a worse-scoring node {} (optimiser would prefer {better_node})",
migrate_req.node_id
);
}
}
if let Some(origin_node_id) = migrate_req.origin_node_id {
if shard.intent.get_attached() != &Some(origin_node_id) {
return Err(ApiError::PreconditionFailed(
format!(
"Migration expected to originate from {} but shard is on {:?}",
origin_node_id,
shard.intent.get_attached()
)
.into(),
));
}
}
if shard.intent.get_attached() == &Some(migrate_req.node_id) {
// No-op case: we will still proceed to wait for reconciliation in case it is
// incomplete from an earlier update to the intent.
tracing::info!("Migrating: intent is unchanged {:?}", shard.intent);
// An instruction to migrate to the currently attached node should
// cancel any pending graceful migration
shard.set_preferred_node(None);
MigrationOutcome::Reconcile(self.maybe_configured_reconcile_shard(
shard,
nodes,
(&migrate_req.migration_config).into(),
))
} else if migrate_req.migration_config.prewarm {
MigrationOutcome::Optimization(self.tenant_shard_migrate_with_prewarm(
&migrate_req,
shard,
scheduler,
schedule_context,
)?)
} else {
MigrationOutcome::Reconcile(self.tenant_shard_migrate_immediate(
&migrate_req,
nodes,
shard,
scheduler,
)?)
}
};
// We may need to validate + apply an optimisation, or we may need to just retrive a reconcile waiter
let waiter = match outcome {
MigrationOutcome::Optimization(Some(optimization)) => {
// Validate and apply the optimization -- this would happen anyway in background reconcile loop, but
// we might as well do it more promptly as this is a direct external request.
let mut validated = self
.optimize_all_validate(vec![(tenant_shard_id, optimization)])
.await;
if let Some((_shard_id, optimization)) = validated.pop() {
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
// Rare but possible: tenant is removed between generating optimisation and validating it.
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant shard not found").into(),
));
};
if !shard.apply_optimization(scheduler, optimization) {
// This can happen but is unusual enough to warn on: something else changed in the shard that made the optimisation stale
// and therefore not applied.
tracing::warn!(
"Schedule optimisation generated during graceful migration was not applied, shard changed?"
);
}
self.maybe_configured_reconcile_shard(
shard,
nodes,
(&migrate_req.migration_config).into(),
)
} else {
None
}
}
MigrationOutcome::Optimization(None) => None,
MigrationOutcome::Reconcile(waiter) => waiter,
};
// Finally, wait for any reconcile we started to complete. In the case of immediate-mode migrations to cold
// locations, this has a good chance of timing out.
if let Some(waiter) = waiter {
waiter.wait_timeout(RECONCILE_TIMEOUT).await?;
} else {
tracing::info!("Migration is a no-op");
}
Ok(TenantShardMigrateResponse {})
}
pub(crate) async fn tenant_shard_migrate_secondary(
&self,
tenant_shard_id: TenantShardId,
migrate_req: TenantShardMigrateRequest,
) -> Result<TenantShardMigrateResponse, ApiError> {
let waiter = {
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let Some(node) = nodes.get(&migrate_req.node_id) else {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Node {} not found",
migrate_req.node_id
)));
};
if !node.is_available() {
// Warn but proceed: the caller may intend to manually adjust the placement of
// a shard even if the node is down, e.g. if intervening during an incident.
tracing::warn!("Migrating to unavailable node {node}");
}
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant shard not found").into(),
));
};
if shard.intent.get_secondary().len() == 1
&& shard.intent.get_secondary()[0] == migrate_req.node_id
{
tracing::info!(
"Migrating secondary to {node}: intent is unchanged {:?}",
shard.intent
);
} else if shard.intent.get_attached() == &Some(migrate_req.node_id) {
tracing::info!(
"Migrating secondary to {node}: already attached where we were asked to create a secondary"
);
} else {
let old_secondaries = shard.intent.get_secondary().clone();
for secondary in old_secondaries {
shard.intent.remove_secondary(scheduler, secondary);
}
shard.intent.push_secondary(scheduler, migrate_req.node_id);
shard.sequence = shard.sequence.next();
tracing::info!(
"Migrating secondary to {node}: new intent {:?}",
shard.intent
);
}
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
};
if let Some(waiter) = waiter {
waiter.wait_timeout(RECONCILE_TIMEOUT).await?;
} else {
tracing::info!("Migration is a no-op");
}
Ok(TenantShardMigrateResponse {})
}
/// 'cancel' in this context means cancel any ongoing reconcile
pub(crate) async fn tenant_shard_cancel_reconcile(
&self,
tenant_shard_id: TenantShardId,
) -> Result<(), ApiError> {
// Take state lock and fire the cancellation token, after which we drop lock and wait for any ongoing reconcile to complete
let waiter = {
let locked = self.inner.write().unwrap();
let Some(shard) = locked.tenants.get(&tenant_shard_id) else {
return Err(ApiError::NotFound(
anyhow::anyhow!("Tenant shard not found").into(),
));
};
let waiter = shard.get_waiter();
match waiter {
None => {
tracing::info!("Shard does not have an ongoing Reconciler");
return Ok(());
}
Some(waiter) => {
tracing::info!("Cancelling Reconciler");
shard.cancel_reconciler();
waiter
}
}
};
// Cancellation should be prompt. If this fails we have still done our job of firing the
// cancellation token, but by returning an ApiError we will indicate to the caller that
// the Reconciler is misbehaving and not respecting the cancellation token
self.await_waiters(vec![waiter], SHORT_RECONCILE_TIMEOUT)
.await?;
Ok(())
}
/// This is for debug/support only: we simply drop all state for a tenant, without
/// detaching or deleting it on pageservers.
pub(crate) async fn tenant_drop(&self, tenant_id: TenantId) -> Result<(), ApiError> {
self.persistence.delete_tenant(tenant_id).await?;
let mut locked = self.inner.write().unwrap();
let (_nodes, tenants, scheduler) = locked.parts_mut();
let mut shards = Vec::new();
for (tenant_shard_id, _) in tenants.range(TenantShardId::tenant_range(tenant_id)) {
shards.push(*tenant_shard_id);
}
for shard_id in shards {
if let Some(mut shard) = tenants.remove(&shard_id) {
shard.intent.clear(scheduler);
}
}
Ok(())
}
/// This is for debug/support only: assuming tenant data is already present in S3, we "create" a
/// tenant with a very high generation number so that it will see the existing data.
/// It does not create timelines on safekeepers, because they might already exist on some
/// safekeeper set. So, the timelines are not storcon-managed after the import.
pub(crate) async fn tenant_import(
&self,
tenant_id: TenantId,
) -> Result<TenantCreateResponse, ApiError> {
// Pick an arbitrary available pageserver to use for scanning the tenant in remote storage
let maybe_node = {
self.inner
.read()
.unwrap()
.nodes
.values()
.find(|n| n.is_available())
.cloned()
};
let Some(node) = maybe_node else {
return Err(ApiError::BadRequest(anyhow::anyhow!("No nodes available")));
};
let client = PageserverClient::new(
node.get_id(),
self.http_client.clone(),
node.base_url(),
self.config.pageserver_jwt_token.as_deref(),
);
let scan_result = client
.tenant_scan_remote_storage(tenant_id)
.await
.map_err(|e| passthrough_api_error(&node, e))?;
// A post-split tenant may contain a mixture of shard counts in remote storage: pick the highest count.
let Some(shard_count) = scan_result
.shards
.iter()
.map(|s| s.tenant_shard_id.shard_count)
.max()
else {
return Err(ApiError::NotFound(
anyhow::anyhow!("No shards found").into(),
));
};
// Ideally we would set each newly imported shard's generation independently, but for correctness it is sufficient
// to
let generation = scan_result
.shards
.iter()
.map(|s| s.generation)
.max()
.expect("We already validated >0 shards");
// Find the tenant's stripe size. This wasn't always persisted in the tenant manifest, so
// fall back to the original default stripe size of 32768 (256 MB) if it's not specified.
const ORIGINAL_STRIPE_SIZE: ShardStripeSize = ShardStripeSize(32768);
let stripe_size = scan_result
.shards
.iter()
.find(|s| s.tenant_shard_id.shard_count == shard_count && s.generation == generation)
.expect("we validated >0 shards above")
.stripe_size
.unwrap_or_else(|| {
if shard_count.count() > 1 {
warn!("unknown stripe size, assuming {ORIGINAL_STRIPE_SIZE}");
}
ORIGINAL_STRIPE_SIZE
});
let (response, waiters) = self
.do_tenant_create(TenantCreateRequest {
new_tenant_id: TenantShardId::unsharded(tenant_id),
generation,
shard_parameters: ShardParameters {
count: shard_count,
stripe_size,
},
placement_policy: Some(PlacementPolicy::Attached(0)), // No secondaries, for convenient debug/hacking
config: TenantConfig::default(),
})
.await?;
if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
// Since this is a debug/support operation, all kinds of weird issues are possible (e.g. this
// tenant doesn't exist in the control plane), so don't fail the request if it can't fully
// reconcile, as reconciliation includes notifying compute.
tracing::warn!(%tenant_id, "Reconcile not done yet while importing tenant ({e})");
}
Ok(response)
}
/// For debug/support: a full JSON dump of TenantShards. Returns a response so that
/// we don't have to make TenantShard clonable in the return path.
pub(crate) fn tenants_dump(&self) -> Result<hyper::Response<hyper::Body>, ApiError> {
let serialized = {
let locked = self.inner.read().unwrap();
let result = locked.tenants.values().collect::<Vec<_>>();
serde_json::to_string(&result).map_err(|e| ApiError::InternalServerError(e.into()))?
};
hyper::Response::builder()
.status(hyper::StatusCode::OK)
.header(hyper::header::CONTENT_TYPE, "application/json")
.body(hyper::Body::from(serialized))
.map_err(|e| ApiError::InternalServerError(e.into()))
}
/// Check the consistency of in-memory state vs. persistent state, and check that the
/// scheduler's statistics are up to date.
///
/// These consistency checks expect an **idle** system. If changes are going on while
/// we run, then we can falsely indicate a consistency issue. This is sufficient for end-of-test
/// checks, but not suitable for running continuously in the background in the field.
pub(crate) async fn consistency_check(&self) -> Result<(), ApiError> {
let (mut expect_nodes, mut expect_shards) = {
let locked = self.inner.read().unwrap();
locked
.scheduler
.consistency_check(locked.nodes.values(), locked.tenants.values())
.context("Scheduler checks")
.map_err(ApiError::InternalServerError)?;
let expect_nodes = locked
.nodes
.values()
.map(|n| n.to_persistent())
.collect::<Vec<_>>();
let expect_shards = locked
.tenants
.values()
.map(|t| t.to_persistent())
.collect::<Vec<_>>();
// This method can only validate the state of an idle system: if a reconcile is in
// progress, fail out early to avoid giving false errors on state that won't match
// between database and memory under a ReconcileResult is processed.
for t in locked.tenants.values() {
if t.reconciler.is_some() {
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Shard {} reconciliation in progress",
t.tenant_shard_id
)));
}
}
(expect_nodes, expect_shards)
};
let mut nodes = self.persistence.list_nodes().await?;
expect_nodes.sort_by_key(|n| n.node_id);
nodes.sort_by_key(|n| n.node_id);
// Errors relating to nodes are deferred so that we don't skip the shard checks below if we have a node error
let node_result = if nodes != expect_nodes {
tracing::error!("Consistency check failed on nodes.");
tracing::error!(
"Nodes in memory: {}",
serde_json::to_string(&expect_nodes)
.map_err(|e| ApiError::InternalServerError(e.into()))?
);
tracing::error!(
"Nodes in database: {}",
serde_json::to_string(&nodes)
.map_err(|e| ApiError::InternalServerError(e.into()))?
);
Err(ApiError::InternalServerError(anyhow::anyhow!(
"Node consistency failure"
)))
} else {
Ok(())
};
let mut persistent_shards = self.persistence.load_active_tenant_shards().await?;
persistent_shards
.sort_by_key(|tsp| (tsp.tenant_id.clone(), tsp.shard_number, tsp.shard_count));
expect_shards.sort_by_key(|tsp| (tsp.tenant_id.clone(), tsp.shard_number, tsp.shard_count));
// Because JSON contents of persistent tenants might disagree with the fields in current `TenantConfig`
// definition, we will do an encode/decode cycle to ensure any legacy fields are dropped and any new
// fields are added, before doing a comparison.
for tsp in &mut persistent_shards {
let config: TenantConfig = serde_json::from_str(&tsp.config)
.map_err(|e| ApiError::InternalServerError(e.into()))?;
tsp.config = serde_json::to_string(&config).expect("Encoding config is infallible");
}
if persistent_shards != expect_shards {
tracing::error!("Consistency check failed on shards.");
tracing::error!(
"Shards in memory: {}",
serde_json::to_string(&expect_shards)
.map_err(|e| ApiError::InternalServerError(e.into()))?
);
tracing::error!(
"Shards in database: {}",
serde_json::to_string(&persistent_shards)
.map_err(|e| ApiError::InternalServerError(e.into()))?
);
// The total dump log lines above are useful in testing but in the field grafana will
// usually just drop them because they're so large. So we also do some explicit logging
// of just the diffs.
let persistent_shards = persistent_shards
.into_iter()
.map(|tsp| (tsp.get_tenant_shard_id().unwrap(), tsp))
.collect::<HashMap<_, _>>();
let expect_shards = expect_shards
.into_iter()
.map(|tsp| (tsp.get_tenant_shard_id().unwrap(), tsp))
.collect::<HashMap<_, _>>();
for (tenant_shard_id, persistent_tsp) in &persistent_shards {
match expect_shards.get(tenant_shard_id) {
None => {
tracing::error!(
"Shard {} found in database but not in memory",
tenant_shard_id
);
}
Some(expect_tsp) => {
if expect_tsp != persistent_tsp {
tracing::error!(
"Shard {} is inconsistent. In memory: {}, database has: {}",
tenant_shard_id,
serde_json::to_string(expect_tsp).unwrap(),
serde_json::to_string(&persistent_tsp).unwrap()
);
}
}
}
}
// Having already logged any differences, log any shards that simply aren't present in the database
for (tenant_shard_id, memory_tsp) in &expect_shards {
if !persistent_shards.contains_key(tenant_shard_id) {
tracing::error!(
"Shard {} found in memory but not in database: {}",
tenant_shard_id,
serde_json::to_string(memory_tsp)
.map_err(|e| ApiError::InternalServerError(e.into()))?
);
}
}
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"Shard consistency failure"
)));
}
node_result
}
/// For debug/support: a JSON dump of the [`Scheduler`]. Returns a response so that
/// we don't have to make TenantShard clonable in the return path.
pub(crate) fn scheduler_dump(&self) -> Result<hyper::Response<hyper::Body>, ApiError> {
let serialized = {
let locked = self.inner.read().unwrap();
serde_json::to_string(&locked.scheduler)
.map_err(|e| ApiError::InternalServerError(e.into()))?
};
hyper::Response::builder()
.status(hyper::StatusCode::OK)
.header(hyper::header::CONTENT_TYPE, "application/json")
.body(hyper::Body::from(serialized))
.map_err(|e| ApiError::InternalServerError(e.into()))
}
/// This is for debug/support only: we simply drop all state for a tenant, without
/// detaching or deleting it on pageservers. We do not try and re-schedule any
/// tenants that were on this node.
pub(crate) async fn node_drop(&self, node_id: NodeId) -> Result<(), ApiError> {
self.persistence.set_tombstone(node_id).await?;
let mut locked = self.inner.write().unwrap();
for shard in locked.tenants.values_mut() {
shard.deref_node(node_id);
shard.observed.locations.remove(&node_id);
}
let mut nodes = (*locked.nodes).clone();
nodes.remove(&node_id);
locked.nodes = Arc::new(nodes);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_pageserver_nodes
.set(locked.nodes.len() as i64);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_https_pageserver_nodes
.set(locked.nodes.values().filter(|n| n.has_https_port()).count() as i64);
locked.scheduler.node_remove(node_id);
Ok(())
}
/// If a node has any work on it, it will be rescheduled: this is "clean" in the sense
/// that we don't leave any bad state behind in the storage controller, but unclean
/// in the sense that we are not carefully draining the node.
pub(crate) async fn node_delete(&self, node_id: NodeId) -> Result<(), ApiError> {
let _node_lock =
trace_exclusive_lock(&self.node_op_locks, node_id, NodeOperations::Delete).await;
// 1. Atomically update in-memory state:
// - set the scheduling state to Pause to make subsequent scheduling ops skip it
// - update shards' intents to exclude the node, and reschedule any shards whose intents we modified.
// - drop the node from the main nodes map, so that when running reconciles complete they do not
// re-insert references to this node into the ObservedState of shards
// - drop the node from the scheduler
{
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
{
let mut nodes_mut = (*nodes).deref().clone();
match nodes_mut.get_mut(&node_id) {
Some(node) => {
// We do not bother setting this in the database, because we're about to delete the row anyway, and
// if we crash it would not be desirable to leave the node paused after a restart.
node.set_scheduling(NodeSchedulingPolicy::Pause);
}
None => {
tracing::info!(
"Node not found: presuming this is a retry and returning success"
);
return Ok(());
}
}
*nodes = Arc::new(nodes_mut);
}
for (_tenant_id, mut schedule_context, shards) in
TenantShardContextIterator::new(tenants, ScheduleMode::Normal)
{
for shard in shards {
if shard.deref_node(node_id) {
if let Err(e) = shard.schedule(scheduler, &mut schedule_context) {
// TODO: implement force flag to remove a node even if we can't reschedule
// a tenant
tracing::error!(
"Refusing to delete node, shard {} can't be rescheduled: {e}",
shard.tenant_shard_id
);
return Err(e.into());
} else {
tracing::info!(
"Rescheduled shard {} away from node during deletion",
shard.tenant_shard_id
)
}
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::Normal);
}
// Here we remove an existing observed location for the node we're removing, and it will
// not be re-added by a reconciler's completion because we filter out removed nodes in
// process_result.
//
// Note that we update the shard's observed state _after_ calling maybe_reconcile_shard: that
// means any reconciles we spawned will know about the node we're deleting, enabling them
// to do live migrations if it's still online.
shard.observed.locations.remove(&node_id);
}
}
scheduler.node_remove(node_id);
{
let mut nodes_mut = (**nodes).clone();
if let Some(mut removed_node) = nodes_mut.remove(&node_id) {
// Ensure that any reconciler holding an Arc<> to this node will
// drop out when trying to RPC to it (setting Offline state sets the
// cancellation token on the Node object).
removed_node.set_availability(NodeAvailability::Offline);
}
*nodes = Arc::new(nodes_mut);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_pageserver_nodes
.set(nodes.len() as i64);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_https_pageserver_nodes
.set(nodes.values().filter(|n| n.has_https_port()).count() as i64);
}
}
// Note: some `generation_pageserver` columns on tenant shards in the database may still refer to
// the removed node, as this column means "The pageserver to which this generation was issued", and
// their generations won't get updated until the reconcilers moving them away from this node complete.
// That is safe because in Service::spawn we only use generation_pageserver if it refers to a node
// that exists.
// 2. Actually delete the node from in-memory state and set tombstone to the database
// for preventing the node to register again.
tracing::info!("Deleting node from database");
self.persistence.set_tombstone(node_id).await?;
Ok(())
}
pub(crate) async fn node_list(&self) -> Result<Vec<Node>, ApiError> {
let nodes = {
self.inner
.read()
.unwrap()
.nodes
.values()
.cloned()
.collect::<Vec<_>>()
};
Ok(nodes)
}
pub(crate) async fn tombstone_list(&self) -> Result<Vec<Node>, ApiError> {
self.persistence
.list_tombstones()
.await?
.into_iter()
.map(|np| Node::from_persistent(np, false))
.collect::<Result<Vec<_>, _>>()
.map_err(ApiError::InternalServerError)
}
pub(crate) async fn tombstone_delete(&self, node_id: NodeId) -> Result<(), ApiError> {
let _node_lock = trace_exclusive_lock(
&self.node_op_locks,
node_id,
NodeOperations::DeleteTombstone,
)
.await;
if matches!(self.get_node(node_id).await, Err(ApiError::NotFound(_))) {
self.persistence.delete_node(node_id).await?;
Ok(())
} else {
Err(ApiError::Conflict(format!(
"Node {node_id} is in use, consider using tombstone API first"
)))
}
}
pub(crate) async fn get_node(&self, node_id: NodeId) -> Result<Node, ApiError> {
self.inner
.read()
.unwrap()
.nodes
.get(&node_id)
.cloned()
.ok_or(ApiError::NotFound(
format!("Node {node_id} not registered").into(),
))
}
pub(crate) async fn get_node_shards(
&self,
node_id: NodeId,
) -> Result<NodeShardResponse, ApiError> {
let locked = self.inner.read().unwrap();
let mut shards = Vec::new();
for (tid, tenant) in locked.tenants.iter() {
let is_intended_secondary = match (
tenant.intent.get_attached() == &Some(node_id),
tenant.intent.get_secondary().contains(&node_id),
) {
(true, true) => {
return Err(ApiError::InternalServerError(anyhow::anyhow!(
"{} attached as primary+secondary on the same node",
tid
)));
}
(true, false) => Some(false),
(false, true) => Some(true),
(false, false) => None,
};
let is_observed_secondary = if let Some(ObservedStateLocation { conf: Some(conf) }) =
tenant.observed.locations.get(&node_id)
{
Some(conf.secondary_conf.is_some())
} else {
None
};
if is_intended_secondary.is_some() || is_observed_secondary.is_some() {
shards.push(NodeShard {
tenant_shard_id: *tid,
is_intended_secondary,
is_observed_secondary,
});
}
}
Ok(NodeShardResponse { node_id, shards })
}
pub(crate) async fn get_leader(&self) -> DatabaseResult<Option<ControllerPersistence>> {
self.persistence.get_leader().await
}
pub(crate) async fn node_register(
&self,
register_req: NodeRegisterRequest,
) -> Result<(), ApiError> {
let _node_lock = trace_exclusive_lock(
&self.node_op_locks,
register_req.node_id,
NodeOperations::Register,
)
.await;
#[derive(PartialEq)]
enum RegistrationStatus {
UpToDate,
NeedUpdate,
Mismatched,
New,
}
let registration_status = {
let locked = self.inner.read().unwrap();
if let Some(node) = locked.nodes.get(&register_req.node_id) {
if node.registration_match(&register_req) {
if node.need_update(&register_req) {
RegistrationStatus::NeedUpdate
} else {
RegistrationStatus::UpToDate
}
} else {
RegistrationStatus::Mismatched
}
} else {
RegistrationStatus::New
}
};
match registration_status {
RegistrationStatus::UpToDate => {
tracing::info!(
"Node {} re-registered with matching address and is up to date",
register_req.node_id
);
return Ok(());
}
RegistrationStatus::Mismatched => {
// TODO: decide if we want to allow modifying node addresses without removing and re-adding
// the node. Safest/simplest thing is to refuse it, and usually we deploy with
// a fixed address through the lifetime of a node.
tracing::warn!(
"Node {} tried to register with different address",
register_req.node_id
);
return Err(ApiError::Conflict(
"Node is already registered with different address".to_string(),
));
}
RegistrationStatus::New | RegistrationStatus::NeedUpdate => {
// fallthrough
}
}
// We do not require that a node is actually online when registered (it will start life
// with it's availability set to Offline), but we _do_ require that its DNS record exists. We're
// therefore not immune to asymmetric L3 connectivity issues, but we are protected against nodes
// that register themselves with a broken DNS config. We check only the HTTP hostname, because
// the postgres hostname might only be resolvable to clients (e.g. if we're on a different VPC than clients).
if tokio::net::lookup_host(format!(
"{}:{}",
register_req.listen_http_addr, register_req.listen_http_port
))
.await
.is_err()
{
// If we have a transient DNS issue, it's up to the caller to retry their registration. Because
// we can't robustly distinguish between an intermittent issue and a totally bogus DNS situation,
// we return a soft 503 error, to encourage callers to retry past transient issues.
return Err(ApiError::ResourceUnavailable(
format!(
"Node {} tried to register with unknown DNS name '{}'",
register_req.node_id, register_req.listen_http_addr
)
.into(),
));
}
if self.config.use_https_pageserver_api && register_req.listen_https_port.is_none() {
return Err(ApiError::PreconditionFailed(
format!(
"Node {} has no https port, but use_https is enabled",
register_req.node_id
)
.into(),
));
}
if register_req.listen_grpc_addr.is_some() != register_req.listen_grpc_port.is_some() {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"must specify both gRPC address and port"
)));
}
// Ordering: we must persist the new node _before_ adding it to in-memory state.
// This ensures that before we use it for anything or expose it via any external
// API, it is guaranteed to be available after a restart.
let new_node = Node::new(
register_req.node_id,
register_req.listen_http_addr,
register_req.listen_http_port,
register_req.listen_https_port,
register_req.listen_pg_addr,
register_req.listen_pg_port,
register_req.listen_grpc_addr,
register_req.listen_grpc_port,
register_req.availability_zone_id.clone(),
self.config.use_https_pageserver_api,
);
let new_node = match new_node {
Ok(new_node) => new_node,
Err(error) => return Err(ApiError::InternalServerError(error)),
};
match registration_status {
RegistrationStatus::New => {
self.persistence.insert_node(&new_node).await.map_err(|e| {
if matches!(
e,
crate::persistence::DatabaseError::Query(
diesel::result::Error::DatabaseError(
diesel::result::DatabaseErrorKind::UniqueViolation,
_,
)
)
) {
// The node can be deleted by tombstone API, and not show up in the list of nodes.
// If you see this error, check tombstones first.
ApiError::Conflict(format!("Node {} is already exists", new_node.get_id()))
} else {
ApiError::from(e)
}
})?;
}
RegistrationStatus::NeedUpdate => {
self.persistence
.update_node_on_registration(
register_req.node_id,
register_req.listen_https_port,
)
.await?
}
_ => unreachable!("Other statuses have been processed earlier"),
}
let mut locked = self.inner.write().unwrap();
let mut new_nodes = (*locked.nodes).clone();
locked.scheduler.node_upsert(&new_node);
new_nodes.insert(register_req.node_id, new_node);
locked.nodes = Arc::new(new_nodes);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_pageserver_nodes
.set(locked.nodes.len() as i64);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_https_pageserver_nodes
.set(locked.nodes.values().filter(|n| n.has_https_port()).count() as i64);
match registration_status {
RegistrationStatus::New => {
tracing::info!(
"Registered pageserver {} ({}), now have {} pageservers",
register_req.node_id,
register_req.availability_zone_id,
locked.nodes.len()
);
}
RegistrationStatus::NeedUpdate => {
tracing::info!(
"Re-registered and updated node {} ({})",
register_req.node_id,
register_req.availability_zone_id,
);
}
_ => unreachable!("Other statuses have been processed earlier"),
}
Ok(())
}
/// Configure in-memory and persistent state of a node as requested
///
/// Note that this function does not trigger any immediate side effects in response
/// to the changes. That part is handled by [`Self::handle_node_availability_transition`].
async fn node_state_configure(
&self,
node_id: NodeId,
availability: Option<NodeAvailability>,
scheduling: Option<NodeSchedulingPolicy>,
node_lock: &TracingExclusiveGuard<NodeOperations>,
) -> Result<AvailabilityTransition, ApiError> {
if let Some(scheduling) = scheduling {
// Scheduling is a persistent part of Node: we must write updates to the database before
// applying them in memory
self.persistence
.update_node_scheduling_policy(node_id, scheduling)
.await?;
}
// If we're activating a node, then before setting it active we must reconcile any shard locations
// on that node, in case it is out of sync, e.g. due to being unavailable during controller startup,
// by calling [`Self::node_activate_reconcile`]
//
// The transition we calculate here remains valid later in the function because we hold the op lock on the node:
// nothing else can mutate its availability while we run.
let availability_transition = if let Some(input_availability) = availability.as_ref() {
let (activate_node, availability_transition) = {
let locked = self.inner.read().unwrap();
let Some(node) = locked.nodes.get(&node_id) else {
return Err(ApiError::NotFound(
anyhow::anyhow!("Node {} not registered", node_id).into(),
));
};
(
node.clone(),
node.get_availability_transition(input_availability),
)
};
if matches!(availability_transition, AvailabilityTransition::ToActive) {
self.node_activate_reconcile(activate_node, node_lock)
.await?;
}
availability_transition
} else {
AvailabilityTransition::Unchanged
};
// Apply changes from the request to our in-memory state for the Node
let mut locked = self.inner.write().unwrap();
let (nodes, _tenants, scheduler) = locked.parts_mut();
let mut new_nodes = (**nodes).clone();
let Some(node) = new_nodes.get_mut(&node_id) else {
return Err(ApiError::NotFound(
anyhow::anyhow!("Node not registered").into(),
));
};
if let Some(availability) = availability {
node.set_availability(availability);
}
if let Some(scheduling) = scheduling {
node.set_scheduling(scheduling);
}
// Update the scheduler, in case the elegibility of the node for new shards has changed
scheduler.node_upsert(node);
let new_nodes = Arc::new(new_nodes);
locked.nodes = new_nodes;
Ok(availability_transition)
}
/// Handle availability transition of one node
///
/// Note that you should first call [`Self::node_state_configure`] to update
/// the in-memory state referencing that node. If you need to handle more than one transition
/// consider using [`Self::handle_node_availability_transitions`].
async fn handle_node_availability_transition(
&self,
node_id: NodeId,
transition: AvailabilityTransition,
_node_lock: &TracingExclusiveGuard<NodeOperations>,
) -> Result<(), ApiError> {
// Modify scheduling state for any Tenants that are affected by a change in the node's availability state.
match transition {
AvailabilityTransition::ToOffline => {
tracing::info!("Node {} transition to offline", node_id);
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let mut tenants_affected: usize = 0;
for (_tenant_id, mut schedule_context, shards) in
TenantShardContextIterator::new(tenants, ScheduleMode::Normal)
{
for tenant_shard in shards {
let tenant_shard_id = tenant_shard.tenant_shard_id;
if let Some(observed_loc) =
tenant_shard.observed.locations.get_mut(&node_id)
{
// When a node goes offline, we set its observed configuration to None, indicating unknown: we will
// not assume our knowledge of the node's configuration is accurate until it comes back online
observed_loc.conf = None;
}
if nodes.len() == 1 {
// Special case for single-node cluster: there is no point trying to reschedule
// any tenant shards: avoid doing so, in order to avoid spewing warnings about
// failures to schedule them.
continue;
}
if !nodes
.values()
.any(|n| matches!(n.may_schedule(), MaySchedule::Yes(_)))
{
// Special case for when all nodes are unavailable and/or unschedulable: there is no point
// trying to reschedule since there's nowhere else to go. Without this
// branch we incorrectly detach tenants in response to node unavailability.
continue;
}
if tenant_shard.intent.demote_attached(scheduler, node_id) {
tenant_shard.sequence = tenant_shard.sequence.next();
match tenant_shard.schedule(scheduler, &mut schedule_context) {
Err(e) => {
// It is possible that some tenants will become unschedulable when too many pageservers
// go offline: in this case there isn't much we can do other than make the issue observable.
// TODO: give TenantShard a scheduling error attribute to be queried later.
tracing::warn!(%tenant_shard_id, "Scheduling error when marking pageserver {} offline: {e}", node_id);
}
Ok(()) => {
if self
.maybe_reconcile_shard(
tenant_shard,
nodes,
ReconcilerPriority::Normal,
)
.is_some()
{
tenants_affected += 1;
};
}
}
}
}
}
tracing::info!(
"Launched {} reconciler tasks for tenants affected by node {} going offline",
tenants_affected,
node_id
)
}
AvailabilityTransition::ToActive => {
tracing::info!("Node {} transition to active", node_id);
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, _scheduler) = locked.parts_mut();
// When a node comes back online, we must reconcile any tenant that has a None observed
// location on the node.
for tenant_shard in tenants.values_mut() {
// If a reconciliation is already in progress, rely on the previous scheduling
// decision and skip triggering a new reconciliation.
if tenant_shard.reconciler.is_some() {
continue;
}
if let Some(observed_loc) = tenant_shard.observed.locations.get_mut(&node_id) {
if observed_loc.conf.is_none() {
self.maybe_reconcile_shard(
tenant_shard,
nodes,
ReconcilerPriority::Normal,
);
}
}
}
// TODO: in the background, we should balance work back onto this pageserver
}
// No action required for the intermediate unavailable state.
// When we transition into active or offline from the unavailable state,
// the correct handling above will kick in.
AvailabilityTransition::ToWarmingUpFromActive => {
tracing::info!("Node {} transition to unavailable from active", node_id);
}
AvailabilityTransition::ToWarmingUpFromOffline => {
tracing::info!("Node {} transition to unavailable from offline", node_id);
}
AvailabilityTransition::Unchanged => {
tracing::debug!("Node {} no availability change during config", node_id);
}
}
Ok(())
}
/// Handle availability transition for multiple nodes
///
/// Note that you should first call [`Self::node_state_configure`] for
/// all nodes being handled here for the handling to use fresh in-memory state.
async fn handle_node_availability_transitions(
&self,
transitions: Vec<(
NodeId,
TracingExclusiveGuard<NodeOperations>,
AvailabilityTransition,
)>,
) -> Result<(), Vec<(NodeId, ApiError)>> {
let mut errors = Vec::default();
for (node_id, node_lock, transition) in transitions {
let res = self
.handle_node_availability_transition(node_id, transition, &node_lock)
.await;
if let Err(err) = res {
errors.push((node_id, err));
}
}
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
pub(crate) async fn node_configure(
&self,
node_id: NodeId,
availability: Option<NodeAvailability>,
scheduling: Option<NodeSchedulingPolicy>,
) -> Result<(), ApiError> {
let node_lock =
trace_exclusive_lock(&self.node_op_locks, node_id, NodeOperations::Configure).await;
let transition = self
.node_state_configure(node_id, availability, scheduling, &node_lock)
.await?;
self.handle_node_availability_transition(node_id, transition, &node_lock)
.await
}
/// Wrapper around [`Self::node_configure`] which only allows changes while there is no ongoing
/// operation for HTTP api.
pub(crate) async fn external_node_configure(
&self,
node_id: NodeId,
availability: Option<NodeAvailability>,
scheduling: Option<NodeSchedulingPolicy>,
) -> Result<(), ApiError> {
{
let locked = self.inner.read().unwrap();
if let Some(op) = locked.ongoing_operation.as_ref().map(|op| op.operation) {
return Err(ApiError::PreconditionFailed(
format!("Ongoing background operation forbids configuring: {op}").into(),
));
}
}
self.node_configure(node_id, availability, scheduling).await
}
pub(crate) async fn start_node_drain(
self: &Arc<Self>,
node_id: NodeId,
) -> Result<(), ApiError> {
let (ongoing_op, node_available, node_policy, schedulable_nodes_count) = {
let locked = self.inner.read().unwrap();
let nodes = &locked.nodes;
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
anyhow::anyhow!("Node {} not registered", node_id).into(),
))?;
let schedulable_nodes_count = nodes
.iter()
.filter(|(_, n)| matches!(n.may_schedule(), MaySchedule::Yes(_)))
.count();
(
locked
.ongoing_operation
.as_ref()
.map(|ongoing| ongoing.operation),
node.is_available(),
node.get_scheduling(),
schedulable_nodes_count,
)
};
if let Some(ongoing) = ongoing_op {
return Err(ApiError::PreconditionFailed(
format!("Background operation already ongoing for node: {ongoing}").into(),
));
}
if !node_available {
return Err(ApiError::ResourceUnavailable(
format!("Node {node_id} is currently unavailable").into(),
));
}
if schedulable_nodes_count == 0 {
return Err(ApiError::PreconditionFailed(
"No other schedulable nodes to drain to".into(),
));
}
match node_policy {
NodeSchedulingPolicy::Active => {
self.node_configure(node_id, None, Some(NodeSchedulingPolicy::Draining))
.await?;
let cancel = self.cancel.child_token();
let gate_guard = self.gate.enter().map_err(|_| ApiError::ShuttingDown)?;
self.inner.write().unwrap().ongoing_operation = Some(OperationHandler {
operation: Operation::Drain(Drain { node_id }),
cancel: cancel.clone(),
});
let span = tracing::info_span!(parent: None, "drain_node", %node_id);
tokio::task::spawn({
let service = self.clone();
let cancel = cancel.clone();
async move {
let _gate_guard = gate_guard;
scopeguard::defer! {
let prev = service.inner.write().unwrap().ongoing_operation.take();
if let Some(Operation::Drain(removed_drain)) = prev.map(|h| h.operation) {
assert_eq!(removed_drain.node_id, node_id, "We always take the same operation");
} else {
panic!("We always remove the same operation")
}
}
tracing::info!("Drain background operation starting");
let res = service.drain_node(node_id, cancel).await;
match res {
Ok(()) => {
tracing::info!("Drain background operation completed successfully");
}
Err(OperationError::Cancelled) => {
tracing::info!("Drain background operation was cancelled");
}
Err(err) => {
tracing::error!("Drain background operation encountered: {err}")
}
}
}
}.instrument(span));
}
NodeSchedulingPolicy::Draining => {
return Err(ApiError::Conflict(format!(
"Node {node_id} has drain in progress"
)));
}
policy => {
return Err(ApiError::PreconditionFailed(
format!("Node {node_id} cannot be drained due to {policy:?} policy").into(),
));
}
}
Ok(())
}
pub(crate) async fn cancel_node_drain(&self, node_id: NodeId) -> Result<(), ApiError> {
let node_available = {
let locked = self.inner.read().unwrap();
let nodes = &locked.nodes;
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
anyhow::anyhow!("Node {} not registered", node_id).into(),
))?;
node.is_available()
};
if !node_available {
return Err(ApiError::ResourceUnavailable(
format!("Node {node_id} is currently unavailable").into(),
));
}
if let Some(op_handler) = self.inner.read().unwrap().ongoing_operation.as_ref() {
if let Operation::Drain(drain) = op_handler.operation {
if drain.node_id == node_id {
tracing::info!("Cancelling background drain operation for node {node_id}");
op_handler.cancel.cancel();
return Ok(());
}
}
}
Err(ApiError::PreconditionFailed(
format!("Node {node_id} has no drain in progress").into(),
))
}
pub(crate) async fn start_node_fill(self: &Arc<Self>, node_id: NodeId) -> Result<(), ApiError> {
let (ongoing_op, node_available, node_policy, total_nodes_count) = {
let locked = self.inner.read().unwrap();
let nodes = &locked.nodes;
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
anyhow::anyhow!("Node {} not registered", node_id).into(),
))?;
(
locked
.ongoing_operation
.as_ref()
.map(|ongoing| ongoing.operation),
node.is_available(),
node.get_scheduling(),
nodes.len(),
)
};
if let Some(ongoing) = ongoing_op {
return Err(ApiError::PreconditionFailed(
format!("Background operation already ongoing for node: {ongoing}").into(),
));
}
if !node_available {
return Err(ApiError::ResourceUnavailable(
format!("Node {node_id} is currently unavailable").into(),
));
}
if total_nodes_count <= 1 {
return Err(ApiError::PreconditionFailed(
"No other nodes to fill from".into(),
));
}
match node_policy {
NodeSchedulingPolicy::Active => {
self.node_configure(node_id, None, Some(NodeSchedulingPolicy::Filling))
.await?;
let cancel = self.cancel.child_token();
let gate_guard = self.gate.enter().map_err(|_| ApiError::ShuttingDown)?;
self.inner.write().unwrap().ongoing_operation = Some(OperationHandler {
operation: Operation::Fill(Fill { node_id }),
cancel: cancel.clone(),
});
let span = tracing::info_span!(parent: None, "fill_node", %node_id);
tokio::task::spawn({
let service = self.clone();
let cancel = cancel.clone();
async move {
let _gate_guard = gate_guard;
scopeguard::defer! {
let prev = service.inner.write().unwrap().ongoing_operation.take();
if let Some(Operation::Fill(removed_fill)) = prev.map(|h| h.operation) {
assert_eq!(removed_fill.node_id, node_id, "We always take the same operation");
} else {
panic!("We always remove the same operation")
}
}
tracing::info!("Fill background operation starting");
let res = service.fill_node(node_id, cancel).await;
match res {
Ok(()) => {
tracing::info!("Fill background operation completed successfully");
}
Err(OperationError::Cancelled) => {
tracing::info!("Fill background operation was cancelled");
}
Err(err) => {
tracing::error!("Fill background operation encountered: {err}")
}
}
}
}.instrument(span));
}
NodeSchedulingPolicy::Filling => {
return Err(ApiError::Conflict(format!(
"Node {node_id} has fill in progress"
)));
}
policy => {
return Err(ApiError::PreconditionFailed(
format!("Node {node_id} cannot be filled due to {policy:?} policy").into(),
));
}
}
Ok(())
}
pub(crate) async fn cancel_node_fill(&self, node_id: NodeId) -> Result<(), ApiError> {
let node_available = {
let locked = self.inner.read().unwrap();
let nodes = &locked.nodes;
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
anyhow::anyhow!("Node {} not registered", node_id).into(),
))?;
node.is_available()
};
if !node_available {
return Err(ApiError::ResourceUnavailable(
format!("Node {node_id} is currently unavailable").into(),
));
}
if let Some(op_handler) = self.inner.read().unwrap().ongoing_operation.as_ref() {
if let Operation::Fill(fill) = op_handler.operation {
if fill.node_id == node_id {
tracing::info!("Cancelling background drain operation for node {node_id}");
op_handler.cancel.cancel();
return Ok(());
}
}
}
Err(ApiError::PreconditionFailed(
format!("Node {node_id} has no fill in progress").into(),
))
}
/// Like [`Self::maybe_configured_reconcile_shard`], but uses the default reconciler
/// configuration
fn maybe_reconcile_shard(
&self,
shard: &mut TenantShard,
nodes: &Arc<HashMap<NodeId, Node>>,
priority: ReconcilerPriority,
) -> Option<ReconcilerWaiter> {
self.maybe_configured_reconcile_shard(shard, nodes, ReconcilerConfig::new(priority))
}
/// Before constructing a Reconciler, acquire semaphore units from the appropriate concurrency limit (depends on priority)
fn get_reconciler_units(
&self,
priority: ReconcilerPriority,
) -> Result<ReconcileUnits, TryAcquireError> {
let units = match priority {
ReconcilerPriority::Normal => self.reconciler_concurrency.clone().try_acquire_owned(),
ReconcilerPriority::High => {
match self
.priority_reconciler_concurrency
.clone()
.try_acquire_owned()
{
Ok(u) => Ok(u),
Err(TryAcquireError::NoPermits) => {
// If the high priority semaphore is exhausted, then high priority tasks may steal units from
// the normal priority semaphore.
self.reconciler_concurrency.clone().try_acquire_owned()
}
Err(e) => Err(e),
}
}
};
units.map(ReconcileUnits::new)
}
/// Wrap [`TenantShard`] reconciliation methods with acquisition of [`Gate`] and [`ReconcileUnits`],
fn maybe_configured_reconcile_shard(
&self,
shard: &mut TenantShard,
nodes: &Arc<HashMap<NodeId, Node>>,
reconciler_config: ReconcilerConfig,
) -> Option<ReconcilerWaiter> {
let reconcile_needed = shard.get_reconcile_needed(nodes);
let reconcile_reason = match reconcile_needed {
ReconcileNeeded::No => return None,
ReconcileNeeded::WaitExisting(waiter) => return Some(waiter),
ReconcileNeeded::Yes(reason) => {
// Fall through to try and acquire units for spawning reconciler
reason
}
};
let units = match self.get_reconciler_units(reconciler_config.priority) {
Ok(u) => u,
Err(_) => {
tracing::info!(tenant_id=%shard.tenant_shard_id.tenant_id, shard_id=%shard.tenant_shard_id.shard_slug(),
"Concurrency limited: enqueued for reconcile later");
if !shard.delayed_reconcile {
match self.delayed_reconcile_tx.try_send(shard.tenant_shard_id) {
Err(TrySendError::Closed(_)) => {
// Weird mid-shutdown case?
}
Err(TrySendError::Full(_)) => {
// It is safe to skip sending our ID in the channel: we will eventually get retried by the background reconcile task.
tracing::warn!(
"Many shards are waiting to reconcile: delayed_reconcile queue is full"
);
}
Ok(()) => {
shard.delayed_reconcile = true;
}
}
}
// We won't spawn a reconciler, but we will construct a waiter that waits for the shard's sequence
// number to advance. When this function is eventually called again and succeeds in getting units,
// it will spawn a reconciler that makes this waiter complete.
return Some(shard.future_reconcile_waiter());
}
};
let Ok(gate_guard) = self.reconcilers_gate.enter() else {
// Gate closed: we're shutting down, drop out.
return None;
};
shard.spawn_reconciler(
reconcile_reason,
&self.result_tx,
nodes,
&self.compute_hook,
reconciler_config,
&self.config,
&self.persistence,
units,
gate_guard,
&self.reconcilers_cancel,
self.http_client.clone(),
)
}
/// Check all tenants for pending reconciliation work, and reconcile those in need.
/// Additionally, reschedule tenants that require it.
///
/// Returns how many reconciliation tasks were started, or `1` if no reconciles were
/// spawned but some _would_ have been spawned if `reconciler_concurrency` units where
/// available. A return value of 0 indicates that everything is fully reconciled already.
fn reconcile_all(&self) -> usize {
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let pageservers = nodes.clone();
// This function is an efficient place to update lazy statistics, since we are walking
// all tenants.
let mut pending_reconciles = 0;
let mut az_violations = 0;
// If we find any tenants to drop from memory, stash them to offload after
// we're done traversing the map of tenants.
let mut drop_detached_tenants = Vec::new();
let mut reconciles_spawned = 0;
for shard in tenants.values_mut() {
// Accumulate scheduling statistics
if let (Some(attached), Some(preferred)) =
(shard.intent.get_attached(), shard.preferred_az())
{
let node_az = nodes
.get(attached)
.expect("Nodes exist if referenced")
.get_availability_zone_id();
if node_az != preferred {
az_violations += 1;
}
}
// Skip checking if this shard is already enqueued for reconciliation
if shard.delayed_reconcile && self.reconciler_concurrency.available_permits() == 0 {
// If there is something delayed, then return a nonzero count so that
// callers like reconcile_all_now do not incorrectly get the impression
// that the system is in a quiescent state.
reconciles_spawned = std::cmp::max(1, reconciles_spawned);
pending_reconciles += 1;
continue;
}
// Eventual consistency: if an earlier reconcile job failed, and the shard is still
// dirty, spawn another one
if self
.maybe_reconcile_shard(shard, &pageservers, ReconcilerPriority::Normal)
.is_some()
{
reconciles_spawned += 1;
} else if shard.delayed_reconcile {
// Shard wanted to reconcile but for some reason couldn't.
pending_reconciles += 1;
}
// If this tenant is detached, try dropping it from memory. This is usually done
// proactively in [`Self::process_results`], but we do it here to handle the edge
// case where a reconcile completes while someone else is holding an op lock for the tenant.
if shard.tenant_shard_id.shard_number == ShardNumber(0)
&& shard.policy == PlacementPolicy::Detached
{
if let Some(guard) = self.tenant_op_locks.try_exclusive(
shard.tenant_shard_id.tenant_id,
TenantOperations::DropDetached,
) {
drop_detached_tenants.push((shard.tenant_shard_id.tenant_id, guard));
}
}
}
// Some metrics are calculated from SchedulerNode state, update these periodically
scheduler.update_metrics();
// Process any deferred tenant drops
for (tenant_id, guard) in drop_detached_tenants {
self.maybe_drop_tenant(tenant_id, &mut locked, &guard);
}
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_schedule_az_violation
.set(az_violations as i64);
metrics::METRICS_REGISTRY
.metrics_group
.storage_controller_pending_reconciles
.set(pending_reconciles as i64);
reconciles_spawned
}
/// `optimize` in this context means identifying shards which have valid scheduled locations, but
/// could be scheduled somewhere better:
/// - Cutting over to a secondary if the node with the secondary is more lightly loaded
/// * e.g. after a node fails then recovers, to move some work back to it
/// - Cutting over to a secondary if it improves the spread of shard attachments within a tenant
/// * e.g. after a shard split, the initial attached locations will all be on the node where
/// we did the split, but are probably better placed elsewhere.
/// - Creating new secondary locations if it improves the spreading of a sharded tenant
/// * e.g. after a shard split, some locations will be on the same node (where the split
/// happened), and will probably be better placed elsewhere.
///
/// To put it more briefly: whereas the scheduler respects soft constraints in a ScheduleContext at
/// the time of scheduling, this function looks for cases where a better-scoring location is available
/// according to those same soft constraints.
async fn optimize_all(&self) -> usize {
// Limit on how many shards' optmizations each call to this function will execute. Combined
// with the frequency of background calls, this acts as an implicit rate limit that runs a small
// trickle of optimizations in the background, rather than executing a large number in parallel
// when a change occurs.
const MAX_OPTIMIZATIONS_EXEC_PER_PASS: usize = 16;
// Synchronous prepare: scan shards for possible scheduling optimizations
let candidate_work = self.optimize_all_plan();
let candidate_work_len = candidate_work.len();
// Asynchronous validate: I/O to pageservers to make sure shards are in a good state to apply validation
let validated_work = self.optimize_all_validate(candidate_work).await;
let was_work_filtered = validated_work.len() != candidate_work_len;
// Synchronous apply: update the shards' intent states according to validated optimisations
let mut reconciles_spawned = 0;
let mut optimizations_applied = 0;
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
for (tenant_shard_id, optimization) in validated_work {
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
// Shard was dropped between planning and execution;
continue;
};
tracing::info!(tenant_shard_id=%tenant_shard_id, "Applying optimization: {optimization:?}");
if shard.apply_optimization(scheduler, optimization) {
optimizations_applied += 1;
if self
.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::Normal)
.is_some()
{
reconciles_spawned += 1;
}
}
if optimizations_applied >= MAX_OPTIMIZATIONS_EXEC_PER_PASS {
break;
}
}
if was_work_filtered {
// If we filtered any work out during validation, ensure we return a nonzero value to indicate
// to callers that the system is not in a truly quiet state, it's going to do some work as soon
// as these validations start passing.
reconciles_spawned = std::cmp::max(reconciles_spawned, 1);
}
reconciles_spawned
}
fn optimize_all_plan(&self) -> Vec<(TenantShardId, ScheduleOptimization)> {
// How many candidate optimizations we will generate, before evaluating them for readniess: setting
// this higher than the execution limit gives us a chance to execute some work even if the first
// few optimizations we find are not ready.
const MAX_OPTIMIZATIONS_PLAN_PER_PASS: usize = 64;
let mut work = Vec::new();
let mut locked = self.inner.write().unwrap();
let (_nodes, tenants, scheduler) = locked.parts_mut();
// We are going to plan a bunch of optimisations before applying any of them, so the
// utilisation stats on nodes will be effectively stale for the >1st optimisation we
// generate. To avoid this causing unstable migrations/flapping, it's important that the
// code in TenantShard for finding optimisations uses [`NodeAttachmentSchedulingScore::disregard_utilization`]
// to ignore the utilisation component of the score.
for (_tenant_id, schedule_context, shards) in
TenantShardContextIterator::new(tenants, ScheduleMode::Speculative)
{
for shard in shards {
if work.len() >= MAX_OPTIMIZATIONS_PLAN_PER_PASS {
break;
}
match shard.get_scheduling_policy() {
ShardSchedulingPolicy::Active => {
// Ok to do optimization
}
ShardSchedulingPolicy::Essential if shard.get_preferred_node().is_some() => {
// Ok to do optimization: we are executing a graceful migration that
// has set preferred_node
}
ShardSchedulingPolicy::Essential
| ShardSchedulingPolicy::Pause
| ShardSchedulingPolicy::Stop => {
// Policy prevents optimizing this shard.
continue;
}
}
if !matches!(shard.splitting, SplitState::Idle)
|| matches!(shard.policy, PlacementPolicy::Detached)
|| shard.reconciler.is_some()
{
// Do not start any optimizations while another change to the tenant is ongoing: this
// is not necessary for correctness, but simplifies operations and implicitly throttles
// optimization changes to happen in a "trickle" over time.
continue;
}
// Fast path: we may quickly identify shards that don't have any possible optimisations
if !shard.maybe_optimizable(scheduler, &schedule_context) {
if cfg!(feature = "testing") {
// Check that maybe_optimizable doesn't disagree with the actual optimization functions.
// Only do this in testing builds because it is not a correctness-critical check, so we shouldn't
// panic in prod if we hit this, or spend cycles on it in prod.
assert!(
shard
.optimize_attachment(scheduler, &schedule_context)
.is_none()
);
assert!(
shard
.optimize_secondary(scheduler, &schedule_context)
.is_none()
);
}
continue;
}
if let Some(optimization) =
// If idle, maybe optimize attachments: if a shard has a secondary location that is preferable to
// its primary location based on soft constraints, cut it over.
shard.optimize_attachment(scheduler, &schedule_context)
{
tracing::info!(tenant_shard_id=%shard.tenant_shard_id, "Identified optimization for attachment: {optimization:?}");
work.push((shard.tenant_shard_id, optimization));
break;
} else if let Some(optimization) =
// If idle, maybe optimize secondary locations: if a shard has a secondary location that would be
// better placed on another node, based on ScheduleContext, then adjust it. This
// covers cases like after a shard split, where we might have too many shards
// in the same tenant with secondary locations on the node where they originally split.
shard.optimize_secondary(scheduler, &schedule_context)
{
tracing::info!(tenant_shard_id=%shard.tenant_shard_id, "Identified optimization for secondary: {optimization:?}");
work.push((shard.tenant_shard_id, optimization));
break;
}
}
}
work
}
async fn optimize_all_validate(
&self,
candidate_work: Vec<(TenantShardId, ScheduleOptimization)>,
) -> Vec<(TenantShardId, ScheduleOptimization)> {
// Take a clone of the node map to use outside the lock in async validation phase
let validation_nodes = { self.inner.read().unwrap().nodes.clone() };
let mut want_secondary_status = Vec::new();
// Validate our plans: this is an async phase where we may do I/O to pageservers to
// check that the state of locations is acceptable to run the optimization, such as
// checking that a secondary location is sufficiently warmed-up to cleanly cut over
// in a live migration.
let mut validated_work = Vec::new();
for (tenant_shard_id, optimization) in candidate_work {
match optimization.action {
ScheduleOptimizationAction::MigrateAttachment(MigrateAttachment {
old_attached_node_id: _,
new_attached_node_id,
}) => {
match validation_nodes.get(&new_attached_node_id) {
None => {
// Node was dropped between planning and validation
}
Some(node) => {
if !node.is_available() {
tracing::info!(
"Skipping optimization migration of {tenant_shard_id} to {new_attached_node_id} because node unavailable"
);
} else {
// Accumulate optimizations that require fetching secondary status, so that we can execute these
// remote API requests concurrently.
want_secondary_status.push((
tenant_shard_id,
node.clone(),
optimization,
));
}
}
}
}
ScheduleOptimizationAction::ReplaceSecondary(_)
| ScheduleOptimizationAction::CreateSecondary(_)
| ScheduleOptimizationAction::RemoveSecondary(_) => {
// No extra checks needed to manage secondaries: this does not interrupt client access
validated_work.push((tenant_shard_id, optimization))
}
};
}
// Call into pageserver API to find out if the destination secondary location is warm enough for a reasonably smooth migration: we
// do this so that we avoid spawning a Reconciler that would have to wait minutes/hours for a destination to warm up: that reconciler
// would hold a precious reconcile semaphore unit the whole time it was waiting for the destination to warm up.
let results = self
.tenant_for_shards_api(
want_secondary_status
.iter()
.map(|i| (i.0, i.1.clone()))
.collect(),
|tenant_shard_id, client| async move {
client.tenant_secondary_status(tenant_shard_id).await
},
1,
1,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await;
for ((tenant_shard_id, node, optimization), secondary_status) in
want_secondary_status.into_iter().zip(results.into_iter())
{
match secondary_status {
Err(e) => {
tracing::info!(
"Skipping migration of {tenant_shard_id} to {node}, error querying secondary: {e}"
);
}
Ok(progress) => {
// We require secondary locations to have less than 10GiB of downloads pending before we will use
// them in an optimization
const DOWNLOAD_FRESHNESS_THRESHOLD: u64 = 10 * 1024 * 1024 * 1024;
if progress.heatmap_mtime.is_none()
|| progress.bytes_total < DOWNLOAD_FRESHNESS_THRESHOLD
&& progress.bytes_downloaded != progress.bytes_total
|| progress.bytes_total - progress.bytes_downloaded
> DOWNLOAD_FRESHNESS_THRESHOLD
{
tracing::info!(
"Skipping migration of {tenant_shard_id} to {node} because secondary isn't ready: {progress:?}"
);
#[cfg(feature = "testing")]
if progress.heatmap_mtime.is_none() {
// No heatmap might mean the attached location has never uploaded one, or that
// the secondary download hasn't happened yet. This is relatively unusual in the field,
// but fairly common in tests.
self.kick_secondary_download(tenant_shard_id).await;
}
} else {
// Location looks ready: proceed
tracing::info!(
"{tenant_shard_id} secondary on {node} is warm enough for migration: {progress:?}"
);
validated_work.push((tenant_shard_id, optimization))
}
}
}
}
validated_work
}
/// Some aspects of scheduling optimisation wait for secondary locations to be warm. This
/// happens on multi-minute timescales in the field, which is fine because optimisation is meant
/// to be a lazy background thing. However, when testing, it is not practical to wait around, so
/// we have this helper to move things along faster.
#[cfg(feature = "testing")]
async fn kick_secondary_download(&self, tenant_shard_id: TenantShardId) {
if !self.config.kick_secondary_downloads {
// No-op if kick_secondary_downloads functionaliuty is not configured
return;
}
let (attached_node, secondaries) = {
let locked = self.inner.read().unwrap();
let Some(shard) = locked.tenants.get(&tenant_shard_id) else {
tracing::warn!(
"Skipping kick of secondary download for {tenant_shard_id}: not found"
);
return;
};
let Some(attached) = shard.intent.get_attached() else {
tracing::warn!(
"Skipping kick of secondary download for {tenant_shard_id}: no attached"
);
return;
};
let secondaries = shard
.intent
.get_secondary()
.iter()
.map(|n| locked.nodes.get(n).unwrap().clone())
.collect::<Vec<_>>();
(locked.nodes.get(attached).unwrap().clone(), secondaries)
};
// Make remote API calls to upload + download heatmaps: we ignore errors because this is just
// a 'kick' to let scheduling optimisation run more promptly.
match attached_node
.with_client_retries(
|client| async move { client.tenant_heatmap_upload(tenant_shard_id).await },
&self.http_client,
&self.config.pageserver_jwt_token,
3,
10,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await
{
Some(Err(e)) => {
tracing::info!(
"Failed to upload heatmap from {attached_node} for {tenant_shard_id}: {e}"
);
}
None => {
tracing::info!(
"Cancelled while uploading heatmap from {attached_node} for {tenant_shard_id}"
);
}
Some(Ok(_)) => {
tracing::info!(
"Successfully uploaded heatmap from {attached_node} for {tenant_shard_id}"
);
}
}
for secondary_node in secondaries {
match secondary_node
.with_client_retries(
|client| async move {
client
.tenant_secondary_download(
tenant_shard_id,
Some(Duration::from_secs(1)),
)
.await
},
&self.http_client,
&self.config.pageserver_jwt_token,
3,
10,
SHORT_RECONCILE_TIMEOUT,
&self.cancel,
)
.await
{
Some(Err(e)) => {
tracing::info!(
"Failed to download heatmap from {secondary_node} for {tenant_shard_id}: {e}"
);
}
None => {
tracing::info!(
"Cancelled while downloading heatmap from {secondary_node} for {tenant_shard_id}"
);
}
Some(Ok(progress)) => {
tracing::info!(
"Successfully downloaded heatmap from {secondary_node} for {tenant_shard_id}: {progress:?}"
);
}
}
}
}
/// Asynchronously split a tenant that's eligible for automatic splits. At most one tenant will
/// be split per call.
///
/// Two sets of criteria are used: initial splits and size-based splits (in that order).
/// Initial splits are used to eagerly split unsharded tenants that may be performing initial
/// ingestion, since sharded tenants have significantly better ingestion throughput. Size-based
/// splits are used to bound the maximum shard size and balance out load.
///
/// Splits are based on max_logical_size, i.e. the logical size of the largest timeline in a
/// tenant. We use this instead of the total logical size because branches will duplicate
/// logical size without actually using more storage. We could also use visible physical size,
/// but this might overestimate tenants that frequently churn branches.
///
/// Initial splits (initial_split_threshold):
/// * Applies to tenants with 1 shard.
/// * The largest timeline (max_logical_size) exceeds initial_split_threshold.
/// * Splits into initial_split_shards.
///
/// Size-based splits (split_threshold):
/// * Applies to all tenants.
/// * The largest timeline (max_logical_size) divided by shard count exceeds split_threshold.
/// * Splits such that max_logical_size / shard_count <= split_threshold, in powers of 2.
///
/// Tenant shards are ordered by descending max_logical_size, first initial split candidates
/// then size-based split candidates. The first matching candidate is split.
///
/// The shard count is clamped to max_split_shards. If a candidate is eligible for both initial
/// and size-based splits, the largest shard count will be used.
///
/// An unsharded tenant will get DEFAULT_STRIPE_SIZE, regardless of what its ShardIdentity says.
/// A sharded tenant will retain its stripe size, as splits do not allow changing it.
///
/// TODO: consider spawning multiple splits in parallel: this is only called once every 20
/// seconds, so a large backlog can take a long time, and if a tenant fails to split it will
/// block all other splits.
async fn autosplit_tenants(self: &Arc<Self>) {
// If max_split_shards is set to 0 or 1, we can't split.
let max_split_shards = self.config.max_split_shards;
if max_split_shards <= 1 {
return;
}
// If initial_split_shards is set to 0 or 1, disable initial splits.
let mut initial_split_threshold = self.config.initial_split_threshold.unwrap_or(0);
let initial_split_shards = self.config.initial_split_shards;
if initial_split_shards <= 1 {
initial_split_threshold = 0;
}
// If no split_threshold nor initial_split_threshold, disable autosplits.
let split_threshold = self.config.split_threshold.unwrap_or(0);
if split_threshold == 0 && initial_split_threshold == 0 {
return;
}
// Fetch split candidates in prioritized order.
//
// If initial splits are enabled, fetch eligible tenants first. We prioritize initial splits
// over size-based splits, since these are often performing initial ingestion and rely on
// splits to improve ingest throughput.
let mut candidates = Vec::new();
if initial_split_threshold > 0 {
// Initial splits: fetch tenants with 1 shard where the logical size of the largest
// timeline exceeds the initial split threshold.
let initial_candidates = self
.get_top_tenant_shards(&TopTenantShardsRequest {
order_by: TenantSorting::MaxLogicalSize,
limit: 10,
where_shards_lt: Some(ShardCount(2)),
where_gt: Some(initial_split_threshold),
})
.await;
candidates.extend(initial_candidates);
}
if split_threshold > 0 {
// Size-based splits: fetch tenants where the logical size of the largest timeline
// divided by shard count exceeds the split threshold.
//
// max_logical_size is only tracked on shard 0, and contains the total logical size
// across all shards. We have to order and filter by MaxLogicalSizePerShard, i.e.
// max_logical_size / shard_count, such that we only receive tenants that are actually
// eligible for splits. But we still use max_logical_size for later split calculations.
let size_candidates = self
.get_top_tenant_shards(&TopTenantShardsRequest {
order_by: TenantSorting::MaxLogicalSizePerShard,
limit: 10,
where_shards_lt: Some(ShardCount(max_split_shards)),
where_gt: Some(split_threshold),
})
.await;
#[cfg(feature = "testing")]
assert!(
size_candidates.iter().all(|c| c.id.is_shard_zero()),
"MaxLogicalSizePerShard returned non-zero shard: {size_candidates:?}",
);
candidates.extend(size_candidates);
}
// Filter out tenants in a prohibiting scheduling modes
// and tenants with an ongoing import.
//
// Note that the import check here is oportunistic. An import might start
// after the check before we actually update [`TenantShard::splitting`].
// [`Self::tenant_shard_split`] checks the database whilst holding the exclusive
// tenant lock. Imports might take a long time, so the check here allows us
// to split something else instead of trying the same shard over and over.
{
let state = self.inner.read().unwrap();
candidates.retain(|i| {
let shard = state.tenants.get(&i.id);
match shard {
Some(t) => {
t.get_scheduling_policy() == ShardSchedulingPolicy::Active
&& t.importing == TimelineImportState::Idle
}
None => false,
}
});
}
// Pick the first candidate to split. This will generally always be the first one in
// candidates, but we defensively skip candidates that end up not actually splitting.
let Some((candidate, new_shard_count)) = candidates
.into_iter()
.filter_map(|candidate| {
let new_shard_count = Self::compute_split_shards(ShardSplitInputs {
shard_count: candidate.id.shard_count,
max_logical_size: candidate.max_logical_size,
split_threshold,
max_split_shards,
initial_split_threshold,
initial_split_shards,
});
new_shard_count.map(|shards| (candidate, shards.count()))
})
.next()
else {
debug!("no split-eligible tenants found");
return;
};
// Retain the stripe size of sharded tenants, as splits don't allow changing it. Otherwise,
// use DEFAULT_STRIPE_SIZE for unsharded tenants -- their stripe size doesn't really matter,
// and if we change the default stripe size we want to use the new default rather than an
// old, persisted stripe size.
let new_stripe_size = match candidate.id.shard_count.count() {
0 => panic!("invalid shard count 0"),
1 => Some(DEFAULT_STRIPE_SIZE),
2.. => None,
};
// We spawn a task to run this, so it's exactly like some external API client requesting
// it. We don't want to block the background reconcile loop on this.
let old_shard_count = candidate.id.shard_count.count();
info!(
"auto-splitting tenant {old_shard_count} → {new_shard_count} shards, \
current size {candidate:?} (split_threshold={split_threshold} \
initial_split_threshold={initial_split_threshold})"
);
let this = self.clone();
tokio::spawn(
async move {
match this
.tenant_shard_split(
candidate.id.tenant_id,
TenantShardSplitRequest {
new_shard_count,
new_stripe_size,
},
)
.await
{
Ok(_) => {
info!("successful auto-split {old_shard_count} → {new_shard_count} shards")
}
Err(err) => error!("auto-split failed: {err}"),
}
}
.instrument(info_span!("auto_split", tenant_id=%candidate.id.tenant_id)),
);
}
/// Returns the number of shards to split a tenant into, or None if the tenant shouldn't split,
/// based on the total logical size of the largest timeline summed across all shards. Uses the
/// larger of size-based and initial splits, clamped to max_split_shards.
///
/// NB: the thresholds are exclusive, since TopTenantShardsRequest uses where_gt.
fn compute_split_shards(inputs: ShardSplitInputs) -> Option<ShardCount> {
let ShardSplitInputs {
shard_count,
max_logical_size,
split_threshold,
max_split_shards,
initial_split_threshold,
initial_split_shards,
} = inputs;
let mut new_shard_count: u8 = shard_count.count();
// Size-based splits. Ensures max_logical_size / new_shard_count <= split_threshold, using
// power-of-two shard counts.
//
// If the current shard count is not a power of two, and does not exceed split_threshold,
// then we leave it alone rather than forcing a power-of-two split.
if split_threshold > 0
&& max_logical_size.div_ceil(split_threshold) > shard_count.count() as u64
{
new_shard_count = max_logical_size
.div_ceil(split_threshold)
.checked_next_power_of_two()
.unwrap_or(u8::MAX as u64)
.try_into()
.unwrap_or(u8::MAX);
}
// Initial splits. Use the larger of size-based and initial split shard counts. This only
// applies to unsharded tenants, i.e. changes to initial_split_threshold or
// initial_split_shards are not retroactive for sharded tenants.
if initial_split_threshold > 0
&& shard_count.count() <= 1
&& max_logical_size > initial_split_threshold
{
new_shard_count = new_shard_count.max(initial_split_shards);
}
// Clamp to max shards.
new_shard_count = new_shard_count.min(max_split_shards);
// Don't split if we're not increasing the shard count.
if new_shard_count <= shard_count.count() {
return None;
}
Some(ShardCount(new_shard_count))
}
/// Fetches the top tenant shards from every available node, in descending order of
/// max logical size. Offline nodes are skipped, and any errors from available nodes
/// will be logged and ignored.
async fn get_top_tenant_shards(
&self,
request: &TopTenantShardsRequest,
) -> Vec<TopTenantShardItem> {
let nodes = self
.inner
.read()
.unwrap()
.nodes
.values()
.filter(|node| node.is_available())
.cloned()
.collect_vec();
let mut futures = FuturesUnordered::new();
for node in nodes {
futures.push(async move {
node.with_client_retries(
|client| async move { client.top_tenant_shards(request.clone()).await },
&self.http_client,
&self.config.pageserver_jwt_token,
3,
3,
Duration::from_secs(5),
&self.cancel,
)
.await
});
}
let mut top = Vec::new();
while let Some(output) = futures.next().await {
match output {
Some(Ok(response)) => top.extend(response.shards),
Some(Err(mgmt_api::Error::Cancelled)) => {}
Some(Err(err)) => warn!("failed to fetch top tenants: {err}"),
None => {} // node is shutting down
}
}
top.sort_by_key(|i| i.max_logical_size);
top.reverse();
top
}
/// Useful for tests: run whatever work a background [`Self::reconcile_all`] would have done, but
/// also wait for any generated Reconcilers to complete. Calling this until it returns zero should
/// put the system into a quiescent state where future background reconciliations won't do anything.
pub(crate) async fn reconcile_all_now(&self) -> Result<usize, ReconcileWaitError> {
let reconciles_spawned = self.reconcile_all();
let reconciles_spawned = if reconciles_spawned == 0 {
// Only optimize when we are otherwise idle
self.optimize_all().await
} else {
reconciles_spawned
};
let waiters = {
let mut waiters = Vec::new();
let locked = self.inner.read().unwrap();
for (_tenant_shard_id, shard) in locked.tenants.iter() {
if let Some(waiter) = shard.get_waiter() {
waiters.push(waiter);
}
}
waiters
};
let waiter_count = waiters.len();
match self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
Ok(()) => {}
Err(e) => {
if let ReconcileWaitError::Failed(_, reconcile_error) = &e {
match **reconcile_error {
ReconcileError::Cancel
| ReconcileError::Remote(mgmt_api::Error::Cancelled) => {
// Ignore reconciler cancel errors: this reconciler might have shut down
// because some other change superceded it. We will return a nonzero number,
// so the caller knows they might have to call again to quiesce the system.
}
_ => {
return Err(e);
}
}
} else {
return Err(e);
}
}
};
tracing::info!(
"{} reconciles in reconcile_all, {} waiters",
reconciles_spawned,
waiter_count
);
Ok(std::cmp::max(waiter_count, reconciles_spawned))
}
async fn stop_reconciliations(&self, reason: StopReconciliationsReason) {
// Cancel all on-going reconciles and wait for them to exit the gate.
tracing::info!("{reason}: cancelling and waiting for in-flight reconciles");
self.reconcilers_cancel.cancel();
self.reconcilers_gate.close().await;
// Signal the background loop in [`Service::process_results`] to exit once
// it has proccessed the results from all the reconciles we cancelled earlier.
tracing::info!("{reason}: processing results from previously in-flight reconciles");
self.result_tx.send(ReconcileResultRequest::Stop).ok();
self.result_tx.closed().await;
}
pub async fn shutdown(&self) {
self.stop_reconciliations(StopReconciliationsReason::ShuttingDown)
.await;
// Background tasks hold gate guards: this notifies them of the cancellation and
// waits for them all to complete.
tracing::info!("Shutting down: cancelling and waiting for background tasks to exit");
self.cancel.cancel();
self.gate.close().await;
}
/// Spot check the download lag for a secondary location of a shard.
/// Should be used as a heuristic, since it's not always precise: the
/// secondary might have not downloaded the new heat map yet and, hence,
/// is not aware of the lag.
///
/// Returns:
/// * Ok(None) if the lag could not be determined from the status,
/// * Ok(Some(_)) if the lag could be determind
/// * Err on failures to query the pageserver.
async fn secondary_lag(
&self,
secondary: &NodeId,
tenant_shard_id: TenantShardId,
) -> Result<Option<u64>, mgmt_api::Error> {
let nodes = self.inner.read().unwrap().nodes.clone();
let node = nodes.get(secondary).ok_or(mgmt_api::Error::ApiError(
StatusCode::NOT_FOUND,
format!("Node with id {secondary} not found"),
))?;
match node
.with_client_retries(
|client| async move { client.tenant_secondary_status(tenant_shard_id).await },
&self.http_client,
&self.config.pageserver_jwt_token,
1,
3,
Duration::from_millis(250),
&self.cancel,
)
.await
{
Some(Ok(status)) => match status.heatmap_mtime {
Some(_) => Ok(Some(status.bytes_total - status.bytes_downloaded)),
None => Ok(None),
},
Some(Err(e)) => Err(e),
None => Err(mgmt_api::Error::Cancelled),
}
}
/// Drain a node by moving the shards attached to it as primaries.
/// This is a long running operation and it should run as a separate Tokio task.
pub(crate) async fn drain_node(
self: &Arc<Self>,
node_id: NodeId,
cancel: CancellationToken,
) -> Result<(), OperationError> {
const MAX_SECONDARY_LAG_BYTES_DEFAULT: u64 = 256 * 1024 * 1024;
let max_secondary_lag_bytes = self
.config
.max_secondary_lag_bytes
.unwrap_or(MAX_SECONDARY_LAG_BYTES_DEFAULT);
// By default, live migrations are generous about the wait time for getting
// the secondary location up to speed. When draining, give up earlier in order
// to not stall the operation when a cold secondary is encountered.
const SECONDARY_WARMUP_TIMEOUT: Duration = Duration::from_secs(30);
const SECONDARY_DOWNLOAD_REQUEST_TIMEOUT: Duration = Duration::from_secs(5);
let reconciler_config = ReconcilerConfigBuilder::new(ReconcilerPriority::Normal)
.secondary_warmup_timeout(SECONDARY_WARMUP_TIMEOUT)
.secondary_download_request_timeout(SECONDARY_DOWNLOAD_REQUEST_TIMEOUT)
.build();
let mut waiters = Vec::new();
let mut tid_iter = TenantShardIterator::new({
let service = self.clone();
move |last_inspected_shard: Option<TenantShardId>| {
let locked = &service.inner.read().unwrap();
let tenants = &locked.tenants;
let entry = match last_inspected_shard {
Some(skip_past) => {
// Skip to the last seen tenant shard id
let mut cursor = tenants.iter().skip_while(|(tid, _)| **tid != skip_past);
// Skip past the last seen
cursor.nth(1)
}
None => tenants.first_key_value(),
};
entry.map(|(tid, _)| tid).copied()
}
});
while !tid_iter.finished() {
if cancel.is_cancelled() {
match self
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
.await
{
Ok(()) => return Err(OperationError::Cancelled),
Err(err) => {
return Err(OperationError::FinalizeError(
format!(
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
)
.into(),
));
}
}
}
drain_utils::validate_node_state(&node_id, self.inner.read().unwrap().nodes.clone())?;
while waiters.len() < MAX_RECONCILES_PER_OPERATION {
let tid = match tid_iter.next() {
Some(tid) => tid,
None => {
break;
}
};
let tid_drain = TenantShardDrain {
drained_node: node_id,
tenant_shard_id: tid,
};
let dest_node_id = {
let locked = self.inner.read().unwrap();
match tid_drain
.tenant_shard_eligible_for_drain(&locked.tenants, &locked.scheduler)
{
Some(node_id) => node_id,
None => {
continue;
}
}
};
match self.secondary_lag(&dest_node_id, tid).await {
Ok(Some(lag)) if lag <= max_secondary_lag_bytes => {
// The secondary is reasonably up to date.
// Migrate to it
}
Ok(Some(lag)) => {
tracing::info!(
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
"Secondary on node {dest_node_id} is lagging by {lag}. Skipping reconcile."
);
continue;
}
Ok(None) => {
tracing::info!(
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
"Could not determine lag for secondary on node {dest_node_id}. Skipping reconcile."
);
continue;
}
Err(err) => {
tracing::warn!(
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
"Failed to get secondary lag from node {dest_node_id}. Skipping reconcile: {err}"
);
continue;
}
}
{
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let rescheduled = tid_drain.reschedule_to_secondary(
dest_node_id,
tenants,
scheduler,
nodes,
)?;
if let Some(tenant_shard) = rescheduled {
let waiter = self.maybe_configured_reconcile_shard(
tenant_shard,
nodes,
reconciler_config,
);
if let Some(some) = waiter {
waiters.push(some);
}
}
}
}
waiters = self
.await_waiters_remainder(waiters, WAITER_FILL_DRAIN_POLL_TIMEOUT)
.await;
failpoint_support::sleep_millis_async!("sleepy-drain-loop", &cancel);
}
while !waiters.is_empty() {
if cancel.is_cancelled() {
match self
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
.await
{
Ok(()) => return Err(OperationError::Cancelled),
Err(err) => {
return Err(OperationError::FinalizeError(
format!(
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
)
.into(),
));
}
}
}
tracing::info!("Awaiting {} pending drain reconciliations", waiters.len());
waiters = self
.await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
.await;
}
// At this point we have done the best we could to drain shards from this node.
// Set the node scheduling policy to `[NodeSchedulingPolicy::PauseForRestart]`
// to complete the drain.
if let Err(err) = self
.node_configure(node_id, None, Some(NodeSchedulingPolicy::PauseForRestart))
.await
{
// This is not fatal. Anything that is polling the node scheduling policy to detect
// the end of the drain operations will hang, but all such places should enforce an
// overall timeout. The scheduling policy will be updated upon node re-attach and/or
// by the counterpart fill operation.
return Err(OperationError::FinalizeError(
format!(
"Failed to finalise drain of {node_id} by setting scheduling policy to PauseForRestart: {err}"
)
.into(),
));
}
Ok(())
}
/// Create a node fill plan (pick secondaries to promote), based on:
/// 1. Shards which have a secondary on this node, and this node is in their home AZ, and are currently attached to a node
/// outside their home AZ, should be migrated back here.
/// 2. If after step 1 we have not migrated enough shards for this node to have its fair share of
/// attached shards, we will promote more shards from the nodes with the most attached shards, unless
/// those shards have a home AZ that doesn't match the node we're filling.
fn fill_node_plan(&self, node_id: NodeId) -> Vec<TenantShardId> {
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, _scheduler) = locked.parts_mut();
let node_az = nodes
.get(&node_id)
.expect("Node must exist")
.get_availability_zone_id()
.clone();
// The tenant shard IDs that we plan to promote from secondary to attached on this node
let mut plan = Vec::new();
// Collect shards which do not have a preferred AZ & are elegible for moving in stage 2
let mut free_tids_by_node: HashMap<NodeId, Vec<TenantShardId>> = HashMap::new();
// Don't respect AZ preferences if there is only one AZ. This comes up in tests, but it could
// conceivably come up in real life if deploying a single-AZ region intentionally.
let respect_azs = nodes
.values()
.map(|n| n.get_availability_zone_id())
.unique()
.count()
> 1;
// Step 1: collect all shards that we are required to migrate back to this node because their AZ preference
// requires it.
for (tsid, tenant_shard) in tenants {
if !tenant_shard.intent.get_secondary().contains(&node_id) {
// Shard doesn't have a secondary on this node, ignore it.
continue;
}
// AZ check: when filling nodes after a restart, our intent is to move _back_ the
// shards which belong on this node, not to promote shards whose scheduling preference
// would be on their currently attached node. So will avoid promoting shards whose
// home AZ doesn't match the AZ of the node we're filling.
match tenant_shard.preferred_az() {
_ if !respect_azs => {
if let Some(primary) = tenant_shard.intent.get_attached() {
free_tids_by_node.entry(*primary).or_default().push(*tsid);
}
}
None => {
// Shard doesn't have an AZ preference: it is elegible to be moved, but we
// will only do so if our target shard count requires it.
if let Some(primary) = tenant_shard.intent.get_attached() {
free_tids_by_node.entry(*primary).or_default().push(*tsid);
}
}
Some(az) if az == &node_az => {
// This shard's home AZ is equal to the node we're filling: it should
// be moved back to this node as part of filling, unless its currently
// attached location is also in its home AZ.
if let Some(primary) = tenant_shard.intent.get_attached() {
if nodes
.get(primary)
.expect("referenced node must exist")
.get_availability_zone_id()
!= tenant_shard
.preferred_az()
.expect("tenant must have an AZ preference")
{
plan.push(*tsid)
}
} else {
plan.push(*tsid)
}
}
Some(_) => {
// This shard's home AZ is somewhere other than the node we're filling,
// it may not be moved back to this node as part of filling. Ignore it
}
}
}
// Step 2: also promote any AZ-agnostic shards as required to achieve the target number of attachments
let fill_requirement = locked.scheduler.compute_fill_requirement(node_id);
let expected_attached = locked.scheduler.expected_attached_shard_count();
let nodes_by_load = locked.scheduler.nodes_by_attached_shard_count();
let mut promoted_per_tenant: HashMap<TenantId, usize> = HashMap::new();
for (node_id, attached) in nodes_by_load {
let available = locked.nodes.get(&node_id).is_some_and(|n| n.is_available());
if !available {
continue;
}
if plan.len() >= fill_requirement
|| free_tids_by_node.is_empty()
|| attached <= expected_attached
{
break;
}
let can_take = attached - expected_attached;
let needed = fill_requirement - plan.len();
let mut take = std::cmp::min(can_take, needed);
let mut remove_node = false;
while take > 0 {
match free_tids_by_node.get_mut(&node_id) {
Some(tids) => match tids.pop() {
Some(tid) => {
let max_promote_for_tenant = std::cmp::max(
tid.shard_count.count() as usize / locked.nodes.len(),
1,
);
let promoted = promoted_per_tenant.entry(tid.tenant_id).or_default();
if *promoted < max_promote_for_tenant {
plan.push(tid);
*promoted += 1;
take -= 1;
}
}
None => {
remove_node = true;
break;
}
},
None => {
break;
}
}
}
if remove_node {
free_tids_by_node.remove(&node_id);
}
}
plan
}
/// Fill a node by promoting its secondaries until the cluster is balanced
/// with regards to attached shard counts. Note that this operation only
/// makes sense as a counterpart to the drain implemented in [`Service::drain_node`].
/// This is a long running operation and it should run as a separate Tokio task.
pub(crate) async fn fill_node(
&self,
node_id: NodeId,
cancel: CancellationToken,
) -> Result<(), OperationError> {
const SECONDARY_WARMUP_TIMEOUT: Duration = Duration::from_secs(30);
const SECONDARY_DOWNLOAD_REQUEST_TIMEOUT: Duration = Duration::from_secs(5);
let reconciler_config = ReconcilerConfigBuilder::new(ReconcilerPriority::Normal)
.secondary_warmup_timeout(SECONDARY_WARMUP_TIMEOUT)
.secondary_download_request_timeout(SECONDARY_DOWNLOAD_REQUEST_TIMEOUT)
.build();
let mut tids_to_promote = self.fill_node_plan(node_id);
let mut waiters = Vec::new();
// Execute the plan we've composed above. Before aplying each move from the plan,
// we validate to ensure that it has not gone stale in the meantime.
while !tids_to_promote.is_empty() {
if cancel.is_cancelled() {
match self
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
.await
{
Ok(()) => return Err(OperationError::Cancelled),
Err(err) => {
return Err(OperationError::FinalizeError(
format!(
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
)
.into(),
));
}
}
}
{
let mut locked = self.inner.write().unwrap();
let (nodes, tenants, scheduler) = locked.parts_mut();
let node = nodes.get(&node_id).ok_or(OperationError::NodeStateChanged(
format!("node {node_id} was removed").into(),
))?;
let current_policy = node.get_scheduling();
if !matches!(current_policy, NodeSchedulingPolicy::Filling) {
// TODO(vlad): maybe cancel pending reconciles before erroring out. need to think
// about it
return Err(OperationError::NodeStateChanged(
format!("node {node_id} changed state to {current_policy:?}").into(),
));
}
while waiters.len() < MAX_RECONCILES_PER_OPERATION {
if let Some(tid) = tids_to_promote.pop() {
if let Some(tenant_shard) = tenants.get_mut(&tid) {
// If the node being filled is not a secondary anymore,
// skip the promotion.
if !tenant_shard.intent.get_secondary().contains(&node_id) {
continue;
}
let previously_attached_to = *tenant_shard.intent.get_attached();
match tenant_shard.reschedule_to_secondary(Some(node_id), scheduler) {
Err(e) => {
tracing::warn!(
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
"Scheduling error when filling pageserver {} : {e}", node_id
);
}
Ok(()) => {
tracing::info!(
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
"Rescheduled shard while filling node {}: {:?} -> {}",
node_id,
previously_attached_to,
node_id
);
if let Some(waiter) = self.maybe_configured_reconcile_shard(
tenant_shard,
nodes,
reconciler_config,
) {
waiters.push(waiter);
}
}
}
}
} else {
break;
}
}
}
waiters = self
.await_waiters_remainder(waiters, WAITER_FILL_DRAIN_POLL_TIMEOUT)
.await;
}
while !waiters.is_empty() {
if cancel.is_cancelled() {
match self
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
.await
{
Ok(()) => return Err(OperationError::Cancelled),
Err(err) => {
return Err(OperationError::FinalizeError(
format!(
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
)
.into(),
));
}
}
}
tracing::info!("Awaiting {} pending fill reconciliations", waiters.len());
waiters = self
.await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
.await;
}
if let Err(err) = self
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
.await
{
// This isn't a huge issue since the filling process starts upon request. However, it
// will prevent the next drain from starting. The only case in which this can fail
// is database unavailability. Such a case will require manual intervention.
return Err(OperationError::FinalizeError(
format!("Failed to finalise fill of {node_id} by setting scheduling policy to Active: {err}")
.into(),
));
}
Ok(())
}
/// Updates scrubber metadata health check results.
pub(crate) async fn metadata_health_update(
&self,
update_req: MetadataHealthUpdateRequest,
) -> Result<(), ApiError> {
let now = chrono::offset::Utc::now();
let (healthy_records, unhealthy_records) = {
let locked = self.inner.read().unwrap();
let healthy_records = update_req
.healthy_tenant_shards
.into_iter()
// Retain only health records associated with tenant shards managed by storage controller.
.filter(|tenant_shard_id| locked.tenants.contains_key(tenant_shard_id))
.map(|tenant_shard_id| MetadataHealthPersistence::new(tenant_shard_id, true, now))
.collect();
let unhealthy_records = update_req
.unhealthy_tenant_shards
.into_iter()
.filter(|tenant_shard_id| locked.tenants.contains_key(tenant_shard_id))
.map(|tenant_shard_id| MetadataHealthPersistence::new(tenant_shard_id, false, now))
.collect();
(healthy_records, unhealthy_records)
};
self.persistence
.update_metadata_health_records(healthy_records, unhealthy_records, now)
.await?;
Ok(())
}
/// Lists the tenant shards that has unhealthy metadata status.
pub(crate) async fn metadata_health_list_unhealthy(
&self,
) -> Result<Vec<TenantShardId>, ApiError> {
let result = self
.persistence
.list_unhealthy_metadata_health_records()
.await?
.iter()
.map(|p| p.get_tenant_shard_id().unwrap())
.collect();
Ok(result)
}
/// Lists the tenant shards that have not been scrubbed for some duration.
pub(crate) async fn metadata_health_list_outdated(
&self,
not_scrubbed_for: Duration,
) -> Result<Vec<MetadataHealthRecord>, ApiError> {
let earlier = chrono::offset::Utc::now() - not_scrubbed_for;
let result = self
.persistence
.list_outdated_metadata_health_records(earlier)
.await?
.into_iter()
.map(|record| record.into())
.collect();
Ok(result)
}
pub(crate) fn get_leadership_status(&self) -> LeadershipStatus {
self.inner.read().unwrap().get_leadership_status()
}
/// Handler for step down requests
///
/// Step down runs in separate task since once it's called it should
/// be driven to completion. Subsequent requests will wait on the same
/// step down task.
pub(crate) async fn step_down(self: &Arc<Self>) -> GlobalObservedState {
let handle = self.step_down_barrier.get_or_init(|| {
let step_down_self = self.clone();
let (tx, rx) = tokio::sync::watch::channel::<Option<GlobalObservedState>>(None);
tokio::spawn(async move {
let state = step_down_self.step_down_task().await;
tx.send(Some(state))
.expect("Task Arc<Service> keeps receiver alive");
});
rx
});
handle
.clone()
.wait_for(|observed_state| observed_state.is_some())
.await
.expect("Task Arc<Service> keeps sender alive")
.deref()
.clone()
.expect("Checked above")
}
async fn step_down_task(&self) -> GlobalObservedState {
tracing::info!("Received step down request from peer");
failpoint_support::sleep_millis_async!("sleep-on-step-down-handling");
self.inner.write().unwrap().step_down();
let stop_reconciliations =
self.stop_reconciliations(StopReconciliationsReason::SteppingDown);
let mut stop_reconciliations = std::pin::pin!(stop_reconciliations);
let started_at = Instant::now();
// Wait for reconciliations to stop and warn if that's taking a long time
loop {
tokio::select! {
_ = &mut stop_reconciliations => {
tracing::info!("Reconciliations stopped, proceeding with step down");
break;
}
_ = tokio::time::sleep(Duration::from_secs(10)) => {
tracing::warn!(
elapsed_sec=%started_at.elapsed().as_secs(),
"Stopping reconciliations during step down is taking too long"
);
}
}
}
let mut global_observed = GlobalObservedState::default();
let locked = self.inner.read().unwrap();
for (tid, tenant_shard) in locked.tenants.iter() {
global_observed
.0
.insert(*tid, tenant_shard.observed.clone());
}
global_observed
}
pub(crate) async fn update_shards_preferred_azs(
&self,
req: ShardsPreferredAzsRequest,
) -> Result<ShardsPreferredAzsResponse, ApiError> {
let preferred_azs = req.preferred_az_ids.into_iter().collect::<Vec<_>>();
let updated = self
.persistence
.set_tenant_shard_preferred_azs(preferred_azs)
.await
.map_err(|err| {
ApiError::InternalServerError(anyhow::anyhow!(
"Failed to persist preferred AZs: {err}"
))
})?;
let mut updated_in_mem_and_db = Vec::default();
let mut locked = self.inner.write().unwrap();
let state = locked.deref_mut();
for (tid, az_id) in updated {
let shard = state.tenants.get_mut(&tid);
if let Some(shard) = shard {
shard.set_preferred_az(&mut state.scheduler, az_id);
updated_in_mem_and_db.push(tid);
}
}
Ok(ShardsPreferredAzsResponse {
updated: updated_in_mem_and_db,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
/// Tests Service::compute_split_shards. For readability, this specifies sizes in GBs rather
/// than bytes. Note that max_logical_size is the total logical size of the largest timeline
/// summed across all shards.
#[test]
fn compute_split_shards() {
// Size-based split: two shards have a 500 GB timeline, which need to split into 8 shards
// that are <= 64 GB,
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 500,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
Some(ShardCount(8))
);
// Size-based split: noop at or below threshold, fires above.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 127,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
None,
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 128,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
None,
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 129,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
Some(ShardCount(4)),
);
// Size-based split: clamped to max_split_shards.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 10000,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
Some(ShardCount(16))
);
// Size-based split: tenant already at or beyond max_split_shards is not split.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(16),
max_logical_size: 10000,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
None
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(32),
max_logical_size: 10000,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
None
);
// Size-based split: a non-power-of-2 shard count is normalized to power-of-2 if it
// exceeds split_threshold (i.e. a 3-shard tenant splits into 8, not 6).
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(3),
max_logical_size: 320,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
Some(ShardCount(8))
);
// Size-based split: a non-power-of-2 shard count is not normalized to power-of-2 if the
// existing shards are below or at split_threshold, but splits into 4 if it exceeds it.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(3),
max_logical_size: 191,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
None
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(3),
max_logical_size: 192,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
None
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(3),
max_logical_size: 193,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 0,
initial_split_shards: 0,
}),
Some(ShardCount(4))
);
// Initial split: tenant has a 10 GB timeline, split into 4 shards.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 10,
split_threshold: 0,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
Some(ShardCount(4))
);
// Initial split: 0 ShardCount is equivalent to 1.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(0),
max_logical_size: 10,
split_threshold: 0,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
Some(ShardCount(4))
);
// Initial split: at or below threshold is noop.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 7,
split_threshold: 0,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
None,
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 8,
split_threshold: 0,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
None,
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 9,
split_threshold: 0,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
Some(ShardCount(4))
);
// Initial split: already sharded tenant is not affected, even if above threshold and below
// shard count.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 20,
split_threshold: 0,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
None,
);
// Initial split: clamped to max_shards.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 10,
split_threshold: 0,
max_split_shards: 3,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
Some(ShardCount(3)),
);
// Initial+size split: tenant eligible for both will use the larger shard count.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 10,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
Some(ShardCount(4)),
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 500,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 4,
}),
Some(ShardCount(8)),
);
// Initial+size split: sharded tenant is only eligible for size-based split.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 200,
split_threshold: 64,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 8,
}),
Some(ShardCount(4)),
);
// Initial+size split: uses the larger shard count even with initial_split_threshold above
// split_threshold.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 10,
split_threshold: 4,
max_split_shards: 16,
initial_split_threshold: 8,
initial_split_shards: 8,
}),
Some(ShardCount(8)),
);
// Test backwards compatibility with production settings when initial/size-based splits were
// rolled out: a single split into 8 shards at 64 GB. Any already sharded tenants with <8
// shards will split according to split_threshold.
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 65,
split_threshold: 64,
max_split_shards: 8,
initial_split_threshold: 64,
initial_split_shards: 8,
}),
Some(ShardCount(8)),
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(1),
max_logical_size: 64,
split_threshold: 64,
max_split_shards: 8,
initial_split_threshold: 64,
initial_split_shards: 8,
}),
None,
);
assert_eq!(
Service::compute_split_shards(ShardSplitInputs {
shard_count: ShardCount(2),
max_logical_size: 129,
split_threshold: 64,
max_split_shards: 8,
initial_split_threshold: 64,
initial_split_shards: 8,
}),
Some(ShardCount(4)),
);
}
}