mirror of
https://github.com/neondatabase/neon.git
synced 2026-01-07 05:22:56 +00:00
The 1.88.0 stable release is near (this Thursday). We'd like to fix most warnings beforehand so that the compiler upgrade doesn't require approval from too many teams. This is therefore a preparation PR (like similar PRs before it). There is a lot of changes for this release, mostly because the `uninlined_format_args` lint has been added to the `style` lint group. One can read more about the lint [here](https://rust-lang.github.io/rust-clippy/master/#/uninlined_format_args). The PR is the result of `cargo +beta clippy --fix` and `cargo fmt`. One remaining warning is left for the proxy team. --------- Co-authored-by: Conrad Ludgate <conrad@neon.tech>
9869 lines
405 KiB
Rust
9869 lines
405 KiB
Rust
pub mod chaos_injector;
|
|
mod context_iterator;
|
|
pub(crate) mod safekeeper_reconciler;
|
|
mod safekeeper_service;
|
|
|
|
use std::borrow::Cow;
|
|
use std::cmp::Ordering;
|
|
use std::collections::{BTreeMap, HashMap, HashSet};
|
|
use std::error::Error;
|
|
use std::num::NonZeroU32;
|
|
use std::ops::{Deref, DerefMut};
|
|
use std::path::PathBuf;
|
|
use std::str::FromStr;
|
|
use std::sync::{Arc, OnceLock};
|
|
use std::time::{Duration, Instant, SystemTime};
|
|
|
|
use anyhow::Context;
|
|
use context_iterator::TenantShardContextIterator;
|
|
use control_plane::storage_controller::{
|
|
AttachHookRequest, AttachHookResponse, InspectRequest, InspectResponse,
|
|
};
|
|
use diesel::result::DatabaseErrorKind;
|
|
use futures::StreamExt;
|
|
use futures::stream::FuturesUnordered;
|
|
use http_utils::error::ApiError;
|
|
use hyper::Uri;
|
|
use itertools::Itertools;
|
|
use pageserver_api::controller_api::{
|
|
AvailabilityZone, MetadataHealthRecord, MetadataHealthUpdateRequest, NodeAvailability,
|
|
NodeRegisterRequest, NodeSchedulingPolicy, NodeShard, NodeShardResponse, PlacementPolicy,
|
|
ShardSchedulingPolicy, ShardsPreferredAzsRequest, ShardsPreferredAzsResponse,
|
|
TenantCreateRequest, TenantCreateResponse, TenantCreateResponseShard, TenantDescribeResponse,
|
|
TenantDescribeResponseShard, TenantLocateResponse, TenantPolicyRequest,
|
|
TenantShardMigrateRequest, TenantShardMigrateResponse,
|
|
};
|
|
use pageserver_api::models::{
|
|
self, DetachBehavior, LocationConfig, LocationConfigListResponse, LocationConfigMode, LsnLease,
|
|
PageserverUtilization, SecondaryProgress, ShardImportStatus, ShardParameters, TenantConfig,
|
|
TenantConfigPatchRequest, TenantConfigRequest, TenantLocationConfigRequest,
|
|
TenantLocationConfigResponse, TenantShardLocation, TenantShardSplitRequest,
|
|
TenantShardSplitResponse, TenantSorting, TenantTimeTravelRequest,
|
|
TimelineArchivalConfigRequest, TimelineCreateRequest, TimelineCreateResponseStorcon,
|
|
TimelineInfo, TopTenantShardItem, TopTenantShardsRequest,
|
|
};
|
|
use pageserver_api::shard::{
|
|
DEFAULT_STRIPE_SIZE, ShardCount, ShardIdentity, ShardNumber, ShardStripeSize, TenantShardId,
|
|
};
|
|
use pageserver_api::upcall_api::{
|
|
PutTimelineImportStatusRequest, ReAttachRequest, ReAttachResponse, ReAttachResponseTenant,
|
|
TimelineImportStatusRequest, ValidateRequest, ValidateResponse, ValidateResponseTenant,
|
|
};
|
|
use pageserver_client::{BlockUnblock, mgmt_api};
|
|
use reqwest::{Certificate, StatusCode};
|
|
use safekeeper_api::models::SafekeeperUtilization;
|
|
use safekeeper_reconciler::SafekeeperReconcilers;
|
|
use tokio::sync::TryAcquireError;
|
|
use tokio::sync::mpsc::error::TrySendError;
|
|
use tokio_util::sync::CancellationToken;
|
|
use tracing::{Instrument, debug, error, info, info_span, instrument, warn};
|
|
use utils::completion::Barrier;
|
|
use utils::generation::Generation;
|
|
use utils::id::{NodeId, TenantId, TimelineId};
|
|
use utils::lsn::Lsn;
|
|
use utils::shard::ShardIndex;
|
|
use utils::sync::gate::{Gate, GateGuard};
|
|
use utils::{failpoint_support, pausable_failpoint};
|
|
|
|
use crate::background_node_operations::{
|
|
Drain, Fill, MAX_RECONCILES_PER_OPERATION, Operation, OperationError, OperationHandler,
|
|
};
|
|
use crate::compute_hook::{self, ComputeHook, NotifyError};
|
|
use crate::drain_utils::{self, TenantShardDrain, TenantShardIterator};
|
|
use crate::heartbeater::{Heartbeater, PageserverState, SafekeeperState};
|
|
use crate::id_lock_map::{
|
|
IdLockMap, TracingExclusiveGuard, trace_exclusive_lock, trace_shared_lock,
|
|
};
|
|
use crate::leadership::Leadership;
|
|
use crate::metrics;
|
|
use crate::node::{AvailabilityTransition, Node};
|
|
use crate::pageserver_client::PageserverClient;
|
|
use crate::peer_client::GlobalObservedState;
|
|
use crate::persistence::split_state::SplitState;
|
|
use crate::persistence::{
|
|
AbortShardSplitStatus, ControllerPersistence, DatabaseError, DatabaseResult,
|
|
MetadataHealthPersistence, Persistence, ShardGenerationState, TenantFilter,
|
|
TenantShardPersistence,
|
|
};
|
|
use crate::reconciler::{
|
|
ReconcileError, ReconcileUnits, ReconcilerConfig, ReconcilerConfigBuilder, ReconcilerPriority,
|
|
attached_location_conf,
|
|
};
|
|
use crate::safekeeper::Safekeeper;
|
|
use crate::scheduler::{
|
|
AttachedShardTag, MaySchedule, ScheduleContext, ScheduleError, ScheduleMode, Scheduler,
|
|
};
|
|
use crate::tenant_shard::{
|
|
IntentState, MigrateAttachment, ObservedState, ObservedStateDelta, ObservedStateLocation,
|
|
ReconcileNeeded, ReconcileResult, ReconcileWaitError, ReconcilerStatus, ReconcilerWaiter,
|
|
ScheduleOptimization, ScheduleOptimizationAction, TenantShard,
|
|
};
|
|
use crate::timeline_import::{
|
|
FinalizingImport, ImportResult, ShardImportStatuses, TimelineImport,
|
|
TimelineImportFinalizeError, TimelineImportState, UpcallClient,
|
|
};
|
|
|
|
const WAITER_FILL_DRAIN_POLL_TIMEOUT: Duration = Duration::from_millis(500);
|
|
|
|
// For operations that should be quick, like attaching a new tenant
|
|
const SHORT_RECONCILE_TIMEOUT: Duration = Duration::from_secs(5);
|
|
|
|
// For operations that might be slow, like migrating a tenant with
|
|
// some data in it.
|
|
pub const RECONCILE_TIMEOUT: Duration = Duration::from_secs(30);
|
|
|
|
// If we receive a call using Secondary mode initially, it will omit generation. We will initialize
|
|
// tenant shards into this generation, and as long as it remains in this generation, we will accept
|
|
// input generation from future requests as authoritative.
|
|
const INITIAL_GENERATION: Generation = Generation::new(0);
|
|
|
|
/// How long [`Service::startup_reconcile`] is allowed to take before it should give
|
|
/// up on unresponsive pageservers and proceed.
|
|
pub(crate) const STARTUP_RECONCILE_TIMEOUT: Duration = Duration::from_secs(30);
|
|
|
|
/// How long a node may be unresponsive to heartbeats before we declare it offline.
|
|
/// This must be long enough to cover node restarts as well as normal operations: in future
|
|
pub const MAX_OFFLINE_INTERVAL_DEFAULT: Duration = Duration::from_secs(30);
|
|
|
|
/// How long a node may be unresponsive to heartbeats during start up before we declare it
|
|
/// offline.
|
|
///
|
|
/// This is much more lenient than [`MAX_OFFLINE_INTERVAL_DEFAULT`] since the pageserver's
|
|
/// handling of the re-attach response may take a long time and blocks heartbeats from
|
|
/// being handled on the pageserver side.
|
|
pub const MAX_WARMING_UP_INTERVAL_DEFAULT: Duration = Duration::from_secs(300);
|
|
|
|
/// How often to send heartbeats to registered nodes?
|
|
pub const HEARTBEAT_INTERVAL_DEFAULT: Duration = Duration::from_secs(5);
|
|
|
|
/// How long is too long for a reconciliation?
|
|
pub const LONG_RECONCILE_THRESHOLD_DEFAULT: Duration = Duration::from_secs(120);
|
|
|
|
#[derive(Clone, strum_macros::Display)]
|
|
enum TenantOperations {
|
|
Create,
|
|
LocationConfig,
|
|
ConfigSet,
|
|
ConfigPatch,
|
|
TimeTravelRemoteStorage,
|
|
Delete,
|
|
UpdatePolicy,
|
|
ShardSplit,
|
|
SecondaryDownload,
|
|
TimelineCreate,
|
|
TimelineDelete,
|
|
AttachHook,
|
|
TimelineArchivalConfig,
|
|
TimelineDetachAncestor,
|
|
TimelineGcBlockUnblock,
|
|
DropDetached,
|
|
DownloadHeatmapLayers,
|
|
TimelineLsnLease,
|
|
}
|
|
|
|
#[derive(Clone, strum_macros::Display)]
|
|
enum NodeOperations {
|
|
Register,
|
|
Configure,
|
|
Delete,
|
|
DeleteTombstone,
|
|
}
|
|
|
|
/// The leadership status for the storage controller process.
|
|
/// Allowed transitions are:
|
|
/// 1. Leader -> SteppedDown
|
|
/// 2. Candidate -> Leader
|
|
#[derive(
|
|
Eq,
|
|
PartialEq,
|
|
Copy,
|
|
Clone,
|
|
strum_macros::Display,
|
|
strum_macros::EnumIter,
|
|
measured::FixedCardinalityLabel,
|
|
)]
|
|
#[strum(serialize_all = "snake_case")]
|
|
pub(crate) enum LeadershipStatus {
|
|
/// This is the steady state where the storage controller can produce
|
|
/// side effects in the cluster.
|
|
Leader,
|
|
/// We've been notified to step down by another candidate. No reconciliations
|
|
/// take place in this state.
|
|
SteppedDown,
|
|
/// Initial state for a new storage controller instance. Will attempt to assume leadership.
|
|
#[allow(unused)]
|
|
Candidate,
|
|
}
|
|
|
|
enum ShardGenerationValidity {
|
|
Valid,
|
|
Mismatched {
|
|
claimed: Generation,
|
|
actual: Option<Generation>,
|
|
},
|
|
}
|
|
|
|
pub const RECONCILER_CONCURRENCY_DEFAULT: usize = 128;
|
|
pub const PRIORITY_RECONCILER_CONCURRENCY_DEFAULT: usize = 256;
|
|
pub const SAFEKEEPER_RECONCILER_CONCURRENCY_DEFAULT: usize = 32;
|
|
|
|
// Depth of the channel used to enqueue shards for reconciliation when they can't do it immediately.
|
|
// This channel is finite-size to avoid using excessive memory if we get into a state where reconciles are finishing more slowly
|
|
// than they're being pushed onto the queue.
|
|
const MAX_DELAYED_RECONCILES: usize = 10000;
|
|
|
|
// Top level state available to all HTTP handlers
|
|
struct ServiceState {
|
|
leadership_status: LeadershipStatus,
|
|
|
|
tenants: BTreeMap<TenantShardId, TenantShard>,
|
|
|
|
nodes: Arc<HashMap<NodeId, Node>>,
|
|
|
|
safekeepers: Arc<HashMap<NodeId, Safekeeper>>,
|
|
|
|
safekeeper_reconcilers: SafekeeperReconcilers,
|
|
|
|
scheduler: Scheduler,
|
|
|
|
/// Ongoing background operation on the cluster if any is running.
|
|
/// Note that only one such operation may run at any given time,
|
|
/// hence the type choice.
|
|
ongoing_operation: Option<OperationHandler>,
|
|
|
|
/// Queue of tenants who are waiting for concurrency limits to permit them to reconcile
|
|
delayed_reconcile_rx: tokio::sync::mpsc::Receiver<TenantShardId>,
|
|
|
|
/// Tracks ongoing timeline import finalization tasks
|
|
imports_finalizing: BTreeMap<(TenantId, TimelineId), FinalizingImport>,
|
|
}
|
|
|
|
/// Transform an error from a pageserver into an error to return to callers of a storage
|
|
/// controller API.
|
|
fn passthrough_api_error(node: &Node, e: mgmt_api::Error) -> ApiError {
|
|
match e {
|
|
mgmt_api::Error::SendRequest(e) => {
|
|
// Presume errors sending requests are connectivity/availability issues
|
|
ApiError::ResourceUnavailable(format!("{node} error sending request: {e}").into())
|
|
}
|
|
mgmt_api::Error::ReceiveErrorBody(str) => {
|
|
// Presume errors receiving body are connectivity/availability issues
|
|
ApiError::ResourceUnavailable(
|
|
format!("{node} error receiving error body: {str}").into(),
|
|
)
|
|
}
|
|
mgmt_api::Error::ReceiveBody(err) if err.is_decode() => {
|
|
// Return 500 for decoding errors.
|
|
ApiError::InternalServerError(anyhow::Error::from(err).context("error decoding body"))
|
|
}
|
|
mgmt_api::Error::ReceiveBody(err) => {
|
|
// Presume errors receiving body are connectivity/availability issues except for decoding errors
|
|
let src_str = err.source().map(|e| e.to_string()).unwrap_or_default();
|
|
ApiError::ResourceUnavailable(
|
|
format!("{node} error receiving error body: {err} {src_str}").into(),
|
|
)
|
|
}
|
|
mgmt_api::Error::ApiError(StatusCode::NOT_FOUND, msg) => {
|
|
ApiError::NotFound(anyhow::anyhow!(format!("{node}: {msg}")).into())
|
|
}
|
|
mgmt_api::Error::ApiError(StatusCode::SERVICE_UNAVAILABLE, msg) => {
|
|
ApiError::ResourceUnavailable(format!("{node}: {msg}").into())
|
|
}
|
|
mgmt_api::Error::ApiError(status @ StatusCode::UNAUTHORIZED, msg)
|
|
| mgmt_api::Error::ApiError(status @ StatusCode::FORBIDDEN, msg) => {
|
|
// Auth errors talking to a pageserver are not auth errors for the caller: they are
|
|
// internal server errors, showing that something is wrong with the pageserver or
|
|
// storage controller's auth configuration.
|
|
ApiError::InternalServerError(anyhow::anyhow!("{node} {status}: {msg}"))
|
|
}
|
|
mgmt_api::Error::ApiError(status @ StatusCode::TOO_MANY_REQUESTS, msg) => {
|
|
// Pass through 429 errors: if pageserver is asking us to wait + retry, we in
|
|
// turn ask our clients to wait + retry
|
|
ApiError::Conflict(format!("{node} {status}: {status} {msg}"))
|
|
}
|
|
mgmt_api::Error::ApiError(status, msg) => {
|
|
// Presume general case of pageserver API errors is that we tried to do something
|
|
// that can't be done right now.
|
|
ApiError::Conflict(format!("{node} {status}: {status} {msg}"))
|
|
}
|
|
mgmt_api::Error::Cancelled => ApiError::ShuttingDown,
|
|
mgmt_api::Error::Timeout(e) => ApiError::Timeout(e.into()),
|
|
}
|
|
}
|
|
|
|
impl ServiceState {
|
|
fn new(
|
|
nodes: HashMap<NodeId, Node>,
|
|
safekeepers: HashMap<NodeId, Safekeeper>,
|
|
tenants: BTreeMap<TenantShardId, TenantShard>,
|
|
scheduler: Scheduler,
|
|
delayed_reconcile_rx: tokio::sync::mpsc::Receiver<TenantShardId>,
|
|
initial_leadership_status: LeadershipStatus,
|
|
reconcilers_cancel: CancellationToken,
|
|
) -> Self {
|
|
metrics::update_leadership_status(initial_leadership_status);
|
|
|
|
Self {
|
|
leadership_status: initial_leadership_status,
|
|
tenants,
|
|
nodes: Arc::new(nodes),
|
|
safekeepers: Arc::new(safekeepers),
|
|
safekeeper_reconcilers: SafekeeperReconcilers::new(reconcilers_cancel),
|
|
scheduler,
|
|
ongoing_operation: None,
|
|
delayed_reconcile_rx,
|
|
imports_finalizing: Default::default(),
|
|
}
|
|
}
|
|
|
|
fn parts_mut(
|
|
&mut self,
|
|
) -> (
|
|
&mut Arc<HashMap<NodeId, Node>>,
|
|
&mut BTreeMap<TenantShardId, TenantShard>,
|
|
&mut Scheduler,
|
|
) {
|
|
(&mut self.nodes, &mut self.tenants, &mut self.scheduler)
|
|
}
|
|
|
|
#[allow(clippy::type_complexity)]
|
|
fn parts_mut_sk(
|
|
&mut self,
|
|
) -> (
|
|
&mut Arc<HashMap<NodeId, Node>>,
|
|
&mut Arc<HashMap<NodeId, Safekeeper>>,
|
|
&mut BTreeMap<TenantShardId, TenantShard>,
|
|
&mut Scheduler,
|
|
) {
|
|
(
|
|
&mut self.nodes,
|
|
&mut self.safekeepers,
|
|
&mut self.tenants,
|
|
&mut self.scheduler,
|
|
)
|
|
}
|
|
|
|
fn get_leadership_status(&self) -> LeadershipStatus {
|
|
self.leadership_status
|
|
}
|
|
|
|
fn step_down(&mut self) {
|
|
self.leadership_status = LeadershipStatus::SteppedDown;
|
|
metrics::update_leadership_status(self.leadership_status);
|
|
}
|
|
|
|
fn become_leader(&mut self) {
|
|
self.leadership_status = LeadershipStatus::Leader;
|
|
metrics::update_leadership_status(self.leadership_status);
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct Config {
|
|
// All pageservers managed by one instance of this service must have
|
|
// the same public key. This JWT token will be used to authenticate
|
|
// this service to the pageservers it manages.
|
|
pub pageserver_jwt_token: Option<String>,
|
|
|
|
// All safekeepers managed by one instance of this service must have
|
|
// the same public key. This JWT token will be used to authenticate
|
|
// this service to the safekeepers it manages.
|
|
pub safekeeper_jwt_token: Option<String>,
|
|
|
|
// This JWT token will be used to authenticate this service to the control plane.
|
|
pub control_plane_jwt_token: Option<String>,
|
|
|
|
// This JWT token will be used to authenticate with other storage controller instances
|
|
pub peer_jwt_token: Option<String>,
|
|
|
|
/// Prefix for storage API endpoints of the control plane. We use this prefix to compute
|
|
/// URLs that we use to send pageserver and safekeeper attachment locations.
|
|
/// If this is None, the compute hook will assume it is running in a test environment
|
|
/// and try to invoke neon_local instead.
|
|
pub control_plane_url: Option<String>,
|
|
|
|
/// Grace period within which a pageserver does not respond to heartbeats, but is still
|
|
/// considered active. Once the grace period elapses, the next heartbeat failure will
|
|
/// mark the pagseserver offline.
|
|
pub max_offline_interval: Duration,
|
|
|
|
/// Extended grace period within which pageserver may not respond to heartbeats.
|
|
/// This extended grace period kicks in after the node has been drained for restart
|
|
/// and/or upon handling the re-attach request from a node.
|
|
pub max_warming_up_interval: Duration,
|
|
|
|
/// How many normal-priority Reconcilers may be spawned concurrently
|
|
pub reconciler_concurrency: usize,
|
|
|
|
/// How many high-priority Reconcilers may be spawned concurrently
|
|
pub priority_reconciler_concurrency: usize,
|
|
|
|
/// How many safekeeper reconciles may happen concurrently (per safekeeper)
|
|
pub safekeeper_reconciler_concurrency: usize,
|
|
|
|
/// How many API requests per second to allow per tenant, across all
|
|
/// tenant-scoped API endpoints. Further API requests queue until ready.
|
|
pub tenant_rate_limit: NonZeroU32,
|
|
|
|
/// If a tenant shard's largest timeline (max_logical_size) exceeds this value, all tenant
|
|
/// shards will be split in 2 until they fall below split_threshold (up to max_split_shards).
|
|
///
|
|
/// This will greedily split into as many shards as necessary to fall below split_threshold, as
|
|
/// powers of 2: if a tenant shard is 7 times larger than split_threshold, it will split into 8
|
|
/// immediately, rather than first 2 then 4 then 8.
|
|
///
|
|
/// None or 0 disables auto-splitting.
|
|
///
|
|
/// TODO: consider using total logical size of all timelines instead.
|
|
pub split_threshold: Option<u64>,
|
|
|
|
/// The maximum number of shards a tenant can be split into during autosplits. Does not affect
|
|
/// manual split requests. 0 or 1 disables autosplits, as we already have 1 shard.
|
|
pub max_split_shards: u8,
|
|
|
|
/// The size at which an unsharded tenant should initially split. Ingestion is significantly
|
|
/// faster with multiple shards, so eagerly splitting below split_threshold will typically speed
|
|
/// up initial ingestion of large tenants.
|
|
///
|
|
/// This should be below split_threshold, but it is not required. If both split_threshold and
|
|
/// initial_split_threshold qualify, the largest number of target shards will be used.
|
|
///
|
|
/// Does not apply to already sharded tenants: changing initial_split_threshold or
|
|
/// initial_split_shards is not retroactive for already-sharded tenants.
|
|
///
|
|
/// None or 0 disables initial splits.
|
|
pub initial_split_threshold: Option<u64>,
|
|
|
|
/// The number of shards to split into when reaching initial_split_threshold. Will
|
|
/// be clamped to max_split_shards.
|
|
///
|
|
/// 0 or 1 disables initial splits. Has no effect if initial_split_threshold is disabled.
|
|
pub initial_split_shards: u8,
|
|
|
|
// TODO: make this cfg(feature = "testing")
|
|
pub neon_local_repo_dir: Option<PathBuf>,
|
|
|
|
// Maximum acceptable download lag for the secondary location
|
|
// while draining a node. If the secondary location is lagging
|
|
// by more than the configured amount, then the secondary is not
|
|
// upgraded to primary.
|
|
pub max_secondary_lag_bytes: Option<u64>,
|
|
|
|
pub heartbeat_interval: Duration,
|
|
|
|
pub address_for_peers: Option<Uri>,
|
|
|
|
pub start_as_candidate: bool,
|
|
|
|
pub long_reconcile_threshold: Duration,
|
|
|
|
pub use_https_pageserver_api: bool,
|
|
|
|
pub use_https_safekeeper_api: bool,
|
|
|
|
pub ssl_ca_certs: Vec<Certificate>,
|
|
|
|
pub timelines_onto_safekeepers: bool,
|
|
|
|
pub use_local_compute_notifications: bool,
|
|
|
|
/// Number of safekeepers to choose for a timeline when creating it.
|
|
/// Safekeepers will be choosen from different availability zones.
|
|
pub timeline_safekeeper_count: i64,
|
|
|
|
#[cfg(feature = "testing")]
|
|
pub kick_secondary_downloads: bool,
|
|
}
|
|
|
|
impl From<DatabaseError> for ApiError {
|
|
fn from(err: DatabaseError) -> ApiError {
|
|
match err {
|
|
DatabaseError::Query(e) => ApiError::InternalServerError(e.into()),
|
|
// FIXME: ApiError doesn't have an Unavailable variant, but ShuttingDown maps to 503.
|
|
DatabaseError::Connection(_) | DatabaseError::ConnectionPool(_) => {
|
|
ApiError::ShuttingDown
|
|
}
|
|
DatabaseError::Logical(reason) | DatabaseError::Migration(reason) => {
|
|
ApiError::InternalServerError(anyhow::anyhow!(reason))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
enum InitialShardScheduleOutcome {
|
|
Scheduled(TenantCreateResponseShard),
|
|
NotScheduled,
|
|
ShardScheduleError(ScheduleError),
|
|
}
|
|
|
|
pub struct Service {
|
|
inner: Arc<std::sync::RwLock<ServiceState>>,
|
|
config: Config,
|
|
persistence: Arc<Persistence>,
|
|
compute_hook: Arc<ComputeHook>,
|
|
result_tx: tokio::sync::mpsc::UnboundedSender<ReconcileResultRequest>,
|
|
|
|
heartbeater_ps: Heartbeater<Node, PageserverState>,
|
|
heartbeater_sk: Heartbeater<Safekeeper, SafekeeperState>,
|
|
|
|
// Channel for background cleanup from failed operations that require cleanup, such as shard split
|
|
abort_tx: tokio::sync::mpsc::UnboundedSender<TenantShardSplitAbort>,
|
|
|
|
// Locking on a tenant granularity (covers all shards in the tenant):
|
|
// - Take exclusively for rare operations that mutate the tenant's persistent state (e.g. create/delete/split)
|
|
// - Take in shared mode for operations that need the set of shards to stay the same to complete reliably (e.g. timeline CRUD)
|
|
tenant_op_locks: IdLockMap<TenantId, TenantOperations>,
|
|
|
|
// Locking for node-mutating operations: take exclusively for operations that modify the node's persistent state, or
|
|
// that transition it to/from Active.
|
|
node_op_locks: IdLockMap<NodeId, NodeOperations>,
|
|
|
|
// Limit how many Reconcilers we will spawn concurrently for normal-priority tasks such as background reconciliations
|
|
// and reconciliation on startup.
|
|
reconciler_concurrency: Arc<tokio::sync::Semaphore>,
|
|
|
|
// Limit how many Reconcilers we will spawn concurrently for high-priority tasks such as tenant/timeline CRUD, which
|
|
// a human user might be waiting for.
|
|
priority_reconciler_concurrency: Arc<tokio::sync::Semaphore>,
|
|
|
|
/// Queue of tenants who are waiting for concurrency limits to permit them to reconcile
|
|
/// Send into this queue to promptly attempt to reconcile this shard next time units are available.
|
|
///
|
|
/// Note that this state logically lives inside ServiceState, but carrying Sender here makes the code simpler
|
|
/// by avoiding needing a &mut ref to something inside the ServiceState. This could be optimized to
|
|
/// use a VecDeque instead of a channel to reduce synchronization overhead, at the cost of some code complexity.
|
|
delayed_reconcile_tx: tokio::sync::mpsc::Sender<TenantShardId>,
|
|
|
|
// Process shutdown will fire this token
|
|
cancel: CancellationToken,
|
|
|
|
// Child token of [`Service::cancel`] used by reconcilers
|
|
reconcilers_cancel: CancellationToken,
|
|
|
|
// Background tasks will hold this gate
|
|
gate: Gate,
|
|
|
|
// Reconcilers background tasks will hold this gate
|
|
reconcilers_gate: Gate,
|
|
|
|
/// This waits for initial reconciliation with pageservers to complete. Until this barrier
|
|
/// passes, it isn't safe to do any actions that mutate tenants.
|
|
pub(crate) startup_complete: Barrier,
|
|
|
|
/// HTTP client with proper CA certs.
|
|
http_client: reqwest::Client,
|
|
|
|
/// Handle for the step down background task if one was ever requested
|
|
step_down_barrier: OnceLock<tokio::sync::watch::Receiver<Option<GlobalObservedState>>>,
|
|
}
|
|
|
|
impl From<ReconcileWaitError> for ApiError {
|
|
fn from(value: ReconcileWaitError) -> Self {
|
|
match value {
|
|
ReconcileWaitError::Shutdown => ApiError::ShuttingDown,
|
|
e @ ReconcileWaitError::Timeout(_) => ApiError::Timeout(format!("{e}").into()),
|
|
e @ ReconcileWaitError::Failed(..) => ApiError::InternalServerError(anyhow::anyhow!(e)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<OperationError> for ApiError {
|
|
fn from(value: OperationError) -> Self {
|
|
match value {
|
|
OperationError::NodeStateChanged(err) | OperationError::FinalizeError(err) => {
|
|
ApiError::InternalServerError(anyhow::anyhow!(err))
|
|
}
|
|
OperationError::Cancelled => ApiError::Conflict("Operation was cancelled".into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::large_enum_variant)]
|
|
enum TenantCreateOrUpdate {
|
|
Create(TenantCreateRequest),
|
|
Update(Vec<ShardUpdate>),
|
|
}
|
|
|
|
struct ShardSplitParams {
|
|
old_shard_count: ShardCount,
|
|
new_shard_count: ShardCount,
|
|
new_stripe_size: Option<ShardStripeSize>,
|
|
targets: Vec<ShardSplitTarget>,
|
|
policy: PlacementPolicy,
|
|
config: TenantConfig,
|
|
shard_ident: ShardIdentity,
|
|
preferred_az_id: Option<AvailabilityZone>,
|
|
}
|
|
|
|
// When preparing for a shard split, we may either choose to proceed with the split,
|
|
// or find that the work is already done and return NoOp.
|
|
enum ShardSplitAction {
|
|
Split(Box<ShardSplitParams>),
|
|
NoOp(TenantShardSplitResponse),
|
|
}
|
|
|
|
// A parent shard which will be split
|
|
struct ShardSplitTarget {
|
|
parent_id: TenantShardId,
|
|
node: Node,
|
|
child_ids: Vec<TenantShardId>,
|
|
}
|
|
|
|
/// When we tenant shard split operation fails, we may not be able to clean up immediately, because nodes
|
|
/// might not be available. We therefore use a queue of abort operations processed in the background.
|
|
struct TenantShardSplitAbort {
|
|
tenant_id: TenantId,
|
|
/// The target values from the request that failed
|
|
new_shard_count: ShardCount,
|
|
new_stripe_size: Option<ShardStripeSize>,
|
|
/// Until this abort op is complete, no other operations may be done on the tenant
|
|
_tenant_lock: TracingExclusiveGuard<TenantOperations>,
|
|
/// The reconciler gate for the duration of the split operation, and any included abort.
|
|
_gate: GateGuard,
|
|
}
|
|
|
|
#[derive(thiserror::Error, Debug)]
|
|
enum TenantShardSplitAbortError {
|
|
#[error(transparent)]
|
|
Database(#[from] DatabaseError),
|
|
#[error(transparent)]
|
|
Remote(#[from] mgmt_api::Error),
|
|
#[error("Unavailable")]
|
|
Unavailable,
|
|
}
|
|
|
|
/// Inputs for computing a target shard count for a tenant.
|
|
struct ShardSplitInputs {
|
|
/// Current shard count.
|
|
shard_count: ShardCount,
|
|
/// Total size of largest timeline summed across all shards.
|
|
max_logical_size: u64,
|
|
/// Size-based split threshold. Zero if size-based splits are disabled.
|
|
split_threshold: u64,
|
|
/// Upper bound on target shards. 0 or 1 disables splits.
|
|
max_split_shards: u8,
|
|
/// Initial split threshold. Zero if initial splits are disabled.
|
|
initial_split_threshold: u64,
|
|
/// Number of shards for initial splits. 0 or 1 disables initial splits.
|
|
initial_split_shards: u8,
|
|
}
|
|
|
|
struct ShardUpdate {
|
|
tenant_shard_id: TenantShardId,
|
|
placement_policy: PlacementPolicy,
|
|
tenant_config: TenantConfig,
|
|
|
|
/// If this is None, generation is not updated.
|
|
generation: Option<Generation>,
|
|
|
|
/// If this is None, scheduling policy is not updated.
|
|
scheduling_policy: Option<ShardSchedulingPolicy>,
|
|
}
|
|
|
|
enum StopReconciliationsReason {
|
|
ShuttingDown,
|
|
SteppingDown,
|
|
}
|
|
|
|
impl std::fmt::Display for StopReconciliationsReason {
|
|
fn fmt(&self, writer: &mut std::fmt::Formatter) -> std::fmt::Result {
|
|
let s = match self {
|
|
Self::ShuttingDown => "Shutting down",
|
|
Self::SteppingDown => "Stepping down",
|
|
};
|
|
write!(writer, "{s}")
|
|
}
|
|
}
|
|
|
|
pub(crate) enum ReconcileResultRequest {
|
|
ReconcileResult(ReconcileResult),
|
|
Stop,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct MutationLocation {
|
|
node: Node,
|
|
generation: Generation,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct ShardMutationLocations {
|
|
latest: MutationLocation,
|
|
other: Vec<MutationLocation>,
|
|
}
|
|
|
|
#[derive(Default, Clone)]
|
|
struct TenantMutationLocations(BTreeMap<TenantShardId, ShardMutationLocations>);
|
|
|
|
impl Service {
|
|
pub fn get_config(&self) -> &Config {
|
|
&self.config
|
|
}
|
|
|
|
pub fn get_http_client(&self) -> &reqwest::Client {
|
|
&self.http_client
|
|
}
|
|
|
|
/// Called once on startup, this function attempts to contact all pageservers to build an up-to-date
|
|
/// view of the world, and determine which pageservers are responsive.
|
|
#[instrument(skip_all)]
|
|
async fn startup_reconcile(
|
|
self: &Arc<Service>,
|
|
current_leader: Option<ControllerPersistence>,
|
|
leader_step_down_state: Option<GlobalObservedState>,
|
|
bg_compute_notify_result_tx: tokio::sync::mpsc::Sender<
|
|
Result<(), (TenantShardId, NotifyError)>,
|
|
>,
|
|
) {
|
|
// Startup reconciliation does I/O to other services: whether they
|
|
// are responsive or not, we should aim to finish within our deadline, because:
|
|
// - If we don't, a k8s readiness hook watching /ready will kill us.
|
|
// - While we're waiting for startup reconciliation, we are not fully
|
|
// available for end user operations like creating/deleting tenants and timelines.
|
|
//
|
|
// We set multiple deadlines to break up the time available between the phases of work: this is
|
|
// arbitrary, but avoids a situation where the first phase could burn our entire timeout period.
|
|
let start_at = Instant::now();
|
|
let node_scan_deadline = start_at
|
|
.checked_add(STARTUP_RECONCILE_TIMEOUT / 2)
|
|
.expect("Reconcile timeout is a modest constant");
|
|
|
|
let observed = if let Some(state) = leader_step_down_state {
|
|
tracing::info!(
|
|
"Using observed state received from leader at {}",
|
|
current_leader.as_ref().unwrap().address
|
|
);
|
|
|
|
state
|
|
} else {
|
|
self.build_global_observed_state(node_scan_deadline).await
|
|
};
|
|
|
|
// Accumulate a list of any tenant locations that ought to be detached
|
|
let mut cleanup = Vec::new();
|
|
|
|
// Send initial heartbeat requests to all nodes loaded from the database
|
|
let all_nodes = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked.nodes.clone()
|
|
};
|
|
let (mut nodes_online, mut sks_online) =
|
|
self.initial_heartbeat_round(all_nodes.keys()).await;
|
|
|
|
// List of tenants for which we will attempt to notify compute of their location at startup
|
|
let mut compute_notifications = Vec::new();
|
|
|
|
// Populate intent and observed states for all tenants, based on reported state on pageservers
|
|
tracing::info!("Populating tenant shards' states from initial pageserver scan...");
|
|
let shard_count = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, safekeepers, tenants, scheduler) = locked.parts_mut_sk();
|
|
|
|
// Mark nodes online if they responded to us: nodes are offline by default after a restart.
|
|
let mut new_nodes = (**nodes).clone();
|
|
for (node_id, node) in new_nodes.iter_mut() {
|
|
if let Some(utilization) = nodes_online.remove(node_id) {
|
|
node.set_availability(NodeAvailability::Active(utilization));
|
|
scheduler.node_upsert(node);
|
|
}
|
|
}
|
|
*nodes = Arc::new(new_nodes);
|
|
|
|
let mut new_sks = (**safekeepers).clone();
|
|
for (node_id, node) in new_sks.iter_mut() {
|
|
if let Some((utilization, last_seen_at)) = sks_online.remove(node_id) {
|
|
node.set_availability(SafekeeperState::Available {
|
|
utilization,
|
|
last_seen_at,
|
|
});
|
|
}
|
|
}
|
|
*safekeepers = Arc::new(new_sks);
|
|
|
|
for (tenant_shard_id, observed_state) in observed.0 {
|
|
let Some(tenant_shard) = tenants.get_mut(&tenant_shard_id) else {
|
|
for node_id in observed_state.locations.keys() {
|
|
cleanup.push((tenant_shard_id, *node_id));
|
|
}
|
|
|
|
continue;
|
|
};
|
|
|
|
tenant_shard.observed = observed_state;
|
|
}
|
|
|
|
// Populate each tenant's intent state
|
|
let mut schedule_context = ScheduleContext::default();
|
|
for (tenant_shard_id, tenant_shard) in tenants.iter_mut() {
|
|
if tenant_shard_id.shard_number == ShardNumber(0) {
|
|
// Reset scheduling context each time we advance to the next Tenant
|
|
schedule_context = ScheduleContext::default();
|
|
}
|
|
|
|
tenant_shard.intent_from_observed(scheduler);
|
|
if let Err(e) = tenant_shard.schedule(scheduler, &mut schedule_context) {
|
|
// Non-fatal error: we are unable to properly schedule the tenant, perhaps because
|
|
// not enough pageservers are available. The tenant may well still be available
|
|
// to clients.
|
|
tracing::error!("Failed to schedule tenant {tenant_shard_id} at startup: {e}");
|
|
} else {
|
|
// If we're both intending and observed to be attached at a particular node, we will
|
|
// emit a compute notification for this. In the case where our observed state does not
|
|
// yet match our intent, we will eventually reconcile, and that will emit a compute notification.
|
|
if let Some(attached_at) = tenant_shard.stably_attached() {
|
|
compute_notifications.push(compute_hook::ShardUpdate {
|
|
tenant_shard_id: *tenant_shard_id,
|
|
node_id: attached_at,
|
|
stripe_size: tenant_shard.shard.stripe_size,
|
|
preferred_az: tenant_shard
|
|
.preferred_az()
|
|
.map(|az| Cow::Owned(az.clone())),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
tenants.len()
|
|
};
|
|
|
|
// Before making any obeservable changes to the cluster, persist self
|
|
// as leader in database and memory.
|
|
let leadership = Leadership::new(
|
|
self.persistence.clone(),
|
|
self.config.clone(),
|
|
self.cancel.child_token(),
|
|
);
|
|
|
|
if let Err(e) = leadership.become_leader(current_leader).await {
|
|
tracing::error!("Failed to persist self as leader: {e}. Aborting start-up ...");
|
|
std::process::exit(1);
|
|
}
|
|
|
|
let safekeepers = self.inner.read().unwrap().safekeepers.clone();
|
|
let sk_schedule_requests =
|
|
match safekeeper_reconciler::load_schedule_requests(self, &safekeepers).await {
|
|
Ok(v) => v,
|
|
Err(e) => {
|
|
tracing::warn!(
|
|
"Failed to load safekeeper pending ops at startup: {e}." // Don't abort for now: " Aborting start-up..."
|
|
);
|
|
// std::process::exit(1);
|
|
Vec::new()
|
|
}
|
|
};
|
|
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
locked.become_leader();
|
|
|
|
for (sk_id, _sk) in locked.safekeepers.clone().iter() {
|
|
locked.safekeeper_reconcilers.start_reconciler(*sk_id, self);
|
|
}
|
|
|
|
locked
|
|
.safekeeper_reconcilers
|
|
.schedule_request_vec(sk_schedule_requests);
|
|
}
|
|
|
|
// TODO: if any tenant's intent now differs from its loaded generation_pageserver, we should clear that
|
|
// generation_pageserver in the database.
|
|
|
|
// Emit compute hook notifications for all tenants which are already stably attached. Other tenants
|
|
// will emit compute hook notifications when they reconcile.
|
|
//
|
|
// Ordering: our calls to notify_background synchronously establish a relative order for these notifications vs. any later
|
|
// calls into the ComputeHook for the same tenant: we can leave these to run to completion in the background and any later
|
|
// calls will be correctly ordered wrt these.
|
|
//
|
|
// Concurrency: we call notify_background for all tenants, which will create O(N) tokio tasks, but almost all of them
|
|
// will just wait on the ComputeHook::API_CONCURRENCY semaphore immediately, so very cheap until they get that semaphore
|
|
// unit and start doing I/O.
|
|
tracing::info!(
|
|
"Sending {} compute notifications",
|
|
compute_notifications.len()
|
|
);
|
|
self.compute_hook.notify_background(
|
|
compute_notifications,
|
|
bg_compute_notify_result_tx.clone(),
|
|
&self.cancel,
|
|
);
|
|
|
|
// Finally, now that the service is up and running, launch reconcile operations for any tenants
|
|
// which require it: under normal circumstances this should only include tenants that were in some
|
|
// transient state before we restarted, or any tenants whose compute hooks failed above.
|
|
tracing::info!("Checking for shards in need of reconciliation...");
|
|
let reconcile_tasks = self.reconcile_all();
|
|
// We will not wait for these reconciliation tasks to run here: we're now done with startup and
|
|
// normal operations may proceed.
|
|
|
|
// Clean up any tenants that were found on pageservers but are not known to us. Do this in the
|
|
// background because it does not need to complete in order to proceed with other work.
|
|
if !cleanup.is_empty() {
|
|
tracing::info!("Cleaning up {} locations in the background", cleanup.len());
|
|
tokio::task::spawn({
|
|
let cleanup_self = self.clone();
|
|
async move { cleanup_self.cleanup_locations(cleanup).await }
|
|
});
|
|
}
|
|
|
|
// Reconcile the timeline imports:
|
|
// 1. Mark each tenant shard of tenants with an importing timeline as importing.
|
|
// 2. Finalize the completed imports in the background. This handles the case where
|
|
// the previous storage controller instance shut down whilst finalizing imports.
|
|
let imports = self.persistence.list_timeline_imports().await;
|
|
match imports {
|
|
Ok(mut imports) => {
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
for import in &imports {
|
|
locked
|
|
.tenants
|
|
.range_mut(TenantShardId::tenant_range(import.tenant_id))
|
|
.for_each(|(_id, shard)| {
|
|
shard.importing = TimelineImportState::Importing
|
|
});
|
|
}
|
|
}
|
|
|
|
imports.retain(|import| import.is_complete());
|
|
tokio::task::spawn({
|
|
let finalize_imports_self = self.clone();
|
|
async move {
|
|
finalize_imports_self
|
|
.finalize_timeline_imports(imports)
|
|
.await
|
|
}
|
|
});
|
|
}
|
|
Err(err) => {
|
|
tracing::error!("Could not retrieve completed imports from database: {err}");
|
|
}
|
|
}
|
|
|
|
tracing::info!(
|
|
"Startup complete, spawned {reconcile_tasks} reconciliation tasks ({shard_count} shards total)"
|
|
);
|
|
}
|
|
|
|
async fn initial_heartbeat_round<'a>(
|
|
&self,
|
|
node_ids: impl Iterator<Item = &'a NodeId>,
|
|
) -> (
|
|
HashMap<NodeId, PageserverUtilization>,
|
|
HashMap<NodeId, (SafekeeperUtilization, Instant)>,
|
|
) {
|
|
assert!(!self.startup_complete.is_ready());
|
|
|
|
let all_nodes = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked.nodes.clone()
|
|
};
|
|
|
|
let mut nodes_to_heartbeat = HashMap::new();
|
|
for node_id in node_ids {
|
|
match all_nodes.get(node_id) {
|
|
Some(node) => {
|
|
nodes_to_heartbeat.insert(*node_id, node.clone());
|
|
}
|
|
None => {
|
|
tracing::warn!("Node {node_id} was removed during start-up");
|
|
}
|
|
}
|
|
}
|
|
|
|
let all_sks = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked.safekeepers.clone()
|
|
};
|
|
|
|
tracing::info!("Sending initial heartbeats...");
|
|
let (res_ps, res_sk) = tokio::join!(
|
|
self.heartbeater_ps.heartbeat(Arc::new(nodes_to_heartbeat)),
|
|
self.heartbeater_sk.heartbeat(all_sks)
|
|
);
|
|
|
|
let mut online_nodes = HashMap::new();
|
|
if let Ok(deltas) = res_ps {
|
|
for (node_id, status) in deltas.0 {
|
|
match status {
|
|
PageserverState::Available { utilization, .. } => {
|
|
online_nodes.insert(node_id, utilization);
|
|
}
|
|
PageserverState::Offline => {}
|
|
PageserverState::WarmingUp { .. } => {
|
|
unreachable!("Nodes are never marked warming-up during startup reconcile")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut online_sks = HashMap::new();
|
|
if let Ok(deltas) = res_sk {
|
|
for (node_id, status) in deltas.0 {
|
|
match status {
|
|
SafekeeperState::Available {
|
|
utilization,
|
|
last_seen_at,
|
|
} => {
|
|
online_sks.insert(node_id, (utilization, last_seen_at));
|
|
}
|
|
SafekeeperState::Offline => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
(online_nodes, online_sks)
|
|
}
|
|
|
|
/// Used during [`Self::startup_reconcile`]: issue GETs to all nodes concurrently, with a deadline.
|
|
///
|
|
/// The result includes only nodes which responded within the deadline
|
|
async fn scan_node_locations(
|
|
&self,
|
|
deadline: Instant,
|
|
) -> HashMap<NodeId, LocationConfigListResponse> {
|
|
let nodes = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked.nodes.clone()
|
|
};
|
|
|
|
let mut node_results = HashMap::new();
|
|
|
|
let mut node_list_futs = FuturesUnordered::new();
|
|
|
|
tracing::info!("Scanning shards on {} nodes...", nodes.len());
|
|
for node in nodes.values() {
|
|
node_list_futs.push({
|
|
async move {
|
|
tracing::info!("Scanning shards on node {node}...");
|
|
let timeout = Duration::from_secs(5);
|
|
let response = node
|
|
.with_client_retries(
|
|
|client| async move { client.list_location_config().await },
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
1,
|
|
5,
|
|
timeout,
|
|
&self.cancel,
|
|
)
|
|
.await;
|
|
(node.get_id(), response)
|
|
}
|
|
});
|
|
}
|
|
|
|
loop {
|
|
let (node_id, result) = tokio::select! {
|
|
next = node_list_futs.next() => {
|
|
match next {
|
|
Some(result) => result,
|
|
None =>{
|
|
// We got results for all our nodes
|
|
break;
|
|
}
|
|
|
|
}
|
|
},
|
|
_ = tokio::time::sleep(deadline.duration_since(Instant::now())) => {
|
|
// Give up waiting for anyone who hasn't responded: we will yield the results that we have
|
|
tracing::info!("Reached deadline while waiting for nodes to respond to location listing requests");
|
|
break;
|
|
}
|
|
};
|
|
|
|
let Some(list_response) = result else {
|
|
tracing::info!("Shutdown during startup_reconcile");
|
|
break;
|
|
};
|
|
|
|
match list_response {
|
|
Err(e) => {
|
|
tracing::warn!("Could not scan node {} ({e})", node_id);
|
|
}
|
|
Ok(listing) => {
|
|
node_results.insert(node_id, listing);
|
|
}
|
|
}
|
|
}
|
|
|
|
node_results
|
|
}
|
|
|
|
async fn build_global_observed_state(&self, deadline: Instant) -> GlobalObservedState {
|
|
let node_listings = self.scan_node_locations(deadline).await;
|
|
let mut observed = GlobalObservedState::default();
|
|
|
|
for (node_id, location_confs) in node_listings {
|
|
tracing::info!(
|
|
"Received {} shard statuses from pageserver {}",
|
|
location_confs.tenant_shards.len(),
|
|
node_id
|
|
);
|
|
|
|
for (tid, location_conf) in location_confs.tenant_shards {
|
|
let entry = observed.0.entry(tid).or_default();
|
|
entry.locations.insert(
|
|
node_id,
|
|
ObservedStateLocation {
|
|
conf: location_conf,
|
|
},
|
|
);
|
|
}
|
|
}
|
|
|
|
observed
|
|
}
|
|
|
|
/// Used during [`Self::startup_reconcile`] and shard splits: detach a list of unknown-to-us
|
|
/// tenants from pageservers.
|
|
///
|
|
/// This is safe to run in the background, because if we don't have this TenantShardId in our map of
|
|
/// tenants, then it is probably something incompletely deleted before: we will not fight with any
|
|
/// other task trying to attach it.
|
|
#[instrument(skip_all)]
|
|
async fn cleanup_locations(&self, cleanup: Vec<(TenantShardId, NodeId)>) {
|
|
let nodes = self.inner.read().unwrap().nodes.clone();
|
|
|
|
for (tenant_shard_id, node_id) in cleanup {
|
|
// A node reported a tenant_shard_id which is unknown to us: detach it.
|
|
let Some(node) = nodes.get(&node_id) else {
|
|
// This is legitimate; we run in the background and [`Self::startup_reconcile`] might have identified
|
|
// a location to clean up on a node that has since been removed.
|
|
tracing::info!(
|
|
"Not cleaning up location {node_id}/{tenant_shard_id}: node not found"
|
|
);
|
|
continue;
|
|
};
|
|
|
|
if self.cancel.is_cancelled() {
|
|
break;
|
|
}
|
|
|
|
let client = PageserverClient::new(
|
|
node.get_id(),
|
|
self.http_client.clone(),
|
|
node.base_url(),
|
|
self.config.pageserver_jwt_token.as_deref(),
|
|
);
|
|
match client
|
|
.location_config(
|
|
tenant_shard_id,
|
|
LocationConfig {
|
|
mode: LocationConfigMode::Detached,
|
|
generation: None,
|
|
secondary_conf: None,
|
|
shard_number: tenant_shard_id.shard_number.0,
|
|
shard_count: tenant_shard_id.shard_count.literal(),
|
|
shard_stripe_size: 0,
|
|
tenant_conf: models::TenantConfig::default(),
|
|
},
|
|
None,
|
|
false,
|
|
)
|
|
.await
|
|
{
|
|
Ok(()) => {
|
|
tracing::info!(
|
|
"Detached unknown shard {tenant_shard_id} on pageserver {node_id}"
|
|
);
|
|
}
|
|
Err(e) => {
|
|
// Non-fatal error: leaving a tenant shard behind that we are not managing shouldn't
|
|
// break anything.
|
|
tracing::error!(
|
|
"Failed to detach unknown shard {tenant_shard_id} on pageserver {node_id}: {e}"
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Long running background task that periodically wakes up and looks for shards that need
|
|
/// reconciliation. Reconciliation is fallible, so any reconciliation tasks that fail during
|
|
/// e.g. a tenant create/attach/migrate must eventually be retried: this task is responsible
|
|
/// for those retries.
|
|
#[instrument(skip_all)]
|
|
async fn background_reconcile(self: &Arc<Self>) {
|
|
self.startup_complete.clone().wait().await;
|
|
|
|
const BACKGROUND_RECONCILE_PERIOD: Duration = Duration::from_secs(20);
|
|
let mut interval = tokio::time::interval(BACKGROUND_RECONCILE_PERIOD);
|
|
while !self.reconcilers_cancel.is_cancelled() {
|
|
tokio::select! {
|
|
_ = interval.tick() => {
|
|
let reconciles_spawned = self.reconcile_all();
|
|
if reconciles_spawned == 0 {
|
|
// Run optimizer only when we didn't find any other work to do
|
|
self.optimize_all().await;
|
|
}
|
|
// Always attempt autosplits. Sharding is crucial for bulk ingest performance, so we
|
|
// must be responsive when new projects begin ingesting and reach the threshold.
|
|
self.autosplit_tenants().await;
|
|
}
|
|
_ = self.reconcilers_cancel.cancelled() => return
|
|
}
|
|
}
|
|
}
|
|
/// Heartbeat all storage nodes once in a while.
|
|
#[instrument(skip_all)]
|
|
async fn spawn_heartbeat_driver(&self) {
|
|
self.startup_complete.clone().wait().await;
|
|
|
|
let mut interval = tokio::time::interval(self.config.heartbeat_interval);
|
|
while !self.cancel.is_cancelled() {
|
|
tokio::select! {
|
|
_ = interval.tick() => { }
|
|
_ = self.cancel.cancelled() => return
|
|
};
|
|
|
|
let nodes = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked.nodes.clone()
|
|
};
|
|
|
|
let safekeepers = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked.safekeepers.clone()
|
|
};
|
|
|
|
let (res_ps, res_sk) = tokio::join!(
|
|
self.heartbeater_ps.heartbeat(nodes),
|
|
self.heartbeater_sk.heartbeat(safekeepers)
|
|
);
|
|
|
|
if let Ok(deltas) = res_ps {
|
|
let mut to_handle = Vec::default();
|
|
|
|
for (node_id, state) in deltas.0 {
|
|
let new_availability = match state {
|
|
PageserverState::Available { utilization, .. } => {
|
|
NodeAvailability::Active(utilization)
|
|
}
|
|
PageserverState::WarmingUp { started_at } => {
|
|
NodeAvailability::WarmingUp(started_at)
|
|
}
|
|
PageserverState::Offline => {
|
|
// The node might have been placed in the WarmingUp state
|
|
// while the heartbeat round was on-going. Hence, filter out
|
|
// offline transitions for WarmingUp nodes that are still within
|
|
// their grace period.
|
|
if let Ok(NodeAvailability::WarmingUp(started_at)) = self
|
|
.get_node(node_id)
|
|
.await
|
|
.as_ref()
|
|
.map(|n| n.get_availability())
|
|
{
|
|
let now = Instant::now();
|
|
if now - *started_at >= self.config.max_warming_up_interval {
|
|
NodeAvailability::Offline
|
|
} else {
|
|
NodeAvailability::WarmingUp(*started_at)
|
|
}
|
|
} else {
|
|
NodeAvailability::Offline
|
|
}
|
|
}
|
|
};
|
|
|
|
let node_lock = trace_exclusive_lock(
|
|
&self.node_op_locks,
|
|
node_id,
|
|
NodeOperations::Configure,
|
|
)
|
|
.await;
|
|
|
|
pausable_failpoint!("heartbeat-pre-node-state-configure");
|
|
|
|
// This is the code path for geniune availability transitions (i.e node
|
|
// goes unavailable and/or comes back online).
|
|
let res = self
|
|
.node_state_configure(node_id, Some(new_availability), None, &node_lock)
|
|
.await;
|
|
|
|
match res {
|
|
Ok(transition) => {
|
|
// Keep hold of the lock until the availability transitions
|
|
// have been handled in
|
|
// [`Service::handle_node_availability_transitions`] in order avoid
|
|
// racing with [`Service::external_node_configure`].
|
|
to_handle.push((node_id, node_lock, transition));
|
|
}
|
|
Err(ApiError::NotFound(_)) => {
|
|
// This should be rare, but legitimate since the heartbeats are done
|
|
// on a snapshot of the nodes.
|
|
tracing::info!("Node {} was not found after heartbeat round", node_id);
|
|
}
|
|
Err(ApiError::ShuttingDown) => {
|
|
// No-op: we're shutting down, no need to try and update any nodes' statuses
|
|
}
|
|
Err(err) => {
|
|
// Transition to active involves reconciling: if a node responds to a heartbeat then
|
|
// becomes unavailable again, we may get an error here.
|
|
tracing::error!(
|
|
"Failed to update node state {} after heartbeat round: {}",
|
|
node_id,
|
|
err
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We collected all the transitions above and now we handle them.
|
|
let res = self.handle_node_availability_transitions(to_handle).await;
|
|
if let Err(errs) = res {
|
|
for (node_id, err) in errs {
|
|
match err {
|
|
ApiError::NotFound(_) => {
|
|
// This should be rare, but legitimate since the heartbeats are done
|
|
// on a snapshot of the nodes.
|
|
tracing::info!(
|
|
"Node {} was not found after heartbeat round",
|
|
node_id
|
|
);
|
|
}
|
|
err => {
|
|
tracing::error!(
|
|
"Failed to handle availability transition for {} after heartbeat round: {}",
|
|
node_id,
|
|
err
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if let Ok(deltas) = res_sk {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let mut safekeepers = (*locked.safekeepers).clone();
|
|
for (id, state) in deltas.0 {
|
|
let Some(sk) = safekeepers.get_mut(&id) else {
|
|
tracing::info!(
|
|
"Couldn't update safekeeper safekeeper state for id {id} from heartbeat={state:?}"
|
|
);
|
|
continue;
|
|
};
|
|
sk.set_availability(state);
|
|
}
|
|
locked.safekeepers = Arc::new(safekeepers);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Apply the contents of a [`ReconcileResult`] to our in-memory state: if the reconciliation
|
|
/// was successful and intent hasn't changed since the Reconciler was spawned, this will update
|
|
/// the observed state of the tenant such that subsequent calls to [`TenantShard::get_reconcile_needed`]
|
|
/// will indicate that reconciliation is not needed.
|
|
#[instrument(skip_all, fields(
|
|
seq=%result.sequence,
|
|
tenant_id=%result.tenant_shard_id.tenant_id,
|
|
shard_id=%result.tenant_shard_id.shard_slug(),
|
|
))]
|
|
fn process_result(&self, result: ReconcileResult) {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, _scheduler) = locked.parts_mut();
|
|
let Some(tenant) = tenants.get_mut(&result.tenant_shard_id) else {
|
|
// A reconciliation result might race with removing a tenant: drop results for
|
|
// tenants that aren't in our map.
|
|
return;
|
|
};
|
|
|
|
// Usually generation should only be updated via this path, so the max() isn't
|
|
// needed, but it is used to handle out-of-band updates via. e.g. test hook.
|
|
tenant.generation = std::cmp::max(tenant.generation, result.generation);
|
|
|
|
// If the reconciler signals that it failed to notify compute, set this state on
|
|
// the shard so that a future [`TenantShard::maybe_reconcile`] will try again.
|
|
tenant.pending_compute_notification = result.pending_compute_notification;
|
|
|
|
// Let the TenantShard know it is idle.
|
|
tenant.reconcile_complete(result.sequence);
|
|
|
|
// In case a node was deleted while this reconcile is in flight, filter it out of the update we will
|
|
// make to the tenant
|
|
let deltas = result.observed_deltas.into_iter().flat_map(|delta| {
|
|
// In case a node was deleted while this reconcile is in flight, filter it out of the update we will
|
|
// make to the tenant
|
|
let node = nodes.get(delta.node_id())?;
|
|
|
|
if node.is_available() {
|
|
return Some(delta);
|
|
}
|
|
|
|
// In case a node became unavailable concurrently with the reconcile, observed
|
|
// locations on it are now uncertain. By convention, set them to None in order
|
|
// for them to get refreshed when the node comes back online.
|
|
Some(ObservedStateDelta::Upsert(Box::new((
|
|
node.get_id(),
|
|
ObservedStateLocation { conf: None },
|
|
))))
|
|
});
|
|
|
|
match result.result {
|
|
Ok(()) => {
|
|
tenant.apply_observed_deltas(deltas);
|
|
tenant.waiter.advance(result.sequence);
|
|
}
|
|
Err(e) => {
|
|
match e {
|
|
ReconcileError::Cancel => {
|
|
tracing::info!("Reconciler was cancelled");
|
|
}
|
|
ReconcileError::Remote(mgmt_api::Error::Cancelled) => {
|
|
// This might be due to the reconciler getting cancelled, or it might
|
|
// be due to the `Node` being marked offline.
|
|
tracing::info!("Reconciler cancelled during pageserver API call");
|
|
}
|
|
_ => {
|
|
tracing::warn!("Reconcile error: {}", e);
|
|
}
|
|
}
|
|
|
|
// Ordering: populate last_error before advancing error_seq,
|
|
// so that waiters will see the correct error after waiting.
|
|
tenant.set_last_error(result.sequence, e);
|
|
|
|
// Skip deletions on reconcile failures
|
|
let upsert_deltas =
|
|
deltas.filter(|delta| matches!(delta, ObservedStateDelta::Upsert(_)));
|
|
tenant.apply_observed_deltas(upsert_deltas);
|
|
}
|
|
}
|
|
|
|
// If we just finished detaching all shards for a tenant, it might be time to drop it from memory.
|
|
if tenant.policy == PlacementPolicy::Detached {
|
|
// We may only drop a tenant from memory while holding the exclusive lock on the tenant ID: this protects us
|
|
// from concurrent execution wrt a request handler that might expect the tenant to remain in memory for the
|
|
// duration of the request.
|
|
let guard = self.tenant_op_locks.try_exclusive(
|
|
tenant.tenant_shard_id.tenant_id,
|
|
TenantOperations::DropDetached,
|
|
);
|
|
if let Some(guard) = guard {
|
|
self.maybe_drop_tenant(tenant.tenant_shard_id.tenant_id, &mut locked, &guard);
|
|
}
|
|
}
|
|
|
|
// Maybe some other work can proceed now that this job finished.
|
|
//
|
|
// Only bother with this if we have some semaphore units available in the normal-priority semaphore (these
|
|
// reconciles are scheduled at `[ReconcilerPriority::Normal]`).
|
|
if self.reconciler_concurrency.available_permits() > 0 {
|
|
while let Ok(tenant_shard_id) = locked.delayed_reconcile_rx.try_recv() {
|
|
let (nodes, tenants, _scheduler) = locked.parts_mut();
|
|
if let Some(shard) = tenants.get_mut(&tenant_shard_id) {
|
|
shard.delayed_reconcile = false;
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::Normal);
|
|
}
|
|
|
|
if self.reconciler_concurrency.available_permits() == 0 {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
async fn process_results(
|
|
&self,
|
|
mut result_rx: tokio::sync::mpsc::UnboundedReceiver<ReconcileResultRequest>,
|
|
mut bg_compute_hook_result_rx: tokio::sync::mpsc::Receiver<
|
|
Result<(), (TenantShardId, NotifyError)>,
|
|
>,
|
|
) {
|
|
loop {
|
|
// Wait for the next result, or for cancellation
|
|
tokio::select! {
|
|
r = result_rx.recv() => {
|
|
match r {
|
|
Some(ReconcileResultRequest::ReconcileResult(result)) => {self.process_result(result);},
|
|
None | Some(ReconcileResultRequest::Stop) => {break;}
|
|
}
|
|
}
|
|
_ = async{
|
|
match bg_compute_hook_result_rx.recv().await {
|
|
Some(result) => {
|
|
if let Err((tenant_shard_id, notify_error)) = result {
|
|
tracing::warn!("Marking shard {tenant_shard_id} for notification retry, due to error {notify_error}");
|
|
let mut locked = self.inner.write().unwrap();
|
|
if let Some(shard) = locked.tenants.get_mut(&tenant_shard_id) {
|
|
shard.pending_compute_notification = true;
|
|
}
|
|
|
|
}
|
|
},
|
|
None => {
|
|
// This channel is dead, but we don't want to terminate the outer loop{}: just wait for shutdown
|
|
self.cancel.cancelled().await;
|
|
}
|
|
}
|
|
} => {},
|
|
_ = self.cancel.cancelled() => {
|
|
break;
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
async fn process_aborts(
|
|
&self,
|
|
mut abort_rx: tokio::sync::mpsc::UnboundedReceiver<TenantShardSplitAbort>,
|
|
) {
|
|
loop {
|
|
// Wait for the next result, or for cancellation
|
|
let op = tokio::select! {
|
|
r = abort_rx.recv() => {
|
|
match r {
|
|
Some(op) => {op},
|
|
None => {break;}
|
|
}
|
|
}
|
|
_ = self.cancel.cancelled() => {
|
|
break;
|
|
}
|
|
};
|
|
|
|
// Retry until shutdown: we must keep this request object alive until it is properly
|
|
// processed, as it holds a lock guard that prevents other operations trying to do things
|
|
// to the tenant while it is in a weird part-split state.
|
|
while !self.reconcilers_cancel.is_cancelled() {
|
|
match self.abort_tenant_shard_split(&op).await {
|
|
Ok(_) => break,
|
|
Err(e) => {
|
|
tracing::warn!(
|
|
"Failed to abort shard split on {}, will retry: {e}",
|
|
op.tenant_id
|
|
);
|
|
|
|
// If a node is unavailable, we hope that it has been properly marked Offline
|
|
// when we retry, so that the abort op will succeed. If the abort op is failing
|
|
// for some other reason, we will keep retrying forever, or until a human notices
|
|
// and does something about it (either fixing a pageserver or restarting the controller).
|
|
tokio::time::timeout(
|
|
Duration::from_secs(5),
|
|
self.reconcilers_cancel.cancelled(),
|
|
)
|
|
.await
|
|
.ok();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub async fn spawn(config: Config, persistence: Arc<Persistence>) -> anyhow::Result<Arc<Self>> {
|
|
let (result_tx, result_rx) = tokio::sync::mpsc::unbounded_channel();
|
|
let (abort_tx, abort_rx) = tokio::sync::mpsc::unbounded_channel();
|
|
|
|
let leadership_cancel = CancellationToken::new();
|
|
let leadership = Leadership::new(persistence.clone(), config.clone(), leadership_cancel);
|
|
let (leader, leader_step_down_state) = leadership.step_down_current_leader().await?;
|
|
|
|
// Apply the migrations **after** the current leader has stepped down
|
|
// (or we've given up waiting for it), but **before** reading from the
|
|
// database. The only exception is reading the current leader before
|
|
// migrating.
|
|
persistence.migration_run().await?;
|
|
|
|
tracing::info!("Loading nodes from database...");
|
|
let nodes = persistence
|
|
.list_nodes()
|
|
.await?
|
|
.into_iter()
|
|
.map(|x| Node::from_persistent(x, config.use_https_pageserver_api))
|
|
.collect::<anyhow::Result<Vec<Node>>>()?;
|
|
let nodes: HashMap<NodeId, Node> = nodes.into_iter().map(|n| (n.get_id(), n)).collect();
|
|
tracing::info!("Loaded {} nodes from database.", nodes.len());
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_pageserver_nodes
|
|
.set(nodes.len() as i64);
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_https_pageserver_nodes
|
|
.set(nodes.values().filter(|n| n.has_https_port()).count() as i64);
|
|
|
|
tracing::info!("Loading safekeepers from database...");
|
|
let safekeepers = persistence
|
|
.list_safekeepers()
|
|
.await?
|
|
.into_iter()
|
|
.map(|skp| {
|
|
Safekeeper::from_persistence(
|
|
skp,
|
|
CancellationToken::new(),
|
|
config.use_https_safekeeper_api,
|
|
)
|
|
})
|
|
.collect::<anyhow::Result<Vec<_>>>()?;
|
|
let safekeepers: HashMap<NodeId, Safekeeper> =
|
|
safekeepers.into_iter().map(|n| (n.get_id(), n)).collect();
|
|
tracing::info!("Loaded {} safekeepers from database.", safekeepers.len());
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_safekeeper_nodes
|
|
.set(safekeepers.len() as i64);
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_https_safekeeper_nodes
|
|
.set(safekeepers.values().filter(|s| s.has_https_port()).count() as i64);
|
|
|
|
tracing::info!("Loading shards from database...");
|
|
let mut tenant_shard_persistence = persistence.load_active_tenant_shards().await?;
|
|
tracing::info!(
|
|
"Loaded {} shards from database.",
|
|
tenant_shard_persistence.len()
|
|
);
|
|
|
|
// If any shard splits were in progress, reset the database state to abort them
|
|
let mut tenant_shard_count_min_max: HashMap<TenantId, (ShardCount, ShardCount)> =
|
|
HashMap::new();
|
|
for tsp in &mut tenant_shard_persistence {
|
|
let shard = tsp.get_shard_identity()?;
|
|
let tenant_shard_id = tsp.get_tenant_shard_id()?;
|
|
let entry = tenant_shard_count_min_max
|
|
.entry(tenant_shard_id.tenant_id)
|
|
.or_insert_with(|| (shard.count, shard.count));
|
|
entry.0 = std::cmp::min(entry.0, shard.count);
|
|
entry.1 = std::cmp::max(entry.1, shard.count);
|
|
}
|
|
|
|
for (tenant_id, (count_min, count_max)) in tenant_shard_count_min_max {
|
|
if count_min != count_max {
|
|
// Aborting the split in the database and dropping the child shards is sufficient: the reconciliation in
|
|
// [`Self::startup_reconcile`] will implicitly drop the child shards on remote pageservers, or they'll
|
|
// be dropped later in [`Self::node_activate_reconcile`] if it isn't available right now.
|
|
tracing::info!("Aborting shard split {tenant_id} {count_min:?} -> {count_max:?}");
|
|
let abort_status = persistence.abort_shard_split(tenant_id, count_max).await?;
|
|
|
|
// We may never see the Complete status here: if the split was complete, we wouldn't have
|
|
// identified this tenant has having mismatching min/max counts.
|
|
assert!(matches!(abort_status, AbortShardSplitStatus::Aborted));
|
|
|
|
// Clear the splitting status in-memory, to reflect that we just aborted in the database
|
|
tenant_shard_persistence.iter_mut().for_each(|tsp| {
|
|
// Set idle split state on those shards that we will retain.
|
|
let tsp_tenant_id = TenantId::from_str(tsp.tenant_id.as_str()).unwrap();
|
|
if tsp_tenant_id == tenant_id
|
|
&& tsp.get_shard_identity().unwrap().count == count_min
|
|
{
|
|
tsp.splitting = SplitState::Idle;
|
|
} else if tsp_tenant_id == tenant_id {
|
|
// Leave the splitting state on the child shards: this will be used next to
|
|
// drop them.
|
|
tracing::info!(
|
|
"Shard {tsp_tenant_id} will be dropped after shard split abort",
|
|
);
|
|
}
|
|
});
|
|
|
|
// Drop shards for this tenant which we didn't just mark idle (i.e. child shards of the aborted split)
|
|
tenant_shard_persistence.retain(|tsp| {
|
|
TenantId::from_str(tsp.tenant_id.as_str()).unwrap() != tenant_id
|
|
|| tsp.splitting == SplitState::Idle
|
|
});
|
|
}
|
|
}
|
|
|
|
let mut tenants = BTreeMap::new();
|
|
|
|
let mut scheduler = Scheduler::new(nodes.values());
|
|
|
|
#[cfg(feature = "testing")]
|
|
{
|
|
use pageserver_api::controller_api::AvailabilityZone;
|
|
|
|
// Hack: insert scheduler state for all nodes referenced by shards, as compatibility
|
|
// tests only store the shards, not the nodes. The nodes will be loaded shortly
|
|
// after when pageservers start up and register.
|
|
let mut node_ids = HashSet::new();
|
|
for tsp in &tenant_shard_persistence {
|
|
if let Some(node_id) = tsp.generation_pageserver {
|
|
node_ids.insert(node_id);
|
|
}
|
|
}
|
|
for node_id in node_ids {
|
|
tracing::info!("Creating node {} in scheduler for tests", node_id);
|
|
let node = Node::new(
|
|
NodeId(node_id as u64),
|
|
"".to_string(),
|
|
123,
|
|
None,
|
|
"".to_string(),
|
|
123,
|
|
None,
|
|
None,
|
|
AvailabilityZone("test_az".to_string()),
|
|
false,
|
|
)
|
|
.unwrap();
|
|
|
|
scheduler.node_upsert(&node);
|
|
}
|
|
}
|
|
for tsp in tenant_shard_persistence {
|
|
let tenant_shard_id = tsp.get_tenant_shard_id()?;
|
|
|
|
// We will populate intent properly later in [`Self::startup_reconcile`], initially populate
|
|
// it with what we can infer: the node for which a generation was most recently issued.
|
|
let mut intent = IntentState::new(
|
|
tsp.preferred_az_id
|
|
.as_ref()
|
|
.map(|az| AvailabilityZone(az.clone())),
|
|
);
|
|
if let Some(generation_pageserver) = tsp.generation_pageserver.map(|n| NodeId(n as u64))
|
|
{
|
|
if nodes.contains_key(&generation_pageserver) {
|
|
intent.set_attached(&mut scheduler, Some(generation_pageserver));
|
|
} else {
|
|
// If a node was removed before being completely drained, it is legal for it to leave behind a `generation_pageserver` referring
|
|
// to a non-existent node, because node deletion doesn't block on completing the reconciliations that will issue new generations
|
|
// on different pageservers.
|
|
tracing::warn!(
|
|
"Tenant shard {tenant_shard_id} references non-existent node {generation_pageserver} in database, will be rescheduled"
|
|
);
|
|
}
|
|
}
|
|
let new_tenant = TenantShard::from_persistent(tsp, intent)?;
|
|
|
|
tenants.insert(tenant_shard_id, new_tenant);
|
|
}
|
|
|
|
let (startup_completion, startup_complete) = utils::completion::channel();
|
|
|
|
// This channel is continuously consumed by process_results, so doesn't need to be very large.
|
|
let (bg_compute_notify_result_tx, bg_compute_notify_result_rx) =
|
|
tokio::sync::mpsc::channel(512);
|
|
|
|
let (delayed_reconcile_tx, delayed_reconcile_rx) =
|
|
tokio::sync::mpsc::channel(MAX_DELAYED_RECONCILES);
|
|
|
|
let cancel = CancellationToken::new();
|
|
let reconcilers_cancel = cancel.child_token();
|
|
|
|
let mut http_client = reqwest::Client::builder();
|
|
// We intentionally disable the connection pool, so every request will create its own TCP connection.
|
|
// It's especially important for heartbeaters to notice more network problems.
|
|
//
|
|
// TODO: It makes sense to use this client only in heartbeaters and create a second one with
|
|
// connection pooling for everything else. But reqwest::Client may create a connection without
|
|
// ever using it (it uses hyper's Client under the hood):
|
|
// https://github.com/hyperium/hyper-util/blob/d51318df3461d40e5f5e5ca163cb3905ac960209/src/client/legacy/client.rs#L415
|
|
//
|
|
// Because of a bug in hyper0::Connection::graceful_shutdown such connections hang during
|
|
// graceful server shutdown: https://github.com/hyperium/hyper/issues/2730
|
|
//
|
|
// The bug has been fixed in hyper v1, so keep alive may be enabled only after we migrate to hyper1.
|
|
http_client = http_client.pool_max_idle_per_host(0);
|
|
for ssl_ca_cert in &config.ssl_ca_certs {
|
|
http_client = http_client.add_root_certificate(ssl_ca_cert.clone());
|
|
}
|
|
let http_client = http_client.build()?;
|
|
|
|
let heartbeater_ps = Heartbeater::new(
|
|
http_client.clone(),
|
|
config.pageserver_jwt_token.clone(),
|
|
config.max_offline_interval,
|
|
config.max_warming_up_interval,
|
|
cancel.clone(),
|
|
);
|
|
|
|
let heartbeater_sk = Heartbeater::new(
|
|
http_client.clone(),
|
|
config.safekeeper_jwt_token.clone(),
|
|
config.max_offline_interval,
|
|
config.max_warming_up_interval,
|
|
cancel.clone(),
|
|
);
|
|
|
|
let initial_leadership_status = if config.start_as_candidate {
|
|
LeadershipStatus::Candidate
|
|
} else {
|
|
LeadershipStatus::Leader
|
|
};
|
|
|
|
let this = Arc::new(Self {
|
|
inner: Arc::new(std::sync::RwLock::new(ServiceState::new(
|
|
nodes,
|
|
safekeepers,
|
|
tenants,
|
|
scheduler,
|
|
delayed_reconcile_rx,
|
|
initial_leadership_status,
|
|
reconcilers_cancel.clone(),
|
|
))),
|
|
config: config.clone(),
|
|
persistence,
|
|
compute_hook: Arc::new(ComputeHook::new(config.clone())?),
|
|
result_tx,
|
|
heartbeater_ps,
|
|
heartbeater_sk,
|
|
reconciler_concurrency: Arc::new(tokio::sync::Semaphore::new(
|
|
config.reconciler_concurrency,
|
|
)),
|
|
priority_reconciler_concurrency: Arc::new(tokio::sync::Semaphore::new(
|
|
config.priority_reconciler_concurrency,
|
|
)),
|
|
delayed_reconcile_tx,
|
|
abort_tx,
|
|
startup_complete: startup_complete.clone(),
|
|
cancel,
|
|
reconcilers_cancel,
|
|
gate: Gate::default(),
|
|
reconcilers_gate: Gate::default(),
|
|
tenant_op_locks: Default::default(),
|
|
node_op_locks: Default::default(),
|
|
http_client,
|
|
step_down_barrier: Default::default(),
|
|
});
|
|
|
|
let result_task_this = this.clone();
|
|
tokio::task::spawn(async move {
|
|
// Block shutdown until we're done (we must respect self.cancel)
|
|
if let Ok(_gate) = result_task_this.gate.enter() {
|
|
result_task_this
|
|
.process_results(result_rx, bg_compute_notify_result_rx)
|
|
.await
|
|
}
|
|
});
|
|
|
|
tokio::task::spawn({
|
|
let this = this.clone();
|
|
async move {
|
|
// Block shutdown until we're done (we must respect self.cancel)
|
|
if let Ok(_gate) = this.gate.enter() {
|
|
this.process_aborts(abort_rx).await
|
|
}
|
|
}
|
|
});
|
|
|
|
tokio::task::spawn({
|
|
let this = this.clone();
|
|
async move {
|
|
if let Ok(_gate) = this.gate.enter() {
|
|
loop {
|
|
tokio::select! {
|
|
_ = this.cancel.cancelled() => {
|
|
break;
|
|
},
|
|
_ = tokio::time::sleep(Duration::from_secs(60)) => {}
|
|
};
|
|
this.tenant_op_locks.housekeeping();
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
tokio::task::spawn({
|
|
let this = this.clone();
|
|
// We will block the [`Service::startup_complete`] barrier until [`Self::startup_reconcile`]
|
|
// is done.
|
|
let startup_completion = startup_completion.clone();
|
|
async move {
|
|
// Block shutdown until we're done (we must respect self.cancel)
|
|
let Ok(_gate) = this.gate.enter() else {
|
|
return;
|
|
};
|
|
|
|
this.startup_reconcile(leader, leader_step_down_state, bg_compute_notify_result_tx)
|
|
.await;
|
|
|
|
drop(startup_completion);
|
|
}
|
|
});
|
|
|
|
tokio::task::spawn({
|
|
let this = this.clone();
|
|
let startup_complete = startup_complete.clone();
|
|
async move {
|
|
startup_complete.wait().await;
|
|
this.background_reconcile().await;
|
|
}
|
|
});
|
|
|
|
tokio::task::spawn({
|
|
let this = this.clone();
|
|
let startup_complete = startup_complete.clone();
|
|
async move {
|
|
startup_complete.wait().await;
|
|
this.spawn_heartbeat_driver().await;
|
|
}
|
|
});
|
|
|
|
Ok(this)
|
|
}
|
|
|
|
pub(crate) async fn attach_hook(
|
|
&self,
|
|
attach_req: AttachHookRequest,
|
|
) -> anyhow::Result<AttachHookResponse> {
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
attach_req.tenant_shard_id.tenant_id,
|
|
TenantOperations::AttachHook,
|
|
)
|
|
.await;
|
|
|
|
// This is a test hook. To enable using it on tenants that were created directly with
|
|
// the pageserver API (not via this service), we will auto-create any missing tenant
|
|
// shards with default state.
|
|
let insert = {
|
|
match self
|
|
.maybe_load_tenant(attach_req.tenant_shard_id.tenant_id, &_tenant_lock)
|
|
.await
|
|
{
|
|
Ok(_) => false,
|
|
Err(ApiError::NotFound(_)) => true,
|
|
Err(e) => return Err(e.into()),
|
|
}
|
|
};
|
|
|
|
if insert {
|
|
let config = attach_req.config.clone().unwrap_or_default();
|
|
let tsp = TenantShardPersistence {
|
|
tenant_id: attach_req.tenant_shard_id.tenant_id.to_string(),
|
|
shard_number: attach_req.tenant_shard_id.shard_number.0 as i32,
|
|
shard_count: attach_req.tenant_shard_id.shard_count.literal() as i32,
|
|
shard_stripe_size: 0,
|
|
generation: attach_req.generation_override.or(Some(0)),
|
|
generation_pageserver: None,
|
|
placement_policy: serde_json::to_string(&PlacementPolicy::Attached(0)).unwrap(),
|
|
config: serde_json::to_string(&config).unwrap(),
|
|
splitting: SplitState::default(),
|
|
scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
|
|
.unwrap(),
|
|
preferred_az_id: None,
|
|
};
|
|
|
|
match self.persistence.insert_tenant_shards(vec![tsp]).await {
|
|
Err(e) => match e {
|
|
DatabaseError::Query(diesel::result::Error::DatabaseError(
|
|
DatabaseErrorKind::UniqueViolation,
|
|
_,
|
|
)) => {
|
|
tracing::info!(
|
|
"Raced with another request to insert tenant {}",
|
|
attach_req.tenant_shard_id
|
|
)
|
|
}
|
|
_ => return Err(e.into()),
|
|
},
|
|
Ok(()) => {
|
|
tracing::info!("Inserted shard {} in database", attach_req.tenant_shard_id);
|
|
|
|
let mut shard = TenantShard::new(
|
|
attach_req.tenant_shard_id,
|
|
ShardIdentity::unsharded(),
|
|
PlacementPolicy::Attached(0),
|
|
None,
|
|
);
|
|
shard.config = config;
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
locked.tenants.insert(attach_req.tenant_shard_id, shard);
|
|
tracing::info!("Inserted shard {} in memory", attach_req.tenant_shard_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
let new_generation = if let Some(req_node_id) = attach_req.node_id {
|
|
let maybe_tenant_conf = {
|
|
let locked = self.inner.write().unwrap();
|
|
locked
|
|
.tenants
|
|
.get(&attach_req.tenant_shard_id)
|
|
.map(|t| t.config.clone())
|
|
};
|
|
|
|
match maybe_tenant_conf {
|
|
Some(conf) => {
|
|
let new_generation = self
|
|
.persistence
|
|
.increment_generation(attach_req.tenant_shard_id, req_node_id)
|
|
.await?;
|
|
|
|
// Persist the placement policy update. This is required
|
|
// when we reattaching a detached tenant.
|
|
self.persistence
|
|
.update_tenant_shard(
|
|
TenantFilter::Shard(attach_req.tenant_shard_id),
|
|
Some(PlacementPolicy::Attached(0)),
|
|
Some(conf),
|
|
None,
|
|
None,
|
|
)
|
|
.await?;
|
|
Some(new_generation)
|
|
}
|
|
None => {
|
|
anyhow::bail!("Attach hook handling raced with tenant removal")
|
|
}
|
|
}
|
|
} else {
|
|
self.persistence.detach(attach_req.tenant_shard_id).await?;
|
|
None
|
|
};
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (_nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
let tenant_shard = tenants
|
|
.get_mut(&attach_req.tenant_shard_id)
|
|
.expect("Checked for existence above");
|
|
|
|
if let Some(new_generation) = new_generation {
|
|
tenant_shard.generation = Some(new_generation);
|
|
tenant_shard.policy = PlacementPolicy::Attached(0);
|
|
} else {
|
|
// This is a detach notification. We must update placement policy to avoid re-attaching
|
|
// during background scheduling/reconciliation, or during storage controller restart.
|
|
assert!(attach_req.node_id.is_none());
|
|
tenant_shard.policy = PlacementPolicy::Detached;
|
|
}
|
|
|
|
if let Some(attaching_pageserver) = attach_req.node_id.as_ref() {
|
|
tracing::info!(
|
|
tenant_id = %attach_req.tenant_shard_id,
|
|
ps_id = %attaching_pageserver,
|
|
generation = ?tenant_shard.generation,
|
|
"issuing",
|
|
);
|
|
} else if let Some(ps_id) = tenant_shard.intent.get_attached() {
|
|
tracing::info!(
|
|
tenant_id = %attach_req.tenant_shard_id,
|
|
%ps_id,
|
|
generation = ?tenant_shard.generation,
|
|
"dropping",
|
|
);
|
|
} else {
|
|
tracing::info!(
|
|
tenant_id = %attach_req.tenant_shard_id,
|
|
"no-op: tenant already has no pageserver");
|
|
}
|
|
tenant_shard
|
|
.intent
|
|
.set_attached(scheduler, attach_req.node_id);
|
|
|
|
tracing::info!(
|
|
"attach_hook: tenant {} set generation {:?}, pageserver {}, config {:?}",
|
|
attach_req.tenant_shard_id,
|
|
tenant_shard.generation,
|
|
// TODO: this is an odd number of 0xf's
|
|
attach_req.node_id.unwrap_or(utils::id::NodeId(0xfffffff)),
|
|
attach_req.config,
|
|
);
|
|
|
|
// Trick the reconciler into not doing anything for this tenant: this helps
|
|
// tests that manually configure a tenant on the pagesrever, and then call this
|
|
// attach hook: they don't want background reconciliation to modify what they
|
|
// did to the pageserver.
|
|
#[cfg(feature = "testing")]
|
|
{
|
|
if let Some(node_id) = attach_req.node_id {
|
|
tenant_shard.observed.locations = HashMap::from([(
|
|
node_id,
|
|
ObservedStateLocation {
|
|
conf: Some(attached_location_conf(
|
|
tenant_shard.generation.unwrap(),
|
|
&tenant_shard.shard,
|
|
&tenant_shard.config,
|
|
&PlacementPolicy::Attached(0),
|
|
tenant_shard.intent.get_secondary().len(),
|
|
)),
|
|
},
|
|
)]);
|
|
} else {
|
|
tenant_shard.observed.locations.clear();
|
|
}
|
|
}
|
|
|
|
Ok(AttachHookResponse {
|
|
generation: attach_req
|
|
.node_id
|
|
.map(|_| tenant_shard.generation.expect("Test hook, not used on tenants that are mid-onboarding with a NULL generation").into().unwrap()),
|
|
})
|
|
}
|
|
|
|
pub(crate) fn inspect(&self, inspect_req: InspectRequest) -> InspectResponse {
|
|
let locked = self.inner.read().unwrap();
|
|
|
|
let tenant_shard = locked.tenants.get(&inspect_req.tenant_shard_id);
|
|
|
|
InspectResponse {
|
|
attachment: tenant_shard.and_then(|s| {
|
|
s.intent
|
|
.get_attached()
|
|
.map(|ps| (s.generation.expect("Test hook, not used on tenants that are mid-onboarding with a NULL generation").into().unwrap(), ps))
|
|
}),
|
|
}
|
|
}
|
|
|
|
// When the availability state of a node transitions to active, we must do a full reconciliation
|
|
// of LocationConfigs on that node. This is because while a node was offline:
|
|
// - we might have proceeded through startup_reconcile without checking for extraneous LocationConfigs on this node
|
|
// - aborting a tenant shard split might have left rogue child shards behind on this node.
|
|
//
|
|
// This function must complete _before_ setting a `Node` to Active: once it is set to Active, other
|
|
// Reconcilers might communicate with the node, and these must not overlap with the work we do in
|
|
// this function.
|
|
//
|
|
// The reconciliation logic in here is very similar to what [`Self::startup_reconcile`] does, but
|
|
// for written for a single node rather than as a batch job for all nodes.
|
|
#[tracing::instrument(skip_all, fields(node_id=%node.get_id()))]
|
|
async fn node_activate_reconcile(
|
|
&self,
|
|
mut node: Node,
|
|
_lock: &TracingExclusiveGuard<NodeOperations>,
|
|
) -> Result<(), ApiError> {
|
|
// This Node is a mutable local copy: we will set it active so that we can use its
|
|
// API client to reconcile with the node. The Node in [`Self::nodes`] will get updated
|
|
// later.
|
|
node.set_availability(NodeAvailability::Active(PageserverUtilization::full()));
|
|
|
|
let configs = match node
|
|
.with_client_retries(
|
|
|client| async move { client.list_location_config().await },
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
1,
|
|
5,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
{
|
|
None => {
|
|
// We're shutting down (the Node's cancellation token can't have fired, because
|
|
// we're the only scope that has a reference to it, and we didn't fire it).
|
|
return Err(ApiError::ShuttingDown);
|
|
}
|
|
Some(Err(e)) => {
|
|
// This node didn't succeed listing its locations: it may not proceed to active state
|
|
// as it is apparently unavailable.
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!("Failed to query node location configs, cannot activate ({e})").into(),
|
|
));
|
|
}
|
|
Some(Ok(configs)) => configs,
|
|
};
|
|
tracing::info!("Loaded {} LocationConfigs", configs.tenant_shards.len());
|
|
|
|
let mut cleanup = Vec::new();
|
|
let mut mismatched_locations = 0;
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
|
|
for (tenant_shard_id, reported) in configs.tenant_shards {
|
|
let Some(tenant_shard) = locked.tenants.get_mut(&tenant_shard_id) else {
|
|
cleanup.push(tenant_shard_id);
|
|
continue;
|
|
};
|
|
|
|
let on_record = &mut tenant_shard
|
|
.observed
|
|
.locations
|
|
.entry(node.get_id())
|
|
.or_insert_with(|| ObservedStateLocation { conf: None })
|
|
.conf;
|
|
|
|
// If the location reported by the node does not match our observed state,
|
|
// then we mark it as uncertain and let the background reconciliation loop
|
|
// deal with it.
|
|
//
|
|
// Note that this also covers net new locations reported by the node.
|
|
if *on_record != reported {
|
|
mismatched_locations += 1;
|
|
*on_record = None;
|
|
}
|
|
}
|
|
}
|
|
|
|
if mismatched_locations > 0 {
|
|
tracing::info!(
|
|
"Set observed state to None for {mismatched_locations} mismatched locations"
|
|
);
|
|
}
|
|
|
|
for tenant_shard_id in cleanup {
|
|
tracing::info!("Detaching {tenant_shard_id}");
|
|
match node
|
|
.with_client_retries(
|
|
|client| async move {
|
|
let config = LocationConfig {
|
|
mode: LocationConfigMode::Detached,
|
|
generation: None,
|
|
secondary_conf: None,
|
|
shard_number: tenant_shard_id.shard_number.0,
|
|
shard_count: tenant_shard_id.shard_count.literal(),
|
|
shard_stripe_size: 0,
|
|
tenant_conf: models::TenantConfig::default(),
|
|
};
|
|
client
|
|
.location_config(tenant_shard_id, config, None, false)
|
|
.await
|
|
},
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
1,
|
|
5,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
{
|
|
None => {
|
|
// We're shutting down (the Node's cancellation token can't have fired, because
|
|
// we're the only scope that has a reference to it, and we didn't fire it).
|
|
return Err(ApiError::ShuttingDown);
|
|
}
|
|
Some(Err(e)) => {
|
|
// Do not let the node proceed to Active state if it is not responsive to requests
|
|
// to detach. This could happen if e.g. a shutdown bug in the pageserver is preventing
|
|
// detach completing: we should not let this node back into the set of nodes considered
|
|
// okay for scheduling.
|
|
return Err(ApiError::Conflict(format!(
|
|
"Node {node} failed to detach {tenant_shard_id}: {e}"
|
|
)));
|
|
}
|
|
Some(Ok(_)) => {}
|
|
};
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn re_attach(
|
|
&self,
|
|
reattach_req: ReAttachRequest,
|
|
) -> Result<ReAttachResponse, ApiError> {
|
|
if let Some(register_req) = reattach_req.register {
|
|
self.node_register(register_req).await?;
|
|
}
|
|
|
|
// Ordering: we must persist generation number updates before making them visible in the in-memory state
|
|
let incremented_generations = self.persistence.re_attach(reattach_req.node_id).await?;
|
|
|
|
tracing::info!(
|
|
node_id=%reattach_req.node_id,
|
|
"Incremented {} tenant shards' generations",
|
|
incremented_generations.len()
|
|
);
|
|
|
|
// Apply the updated generation to our in-memory state, and
|
|
// gather discover secondary locations.
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
let mut response = ReAttachResponse {
|
|
tenants: Vec::new(),
|
|
};
|
|
|
|
// TODO: cancel/restart any running reconciliation for this tenant, it might be trying
|
|
// to call location_conf API with an old generation. Wait for cancellation to complete
|
|
// before responding to this request. Requires well implemented CancellationToken logic
|
|
// all the way to where we call location_conf. Even then, there can still be a location_conf
|
|
// request in flight over the network: TODO handle that by making location_conf API refuse
|
|
// to go backward in generations.
|
|
|
|
// Scan through all shards, applying updates for ones where we updated generation
|
|
// and identifying shards that intend to have a secondary location on this node.
|
|
for (tenant_shard_id, shard) in tenants {
|
|
if let Some(new_gen) = incremented_generations.get(tenant_shard_id) {
|
|
let new_gen = *new_gen;
|
|
response.tenants.push(ReAttachResponseTenant {
|
|
id: *tenant_shard_id,
|
|
r#gen: Some(new_gen.into().unwrap()),
|
|
// A tenant is only put into multi or stale modes in the middle of a [`Reconciler::live_migrate`]
|
|
// execution. If a pageserver is restarted during that process, then the reconcile pass will
|
|
// fail, and start from scratch, so it doesn't make sense for us to try and preserve
|
|
// the stale/multi states at this point.
|
|
mode: LocationConfigMode::AttachedSingle,
|
|
stripe_size: shard.shard.stripe_size,
|
|
});
|
|
|
|
shard.generation = std::cmp::max(shard.generation, Some(new_gen));
|
|
if let Some(observed) = shard.observed.locations.get_mut(&reattach_req.node_id) {
|
|
// Why can we update `observed` even though we're not sure our response will be received
|
|
// by the pageserver? Because the pageserver will not proceed with startup until
|
|
// it has processed response: if it loses it, we'll see another request and increment
|
|
// generation again, avoiding any uncertainty about dirtiness of tenant's state.
|
|
if let Some(conf) = observed.conf.as_mut() {
|
|
conf.generation = new_gen.into();
|
|
}
|
|
} else {
|
|
// This node has no observed state for the shard: perhaps it was offline
|
|
// when the pageserver restarted. Insert a None, so that the Reconciler
|
|
// will be prompted to learn the location's state before it makes changes.
|
|
shard
|
|
.observed
|
|
.locations
|
|
.insert(reattach_req.node_id, ObservedStateLocation { conf: None });
|
|
}
|
|
} else if shard.intent.get_secondary().contains(&reattach_req.node_id) {
|
|
// Ordering: pageserver will not accept /location_config requests until it has
|
|
// finished processing the response from re-attach. So we can update our in-memory state
|
|
// now, and be confident that we are not stamping on the result of some later location config.
|
|
// TODO: however, we are not strictly ordered wrt ReconcileResults queue,
|
|
// so we might update observed state here, and then get over-written by some racing
|
|
// ReconcileResult. The impact is low however, since we have set state on pageserver something
|
|
// that matches intent, so worst case if we race then we end up doing a spurious reconcile.
|
|
|
|
response.tenants.push(ReAttachResponseTenant {
|
|
id: *tenant_shard_id,
|
|
r#gen: None,
|
|
mode: LocationConfigMode::Secondary,
|
|
stripe_size: shard.shard.stripe_size,
|
|
});
|
|
|
|
// We must not update observed, because we have no guarantee that our
|
|
// response will be received by the pageserver. This could leave it
|
|
// falsely dirty, but the resulting reconcile should be idempotent.
|
|
}
|
|
}
|
|
|
|
// We consider a node Active once we have composed a re-attach response, but we
|
|
// do not call [`Self::node_activate_reconcile`]: the handling of the re-attach response
|
|
// implicitly synchronizes the LocationConfigs on the node.
|
|
//
|
|
// Setting a node active unblocks any Reconcilers that might write to the location config API,
|
|
// but those requests will not be accepted by the node until it has finished processing
|
|
// the re-attach response.
|
|
//
|
|
// Additionally, reset the nodes scheduling policy to match the conditional update done
|
|
// in [`Persistence::re_attach`].
|
|
if let Some(node) = nodes.get(&reattach_req.node_id) {
|
|
let reset_scheduling = matches!(
|
|
node.get_scheduling(),
|
|
NodeSchedulingPolicy::PauseForRestart
|
|
| NodeSchedulingPolicy::Draining
|
|
| NodeSchedulingPolicy::Filling
|
|
);
|
|
|
|
let mut new_nodes = (**nodes).clone();
|
|
if let Some(node) = new_nodes.get_mut(&reattach_req.node_id) {
|
|
if reset_scheduling {
|
|
node.set_scheduling(NodeSchedulingPolicy::Active);
|
|
}
|
|
|
|
tracing::info!("Marking {} warming-up on reattach", reattach_req.node_id);
|
|
node.set_availability(NodeAvailability::WarmingUp(std::time::Instant::now()));
|
|
|
|
scheduler.node_upsert(node);
|
|
let new_nodes = Arc::new(new_nodes);
|
|
*nodes = new_nodes;
|
|
} else {
|
|
tracing::error!(
|
|
"Reattaching node {} was removed while processing the request",
|
|
reattach_req.node_id
|
|
);
|
|
}
|
|
}
|
|
|
|
Ok(response)
|
|
}
|
|
|
|
pub(crate) async fn validate(
|
|
&self,
|
|
validate_req: ValidateRequest,
|
|
) -> Result<ValidateResponse, DatabaseError> {
|
|
// Fast in-memory check: we may reject validation on anything that doesn't match our
|
|
// in-memory generation for a shard
|
|
let in_memory_result = {
|
|
let mut in_memory_result = Vec::new();
|
|
let locked = self.inner.read().unwrap();
|
|
for req_tenant in validate_req.tenants {
|
|
if let Some(tenant_shard) = locked.tenants.get(&req_tenant.id) {
|
|
let valid = tenant_shard.generation == Some(Generation::new(req_tenant.r#gen));
|
|
tracing::info!(
|
|
"handle_validate: {}(gen {}): valid={valid} (latest {:?})",
|
|
req_tenant.id,
|
|
req_tenant.r#gen,
|
|
tenant_shard.generation
|
|
);
|
|
|
|
in_memory_result.push((
|
|
req_tenant.id,
|
|
Generation::new(req_tenant.r#gen),
|
|
valid,
|
|
));
|
|
} else {
|
|
// This is legal: for example during a shard split the pageserver may still
|
|
// have deletions in its queue from the old pre-split shard, or after deletion
|
|
// of a tenant that was busy with compaction/gc while being deleted.
|
|
tracing::info!(
|
|
"Refusing deletion validation for missing shard {}",
|
|
req_tenant.id
|
|
);
|
|
}
|
|
}
|
|
|
|
in_memory_result
|
|
};
|
|
|
|
// Database calls to confirm validity for anything that passed the in-memory check. We must do this
|
|
// in case of controller split-brain, where some other controller process might have incremented the generation.
|
|
let db_generations = self
|
|
.persistence
|
|
.shard_generations(
|
|
in_memory_result
|
|
.iter()
|
|
.filter_map(|i| if i.2 { Some(&i.0) } else { None }),
|
|
)
|
|
.await?;
|
|
let db_generations = db_generations.into_iter().collect::<HashMap<_, _>>();
|
|
|
|
let mut response = ValidateResponse {
|
|
tenants: Vec::new(),
|
|
};
|
|
for (tenant_shard_id, validate_generation, valid) in in_memory_result.into_iter() {
|
|
let valid = if valid {
|
|
let db_generation = db_generations.get(&tenant_shard_id);
|
|
db_generation == Some(&Some(validate_generation))
|
|
} else {
|
|
// If in-memory state says it's invalid, trust that. It's always safe to fail a validation, at worst
|
|
// this prevents a pageserver from cleaning up an object in S3.
|
|
false
|
|
};
|
|
|
|
response.tenants.push(ValidateResponseTenant {
|
|
id: tenant_shard_id,
|
|
valid,
|
|
})
|
|
}
|
|
|
|
Ok(response)
|
|
}
|
|
|
|
pub(crate) async fn tenant_create(
|
|
&self,
|
|
create_req: TenantCreateRequest,
|
|
) -> Result<TenantCreateResponse, ApiError> {
|
|
let tenant_id = create_req.new_tenant_id.tenant_id;
|
|
|
|
// Exclude any concurrent attempts to create/access the same tenant ID
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
create_req.new_tenant_id.tenant_id,
|
|
TenantOperations::Create,
|
|
)
|
|
.await;
|
|
let (response, waiters) = self.do_tenant_create(create_req).await?;
|
|
|
|
if let Err(e) = self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
|
|
// Avoid deadlock: reconcile may fail while notifying compute, if the cloud control plane refuses to
|
|
// accept compute notifications while it is in the process of creating. Reconciliation will
|
|
// be retried in the background.
|
|
tracing::warn!(%tenant_id, "Reconcile not done yet while creating tenant ({e})");
|
|
}
|
|
Ok(response)
|
|
}
|
|
|
|
pub(crate) async fn do_tenant_create(
|
|
&self,
|
|
create_req: TenantCreateRequest,
|
|
) -> Result<(TenantCreateResponse, Vec<ReconcilerWaiter>), ApiError> {
|
|
let placement_policy = create_req
|
|
.placement_policy
|
|
.clone()
|
|
// As a default, zero secondaries is convenient for tests that don't choose a policy.
|
|
.unwrap_or(PlacementPolicy::Attached(0));
|
|
|
|
// This service expects to handle sharding itself: it is an error to try and directly create
|
|
// a particular shard here.
|
|
let tenant_id = if !create_req.new_tenant_id.is_unsharded() {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"Attempted to create a specific shard, this API is for creating the whole tenant"
|
|
)));
|
|
} else {
|
|
create_req.new_tenant_id.tenant_id
|
|
};
|
|
|
|
tracing::info!(
|
|
"Creating tenant {}, shard_count={:?}",
|
|
create_req.new_tenant_id,
|
|
create_req.shard_parameters.count,
|
|
);
|
|
|
|
let create_ids = (0..create_req.shard_parameters.count.count())
|
|
.map(|i| TenantShardId {
|
|
tenant_id,
|
|
shard_number: ShardNumber(i),
|
|
shard_count: create_req.shard_parameters.count,
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// If the caller specifies a None generation, it means "start from default". This is different
|
|
// to [`Self::tenant_location_config`], where a None generation is used to represent
|
|
// an incompletely-onboarded tenant.
|
|
let initial_generation = if matches!(placement_policy, PlacementPolicy::Secondary) {
|
|
tracing::info!(
|
|
"tenant_create: secondary mode, generation is_some={}",
|
|
create_req.generation.is_some()
|
|
);
|
|
create_req.generation.map(Generation::new)
|
|
} else {
|
|
tracing::info!(
|
|
"tenant_create: not secondary mode, generation is_some={}",
|
|
create_req.generation.is_some()
|
|
);
|
|
Some(
|
|
create_req
|
|
.generation
|
|
.map(Generation::new)
|
|
.unwrap_or(INITIAL_GENERATION),
|
|
)
|
|
};
|
|
|
|
let preferred_az_id = {
|
|
let locked = self.inner.read().unwrap();
|
|
// Idempotency: take the existing value if the tenant already exists
|
|
if let Some(shard) = locked.tenants.get(create_ids.first().unwrap()) {
|
|
shard.preferred_az().cloned()
|
|
} else {
|
|
locked.scheduler.get_az_for_new_tenant()
|
|
}
|
|
};
|
|
|
|
// Ordering: we persist tenant shards before creating them on the pageserver. This enables a caller
|
|
// to clean up after themselves by issuing a tenant deletion if something goes wrong and we restart
|
|
// during the creation, rather than risking leaving orphan objects in S3.
|
|
let persist_tenant_shards = create_ids
|
|
.iter()
|
|
.map(|tenant_shard_id| TenantShardPersistence {
|
|
tenant_id: tenant_shard_id.tenant_id.to_string(),
|
|
shard_number: tenant_shard_id.shard_number.0 as i32,
|
|
shard_count: tenant_shard_id.shard_count.literal() as i32,
|
|
shard_stripe_size: create_req.shard_parameters.stripe_size.0 as i32,
|
|
generation: initial_generation.map(|g| g.into().unwrap() as i32),
|
|
// The pageserver is not known until scheduling happens: we will set this column when
|
|
// incrementing the generation the first time we attach to a pageserver.
|
|
generation_pageserver: None,
|
|
placement_policy: serde_json::to_string(&placement_policy).unwrap(),
|
|
config: serde_json::to_string(&create_req.config).unwrap(),
|
|
splitting: SplitState::default(),
|
|
scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
|
|
.unwrap(),
|
|
preferred_az_id: preferred_az_id.as_ref().map(|az| az.to_string()),
|
|
})
|
|
.collect();
|
|
|
|
match self
|
|
.persistence
|
|
.insert_tenant_shards(persist_tenant_shards)
|
|
.await
|
|
{
|
|
Ok(_) => {}
|
|
Err(DatabaseError::Query(diesel::result::Error::DatabaseError(
|
|
DatabaseErrorKind::UniqueViolation,
|
|
_,
|
|
))) => {
|
|
// Unique key violation: this is probably a retry. Because the shard count is part of the unique key,
|
|
// if we see a unique key violation it means that the creation request's shard count matches the previous
|
|
// creation's shard count.
|
|
tracing::info!(
|
|
"Tenant shards already present in database, proceeding with idempotent creation..."
|
|
);
|
|
}
|
|
// Any other database error is unexpected and a bug.
|
|
Err(e) => return Err(ApiError::InternalServerError(anyhow::anyhow!(e))),
|
|
};
|
|
|
|
let mut schedule_context = ScheduleContext::default();
|
|
let mut schedule_error = None;
|
|
let mut response_shards = Vec::new();
|
|
for tenant_shard_id in create_ids {
|
|
tracing::info!("Creating shard {tenant_shard_id}...");
|
|
|
|
let outcome = self
|
|
.do_initial_shard_scheduling(
|
|
tenant_shard_id,
|
|
initial_generation,
|
|
&create_req.shard_parameters,
|
|
create_req.config.clone(),
|
|
placement_policy.clone(),
|
|
preferred_az_id.as_ref(),
|
|
&mut schedule_context,
|
|
)
|
|
.await;
|
|
|
|
match outcome {
|
|
InitialShardScheduleOutcome::Scheduled(resp) => response_shards.push(resp),
|
|
InitialShardScheduleOutcome::NotScheduled => {}
|
|
InitialShardScheduleOutcome::ShardScheduleError(err) => {
|
|
schedule_error = Some(err);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we failed to schedule shards, then they are still created in the controller,
|
|
// but we return an error to the requester to avoid a silent failure when someone
|
|
// tries to e.g. create a tenant whose placement policy requires more nodes than
|
|
// are present in the system. We do this here rather than in the above loop, to
|
|
// avoid situations where we only create a subset of shards in the tenant.
|
|
if let Some(e) = schedule_error {
|
|
return Err(ApiError::Conflict(format!(
|
|
"Failed to schedule shard(s): {e}"
|
|
)));
|
|
}
|
|
|
|
let waiters = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, _scheduler) = locked.parts_mut();
|
|
let config = ReconcilerConfigBuilder::new(ReconcilerPriority::High)
|
|
.tenant_creation_hint(true)
|
|
.build();
|
|
tenants
|
|
.range_mut(TenantShardId::tenant_range(tenant_id))
|
|
.filter_map(|(_shard_id, shard)| {
|
|
self.maybe_configured_reconcile_shard(shard, nodes, config)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
};
|
|
|
|
Ok((
|
|
TenantCreateResponse {
|
|
shards: response_shards,
|
|
},
|
|
waiters,
|
|
))
|
|
}
|
|
|
|
/// Helper for tenant creation that does the scheduling for an individual shard. Covers both the
|
|
/// case of a new tenant and a pre-existing one.
|
|
#[allow(clippy::too_many_arguments)]
|
|
async fn do_initial_shard_scheduling(
|
|
&self,
|
|
tenant_shard_id: TenantShardId,
|
|
initial_generation: Option<Generation>,
|
|
shard_params: &ShardParameters,
|
|
config: TenantConfig,
|
|
placement_policy: PlacementPolicy,
|
|
preferred_az_id: Option<&AvailabilityZone>,
|
|
schedule_context: &mut ScheduleContext,
|
|
) -> InitialShardScheduleOutcome {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (_nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
use std::collections::btree_map::Entry;
|
|
match tenants.entry(tenant_shard_id) {
|
|
Entry::Occupied(mut entry) => {
|
|
tracing::info!("Tenant shard {tenant_shard_id} already exists while creating");
|
|
|
|
if let Err(err) = entry.get_mut().schedule(scheduler, schedule_context) {
|
|
return InitialShardScheduleOutcome::ShardScheduleError(err);
|
|
}
|
|
|
|
if let Some(node_id) = entry.get().intent.get_attached() {
|
|
let generation = entry
|
|
.get()
|
|
.generation
|
|
.expect("Generation is set when in attached mode");
|
|
InitialShardScheduleOutcome::Scheduled(TenantCreateResponseShard {
|
|
shard_id: tenant_shard_id,
|
|
node_id: *node_id,
|
|
generation: generation.into().unwrap(),
|
|
})
|
|
} else {
|
|
InitialShardScheduleOutcome::NotScheduled
|
|
}
|
|
}
|
|
Entry::Vacant(entry) => {
|
|
let state = entry.insert(TenantShard::new(
|
|
tenant_shard_id,
|
|
ShardIdentity::from_params(tenant_shard_id.shard_number, shard_params),
|
|
placement_policy,
|
|
preferred_az_id.cloned(),
|
|
));
|
|
|
|
state.generation = initial_generation;
|
|
state.config = config;
|
|
if let Err(e) = state.schedule(scheduler, schedule_context) {
|
|
return InitialShardScheduleOutcome::ShardScheduleError(e);
|
|
}
|
|
|
|
// Only include shards in result if we are attaching: the purpose
|
|
// of the response is to tell the caller where the shards are attached.
|
|
if let Some(node_id) = state.intent.get_attached() {
|
|
let generation = state
|
|
.generation
|
|
.expect("Generation is set when in attached mode");
|
|
InitialShardScheduleOutcome::Scheduled(TenantCreateResponseShard {
|
|
shard_id: tenant_shard_id,
|
|
node_id: *node_id,
|
|
generation: generation.into().unwrap(),
|
|
})
|
|
} else {
|
|
InitialShardScheduleOutcome::NotScheduled
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper for functions that reconcile a number of shards, and would like to do a timeout-bounded
|
|
/// wait for reconciliation to complete before responding.
|
|
async fn await_waiters(
|
|
&self,
|
|
waiters: Vec<ReconcilerWaiter>,
|
|
timeout: Duration,
|
|
) -> Result<(), ReconcileWaitError> {
|
|
let deadline = Instant::now().checked_add(timeout).unwrap();
|
|
for waiter in waiters {
|
|
let timeout = deadline.duration_since(Instant::now());
|
|
waiter.wait_timeout(timeout).await?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Same as [`Service::await_waiters`], but returns the waiters which are still
|
|
/// in progress
|
|
async fn await_waiters_remainder(
|
|
&self,
|
|
waiters: Vec<ReconcilerWaiter>,
|
|
timeout: Duration,
|
|
) -> Vec<ReconcilerWaiter> {
|
|
let deadline = Instant::now().checked_add(timeout).unwrap();
|
|
for waiter in waiters.iter() {
|
|
let timeout = deadline.duration_since(Instant::now());
|
|
let _ = waiter.wait_timeout(timeout).await;
|
|
}
|
|
|
|
waiters
|
|
.into_iter()
|
|
.filter(|waiter| matches!(waiter.get_status(), ReconcilerStatus::InProgress))
|
|
.collect::<Vec<_>>()
|
|
}
|
|
|
|
/// Part of [`Self::tenant_location_config`]: dissect an incoming location config request,
|
|
/// and transform it into either a tenant creation of a series of shard updates.
|
|
///
|
|
/// If the incoming request makes no changes, a [`TenantCreateOrUpdate::Update`] result will
|
|
/// still be returned.
|
|
fn tenant_location_config_prepare(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
req: TenantLocationConfigRequest,
|
|
) -> TenantCreateOrUpdate {
|
|
let mut updates = Vec::new();
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, _scheduler) = locked.parts_mut();
|
|
let tenant_shard_id = TenantShardId::unsharded(tenant_id);
|
|
|
|
// Use location config mode as an indicator of policy.
|
|
let placement_policy = match req.config.mode {
|
|
LocationConfigMode::Detached => PlacementPolicy::Detached,
|
|
LocationConfigMode::Secondary => PlacementPolicy::Secondary,
|
|
LocationConfigMode::AttachedMulti
|
|
| LocationConfigMode::AttachedSingle
|
|
| LocationConfigMode::AttachedStale => {
|
|
if nodes.len() > 1 {
|
|
PlacementPolicy::Attached(1)
|
|
} else {
|
|
// Convenience for dev/test: if we just have one pageserver, import
|
|
// tenants into non-HA mode so that scheduling will succeed.
|
|
PlacementPolicy::Attached(0)
|
|
}
|
|
}
|
|
};
|
|
|
|
// Ordinarily we do not update scheduling policy, but when making major changes
|
|
// like detaching or demoting to secondary-only, we need to force the scheduling
|
|
// mode to Active, or the caller's expected outcome (detach it) will not happen.
|
|
let scheduling_policy = match req.config.mode {
|
|
LocationConfigMode::Detached | LocationConfigMode::Secondary => {
|
|
// Special case: when making major changes like detaching or demoting to secondary-only,
|
|
// we need to force the scheduling mode to Active, or nothing will happen.
|
|
Some(ShardSchedulingPolicy::Active)
|
|
}
|
|
LocationConfigMode::AttachedMulti
|
|
| LocationConfigMode::AttachedSingle
|
|
| LocationConfigMode::AttachedStale => {
|
|
// While attached, continue to respect whatever the existing scheduling mode is.
|
|
None
|
|
}
|
|
};
|
|
|
|
let mut create = true;
|
|
for (shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
|
|
// Saw an existing shard: this is not a creation
|
|
create = false;
|
|
|
|
// Shards may have initially been created by a Secondary request, where we
|
|
// would have left generation as None.
|
|
//
|
|
// We only update generation the first time we see an attached-mode request,
|
|
// and if there is no existing generation set. The caller is responsible for
|
|
// ensuring that no non-storage-controller pageserver ever uses a higher
|
|
// generation than they passed in here.
|
|
use LocationConfigMode::*;
|
|
let set_generation = match req.config.mode {
|
|
AttachedMulti | AttachedSingle | AttachedStale if shard.generation.is_none() => {
|
|
req.config.generation.map(Generation::new)
|
|
}
|
|
_ => None,
|
|
};
|
|
|
|
updates.push(ShardUpdate {
|
|
tenant_shard_id: *shard_id,
|
|
placement_policy: placement_policy.clone(),
|
|
tenant_config: req.config.tenant_conf.clone(),
|
|
generation: set_generation,
|
|
scheduling_policy,
|
|
});
|
|
}
|
|
|
|
if create {
|
|
use LocationConfigMode::*;
|
|
let generation = match req.config.mode {
|
|
AttachedMulti | AttachedSingle | AttachedStale => req.config.generation,
|
|
// If a caller provided a generation in a non-attached request, ignore it
|
|
// and leave our generation as None: this enables a subsequent update to set
|
|
// the generation when setting an attached mode for the first time.
|
|
_ => None,
|
|
};
|
|
|
|
TenantCreateOrUpdate::Create(
|
|
// Synthesize a creation request
|
|
TenantCreateRequest {
|
|
new_tenant_id: tenant_shard_id,
|
|
generation,
|
|
shard_parameters: ShardParameters {
|
|
count: tenant_shard_id.shard_count,
|
|
// We only import un-sharded or single-sharded tenants, so stripe
|
|
// size can be made up arbitrarily here.
|
|
stripe_size: DEFAULT_STRIPE_SIZE,
|
|
},
|
|
placement_policy: Some(placement_policy),
|
|
config: req.config.tenant_conf,
|
|
},
|
|
)
|
|
} else {
|
|
assert!(!updates.is_empty());
|
|
TenantCreateOrUpdate::Update(updates)
|
|
}
|
|
}
|
|
|
|
/// For APIs that might act on tenants with [`PlacementPolicy::Detached`], first check if
|
|
/// the tenant is present in memory. If not, load it from the database. If it is found
|
|
/// in neither location, return a NotFound error.
|
|
///
|
|
/// Caller must demonstrate they hold a lock guard, as otherwise two callers might try and load
|
|
/// it at the same time, or we might race with [`Self::maybe_drop_tenant`]
|
|
async fn maybe_load_tenant(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
_guard: &TracingExclusiveGuard<TenantOperations>,
|
|
) -> Result<(), ApiError> {
|
|
// Check if the tenant is present in memory, and select an AZ to use when loading
|
|
// if we will load it.
|
|
let load_in_az = {
|
|
let locked = self.inner.read().unwrap();
|
|
let existing = locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.next();
|
|
|
|
// If the tenant is not present in memory, we expect to load it from database,
|
|
// so let's figure out what AZ to load it into while we have self.inner locked.
|
|
if existing.is_none() {
|
|
locked
|
|
.scheduler
|
|
.get_az_for_new_tenant()
|
|
.ok_or(ApiError::BadRequest(anyhow::anyhow!(
|
|
"No AZ with nodes found to load tenant"
|
|
)))?
|
|
} else {
|
|
// We already have this tenant in memory
|
|
return Ok(());
|
|
}
|
|
};
|
|
|
|
let tenant_shards = self.persistence.load_tenant(tenant_id).await?;
|
|
if tenant_shards.is_empty() {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
|
|
));
|
|
}
|
|
|
|
// Update the persistent shards with the AZ that we are about to apply to in-memory state
|
|
self.persistence
|
|
.set_tenant_shard_preferred_azs(
|
|
tenant_shards
|
|
.iter()
|
|
.map(|t| {
|
|
(
|
|
t.get_tenant_shard_id().expect("Corrupt shard in database"),
|
|
Some(load_in_az.clone()),
|
|
)
|
|
})
|
|
.collect(),
|
|
)
|
|
.await?;
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
tracing::info!(
|
|
"Loaded {} shards for tenant {}",
|
|
tenant_shards.len(),
|
|
tenant_id
|
|
);
|
|
|
|
locked.tenants.extend(tenant_shards.into_iter().map(|p| {
|
|
let intent = IntentState::new(Some(load_in_az.clone()));
|
|
let shard =
|
|
TenantShard::from_persistent(p, intent).expect("Corrupt shard row in database");
|
|
|
|
// Sanity check: when loading on-demand, we should always be loaded something Detached
|
|
debug_assert!(shard.policy == PlacementPolicy::Detached);
|
|
if shard.policy != PlacementPolicy::Detached {
|
|
tracing::error!(
|
|
"Tenant shard {} loaded on-demand, but has non-Detached policy {:?}",
|
|
shard.tenant_shard_id,
|
|
shard.policy
|
|
);
|
|
}
|
|
|
|
(shard.tenant_shard_id, shard)
|
|
}));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// If all shards for a tenant are detached, and in a fully quiescent state (no observed locations on pageservers),
|
|
/// and have no reconciler running, then we can drop the tenant from memory. It will be reloaded on-demand
|
|
/// if we are asked to attach it again (see [`Self::maybe_load_tenant`]).
|
|
///
|
|
/// Caller must demonstrate they hold a lock guard, as otherwise it is unsafe to drop a tenant from
|
|
/// memory while some other function might assume it continues to exist while not holding the lock on Self::inner.
|
|
fn maybe_drop_tenant(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
locked: &mut std::sync::RwLockWriteGuard<ServiceState>,
|
|
_guard: &TracingExclusiveGuard<TenantOperations>,
|
|
) {
|
|
let mut tenant_shards = locked.tenants.range(TenantShardId::tenant_range(tenant_id));
|
|
if tenant_shards.all(|(_id, shard)| {
|
|
shard.policy == PlacementPolicy::Detached
|
|
&& shard.reconciler.is_none()
|
|
&& shard.observed.is_empty()
|
|
}) {
|
|
let keys = locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.map(|(id, _)| id)
|
|
.copied()
|
|
.collect::<Vec<_>>();
|
|
for key in keys {
|
|
tracing::info!("Dropping detached tenant shard {} from memory", key);
|
|
locked.tenants.remove(&key);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This API is used by the cloud control plane to migrate unsharded tenants that it created
|
|
/// directly with pageservers into this service.
|
|
///
|
|
/// Cloud control plane MUST NOT continue issuing GENERATION NUMBERS for this tenant once it
|
|
/// has attempted to call this API. Failure to oblige to this rule may lead to S3 corruption.
|
|
/// Think of the first attempt to call this API as a transfer of absolute authority over the
|
|
/// tenant's source of generation numbers.
|
|
///
|
|
/// The mode in this request coarse-grained control of tenants:
|
|
/// - Call with mode Attached* to upsert the tenant.
|
|
/// - Call with mode Secondary to either onboard a tenant without attaching it, or
|
|
/// to set an existing tenant to PolicyMode::Secondary
|
|
/// - Call with mode Detached to switch to PolicyMode::Detached
|
|
pub(crate) async fn tenant_location_config(
|
|
&self,
|
|
tenant_shard_id: TenantShardId,
|
|
req: TenantLocationConfigRequest,
|
|
) -> Result<TenantLocationConfigResponse, ApiError> {
|
|
// We require an exclusive lock, because we are updating both persistent and in-memory state
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_shard_id.tenant_id,
|
|
TenantOperations::LocationConfig,
|
|
)
|
|
.await;
|
|
|
|
let tenant_id = if !tenant_shard_id.is_unsharded() {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"This API is for importing single-sharded or unsharded tenants"
|
|
)));
|
|
} else {
|
|
tenant_shard_id.tenant_id
|
|
};
|
|
|
|
// In case we are waking up a Detached tenant
|
|
match self.maybe_load_tenant(tenant_id, &_tenant_lock).await {
|
|
Ok(()) | Err(ApiError::NotFound(_)) => {
|
|
// This is a creation or an update
|
|
}
|
|
Err(e) => {
|
|
return Err(e);
|
|
}
|
|
};
|
|
|
|
// First check if this is a creation or an update
|
|
let create_or_update = self.tenant_location_config_prepare(tenant_id, req);
|
|
|
|
let mut result = TenantLocationConfigResponse {
|
|
shards: Vec::new(),
|
|
stripe_size: None,
|
|
};
|
|
let waiters = match create_or_update {
|
|
TenantCreateOrUpdate::Create(create_req) => {
|
|
let (create_resp, waiters) = self.do_tenant_create(create_req).await?;
|
|
result.shards = create_resp
|
|
.shards
|
|
.into_iter()
|
|
.map(|s| TenantShardLocation {
|
|
node_id: s.node_id,
|
|
shard_id: s.shard_id,
|
|
})
|
|
.collect();
|
|
waiters
|
|
}
|
|
TenantCreateOrUpdate::Update(updates) => {
|
|
// Persist updates
|
|
// Ordering: write to the database before applying changes in-memory, so that
|
|
// we will not appear time-travel backwards on a restart.
|
|
|
|
let mut schedule_context = ScheduleContext::default();
|
|
for ShardUpdate {
|
|
tenant_shard_id,
|
|
placement_policy,
|
|
tenant_config,
|
|
generation,
|
|
scheduling_policy,
|
|
} in &updates
|
|
{
|
|
self.persistence
|
|
.update_tenant_shard(
|
|
TenantFilter::Shard(*tenant_shard_id),
|
|
Some(placement_policy.clone()),
|
|
Some(tenant_config.clone()),
|
|
*generation,
|
|
*scheduling_policy,
|
|
)
|
|
.await?;
|
|
}
|
|
|
|
// Apply updates in-memory
|
|
let mut waiters = Vec::new();
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
for ShardUpdate {
|
|
tenant_shard_id,
|
|
placement_policy,
|
|
tenant_config,
|
|
generation: update_generation,
|
|
scheduling_policy,
|
|
} in updates
|
|
{
|
|
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
|
|
tracing::warn!("Shard {tenant_shard_id} removed while updating");
|
|
continue;
|
|
};
|
|
|
|
// Update stripe size
|
|
if result.stripe_size.is_none() && shard.shard.count.count() > 1 {
|
|
result.stripe_size = Some(shard.shard.stripe_size);
|
|
}
|
|
|
|
shard.policy = placement_policy;
|
|
shard.config = tenant_config;
|
|
if let Some(generation) = update_generation {
|
|
shard.generation = Some(generation);
|
|
}
|
|
|
|
if let Some(scheduling_policy) = scheduling_policy {
|
|
shard.set_scheduling_policy(scheduling_policy);
|
|
}
|
|
|
|
shard.schedule(scheduler, &mut schedule_context)?;
|
|
|
|
let maybe_waiter =
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High);
|
|
if let Some(waiter) = maybe_waiter {
|
|
waiters.push(waiter);
|
|
}
|
|
|
|
if let Some(node_id) = shard.intent.get_attached() {
|
|
result.shards.push(TenantShardLocation {
|
|
shard_id: tenant_shard_id,
|
|
node_id: *node_id,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
waiters
|
|
}
|
|
};
|
|
|
|
if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
|
|
// Do not treat a reconcile error as fatal: we have already applied any requested
|
|
// Intent changes, and the reconcile can fail for external reasons like unavailable
|
|
// compute notification API. In these cases, it is important that we do not
|
|
// cause the cloud control plane to retry forever on this API.
|
|
tracing::warn!(
|
|
"Failed to reconcile after /location_config: {e}, returning success anyway"
|
|
);
|
|
}
|
|
|
|
// Logging the full result is useful because it lets us cross-check what the cloud control
|
|
// plane's tenant_shards table should contain.
|
|
tracing::info!("Complete, returning {result:?}");
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
pub(crate) async fn tenant_config_patch(
|
|
&self,
|
|
req: TenantConfigPatchRequest,
|
|
) -> Result<(), ApiError> {
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
req.tenant_id,
|
|
TenantOperations::ConfigPatch,
|
|
)
|
|
.await;
|
|
|
|
let tenant_id = req.tenant_id;
|
|
let patch = req.config;
|
|
|
|
self.maybe_load_tenant(tenant_id, &_tenant_lock).await?;
|
|
|
|
let base = {
|
|
let locked = self.inner.read().unwrap();
|
|
let shards = locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(req.tenant_id));
|
|
|
|
let mut configs = shards.map(|(_sid, shard)| &shard.config).peekable();
|
|
|
|
let first = match configs.peek() {
|
|
Some(first) => (*first).clone(),
|
|
None => {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant {} not found", req.tenant_id).into(),
|
|
));
|
|
}
|
|
};
|
|
|
|
if !configs.all_equal() {
|
|
tracing::error!("Tenant configs for {} are mismatched. ", req.tenant_id);
|
|
// This can't happen because we atomically update the database records
|
|
// of all shards to the new value in [`Self::set_tenant_config_and_reconcile`].
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Tenant configs for {} are mismatched",
|
|
req.tenant_id
|
|
)));
|
|
}
|
|
|
|
first
|
|
};
|
|
|
|
let updated_config = base
|
|
.apply_patch(patch)
|
|
.map_err(|err| ApiError::BadRequest(anyhow::anyhow!(err)))?;
|
|
self.set_tenant_config_and_reconcile(tenant_id, updated_config)
|
|
.await
|
|
}
|
|
|
|
pub(crate) async fn tenant_config_set(&self, req: TenantConfigRequest) -> Result<(), ApiError> {
|
|
// We require an exclusive lock, because we are updating persistent and in-memory state
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
req.tenant_id,
|
|
TenantOperations::ConfigSet,
|
|
)
|
|
.await;
|
|
|
|
self.maybe_load_tenant(req.tenant_id, &_tenant_lock).await?;
|
|
|
|
self.set_tenant_config_and_reconcile(req.tenant_id, req.config)
|
|
.await
|
|
}
|
|
|
|
async fn set_tenant_config_and_reconcile(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
config: TenantConfig,
|
|
) -> Result<(), ApiError> {
|
|
self.persistence
|
|
.update_tenant_shard(
|
|
TenantFilter::Tenant(tenant_id),
|
|
None,
|
|
Some(config.clone()),
|
|
None,
|
|
None,
|
|
)
|
|
.await?;
|
|
|
|
let waiters = {
|
|
let mut waiters = Vec::new();
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, _scheduler) = locked.parts_mut();
|
|
for (_shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
|
|
shard.config = config.clone();
|
|
if let Some(waiter) =
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
|
|
{
|
|
waiters.push(waiter);
|
|
}
|
|
}
|
|
waiters
|
|
};
|
|
|
|
if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
|
|
// Treat this as success because we have stored the configuration. If e.g.
|
|
// a node was unavailable at this time, it should not stop us accepting a
|
|
// configuration change.
|
|
tracing::warn!(%tenant_id, "Accepted configuration update but reconciliation failed: {e}");
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) fn tenant_config_get(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
) -> Result<HashMap<&str, serde_json::Value>, ApiError> {
|
|
let config = {
|
|
let locked = self.inner.read().unwrap();
|
|
|
|
match locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.next()
|
|
{
|
|
Some((_tenant_shard_id, shard)) => shard.config.clone(),
|
|
None => {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant not found").into(),
|
|
));
|
|
}
|
|
}
|
|
};
|
|
|
|
// Unlike the pageserver, we do not have a set of global defaults: the config is
|
|
// entirely per-tenant. Therefore the distinction between `tenant_specific_overrides`
|
|
// and `effective_config` in the response is meaningless, but we retain that syntax
|
|
// in order to remain compatible with the pageserver API.
|
|
|
|
let response = HashMap::from([
|
|
(
|
|
"tenant_specific_overrides",
|
|
serde_json::to_value(&config)
|
|
.context("serializing tenant specific overrides")
|
|
.map_err(ApiError::InternalServerError)?,
|
|
),
|
|
(
|
|
"effective_config",
|
|
serde_json::to_value(&config)
|
|
.context("serializing effective config")
|
|
.map_err(ApiError::InternalServerError)?,
|
|
),
|
|
]);
|
|
|
|
Ok(response)
|
|
}
|
|
|
|
pub(crate) async fn tenant_time_travel_remote_storage(
|
|
&self,
|
|
time_travel_req: &TenantTimeTravelRequest,
|
|
tenant_id: TenantId,
|
|
timestamp: Cow<'_, str>,
|
|
done_if_after: Cow<'_, str>,
|
|
) -> Result<(), ApiError> {
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::TimeTravelRemoteStorage,
|
|
)
|
|
.await;
|
|
|
|
let node = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
// Just a sanity check to prevent misuse: the API expects that the tenant is fully
|
|
// detached everywhere, and nothing writes to S3 storage. Here, we verify that,
|
|
// but only at the start of the process, so it's really just to prevent operator
|
|
// mistakes.
|
|
for (shard_id, shard) in locked.tenants.range(TenantShardId::tenant_range(tenant_id)) {
|
|
if shard.intent.get_attached().is_some() || !shard.intent.get_secondary().is_empty()
|
|
{
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"We want tenant to be attached in shard with tenant_shard_id={shard_id}"
|
|
)));
|
|
}
|
|
let maybe_attached = shard
|
|
.observed
|
|
.locations
|
|
.iter()
|
|
.filter_map(|(node_id, observed_location)| {
|
|
observed_location
|
|
.conf
|
|
.as_ref()
|
|
.map(|loc| (node_id, observed_location, loc.mode))
|
|
})
|
|
.find(|(_, _, mode)| *mode != LocationConfigMode::Detached);
|
|
if let Some((node_id, _observed_location, mode)) = maybe_attached {
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"We observed attached={mode:?} tenant in node_id={node_id} shard with tenant_shard_id={shard_id}"
|
|
)));
|
|
}
|
|
}
|
|
let scheduler = &mut locked.scheduler;
|
|
// Right now we only perform the operation on a single node without parallelization
|
|
// TODO fan out the operation to multiple nodes for better performance
|
|
let node_id = scheduler.any_available_node()?;
|
|
let node = locked
|
|
.nodes
|
|
.get(&node_id)
|
|
.expect("Pageservers may not be deleted while lock is active");
|
|
node.clone()
|
|
};
|
|
|
|
// The shard count is encoded in the remote storage's URL, so we need to handle all historically used shard counts
|
|
let mut counts = time_travel_req
|
|
.shard_counts
|
|
.iter()
|
|
.copied()
|
|
.collect::<HashSet<_>>()
|
|
.into_iter()
|
|
.collect::<Vec<_>>();
|
|
counts.sort_unstable();
|
|
|
|
for count in counts {
|
|
let shard_ids = (0..count.count())
|
|
.map(|i| TenantShardId {
|
|
tenant_id,
|
|
shard_number: ShardNumber(i),
|
|
shard_count: count,
|
|
})
|
|
.collect::<Vec<_>>();
|
|
for tenant_shard_id in shard_ids {
|
|
let client = PageserverClient::new(
|
|
node.get_id(),
|
|
self.http_client.clone(),
|
|
node.base_url(),
|
|
self.config.pageserver_jwt_token.as_deref(),
|
|
);
|
|
|
|
tracing::info!("Doing time travel recovery for shard {tenant_shard_id}",);
|
|
|
|
client
|
|
.tenant_time_travel_remote_storage(
|
|
tenant_shard_id,
|
|
×tamp,
|
|
&done_if_after,
|
|
)
|
|
.await
|
|
.map_err(|e| {
|
|
ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Error doing time travel recovery for shard {tenant_shard_id} on node {}: {e}",
|
|
node
|
|
))
|
|
})?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn tenant_secondary_download(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
wait: Option<Duration>,
|
|
) -> Result<(StatusCode, SecondaryProgress), ApiError> {
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::SecondaryDownload,
|
|
)
|
|
.await;
|
|
|
|
// Acquire lock and yield the collection of shard-node tuples which we will send requests onward to
|
|
let targets = {
|
|
let locked = self.inner.read().unwrap();
|
|
let mut targets = Vec::new();
|
|
|
|
for (tenant_shard_id, shard) in
|
|
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
|
|
{
|
|
for node_id in shard.intent.get_secondary() {
|
|
let node = locked
|
|
.nodes
|
|
.get(node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
|
|
targets.push((*tenant_shard_id, node.clone()));
|
|
}
|
|
}
|
|
targets
|
|
};
|
|
|
|
// Issue concurrent requests to all shards' locations
|
|
let mut futs = FuturesUnordered::new();
|
|
for (tenant_shard_id, node) in targets {
|
|
let client = PageserverClient::new(
|
|
node.get_id(),
|
|
self.http_client.clone(),
|
|
node.base_url(),
|
|
self.config.pageserver_jwt_token.as_deref(),
|
|
);
|
|
futs.push(async move {
|
|
let result = client
|
|
.tenant_secondary_download(tenant_shard_id, wait)
|
|
.await;
|
|
(result, node, tenant_shard_id)
|
|
})
|
|
}
|
|
|
|
// Handle any errors returned by pageservers. This includes cases like this request racing with
|
|
// a scheduling operation, such that the tenant shard we're calling doesn't exist on that pageserver any more, as
|
|
// well as more general cases like 503s, 500s, or timeouts.
|
|
let mut aggregate_progress = SecondaryProgress::default();
|
|
let mut aggregate_status: Option<StatusCode> = None;
|
|
let mut error: Option<mgmt_api::Error> = None;
|
|
while let Some((result, node, tenant_shard_id)) = futs.next().await {
|
|
match result {
|
|
Err(e) => {
|
|
// Secondary downloads are always advisory: if something fails, we nevertheless report success, so that whoever
|
|
// is calling us will proceed with whatever migration they're doing, albeit with a slightly less warm cache
|
|
// than they had hoped for.
|
|
tracing::warn!("Secondary download error from pageserver {node}: {e}",);
|
|
error = Some(e)
|
|
}
|
|
Ok((status_code, progress)) => {
|
|
tracing::info!(%tenant_shard_id, "Shard status={status_code} progress: {progress:?}");
|
|
aggregate_progress.layers_downloaded += progress.layers_downloaded;
|
|
aggregate_progress.layers_total += progress.layers_total;
|
|
aggregate_progress.bytes_downloaded += progress.bytes_downloaded;
|
|
aggregate_progress.bytes_total += progress.bytes_total;
|
|
aggregate_progress.heatmap_mtime =
|
|
std::cmp::max(aggregate_progress.heatmap_mtime, progress.heatmap_mtime);
|
|
aggregate_status = match aggregate_status {
|
|
None => Some(status_code),
|
|
Some(StatusCode::OK) => Some(status_code),
|
|
Some(cur) => {
|
|
// Other status codes (e.g. 202) -- do not overwrite.
|
|
Some(cur)
|
|
}
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
// If any of the shards return 202, indicate our result as 202.
|
|
match aggregate_status {
|
|
None => {
|
|
match error {
|
|
Some(e) => {
|
|
// No successes, and an error: surface it
|
|
Err(ApiError::Conflict(format!("Error from pageserver: {e}")))
|
|
}
|
|
None => {
|
|
// No shards found
|
|
Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
|
|
))
|
|
}
|
|
}
|
|
}
|
|
Some(aggregate_status) => Ok((aggregate_status, aggregate_progress)),
|
|
}
|
|
}
|
|
|
|
pub(crate) async fn tenant_delete(
|
|
self: &Arc<Self>,
|
|
tenant_id: TenantId,
|
|
) -> Result<StatusCode, ApiError> {
|
|
let _tenant_lock =
|
|
trace_exclusive_lock(&self.tenant_op_locks, tenant_id, TenantOperations::Delete).await;
|
|
|
|
self.maybe_load_tenant(tenant_id, &_tenant_lock).await?;
|
|
|
|
// Detach all shards. This also deletes local pageserver shard data.
|
|
let (detach_waiters, node) = {
|
|
let mut detach_waiters = Vec::new();
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
for (_, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
|
|
// Update the tenant's intent to remove all attachments
|
|
shard.policy = PlacementPolicy::Detached;
|
|
shard
|
|
.schedule(scheduler, &mut ScheduleContext::default())
|
|
.expect("De-scheduling is infallible");
|
|
debug_assert!(shard.intent.get_attached().is_none());
|
|
debug_assert!(shard.intent.get_secondary().is_empty());
|
|
|
|
if let Some(waiter) =
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
|
|
{
|
|
detach_waiters.push(waiter);
|
|
}
|
|
}
|
|
|
|
// Pick an arbitrary node to use for remote deletions (does not have to be where the tenant
|
|
// was attached, just has to be able to see the S3 content)
|
|
let node_id = scheduler.any_available_node()?;
|
|
let node = nodes
|
|
.get(&node_id)
|
|
.expect("Pageservers may not be deleted while lock is active");
|
|
(detach_waiters, node.clone())
|
|
};
|
|
|
|
// This reconcile wait can fail in a few ways:
|
|
// A there is a very long queue for the reconciler semaphore
|
|
// B some pageserver is failing to handle a detach promptly
|
|
// C some pageserver goes offline right at the moment we send it a request.
|
|
//
|
|
// A and C are transient: the semaphore will eventually become available, and once a node is marked offline
|
|
// the next attempt to reconcile will silently skip detaches for an offline node and succeed. If B happens,
|
|
// it's a bug, and needs resolving at the pageserver level (we shouldn't just leave attachments behind while
|
|
// deleting the underlying data).
|
|
self.await_waiters(detach_waiters, RECONCILE_TIMEOUT)
|
|
.await?;
|
|
|
|
// Delete the entire tenant (all shards) from remote storage via a random pageserver.
|
|
// Passing an unsharded tenant ID will cause the pageserver to remove all remote paths with
|
|
// the tenant ID prefix, including all shards (even possibly stale ones).
|
|
match node
|
|
.with_client_retries(
|
|
|client| async move {
|
|
client
|
|
.tenant_delete(TenantShardId::unsharded(tenant_id))
|
|
.await
|
|
},
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
1,
|
|
3,
|
|
RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
.unwrap_or(Err(mgmt_api::Error::Cancelled))
|
|
{
|
|
Ok(_) => {}
|
|
Err(mgmt_api::Error::Cancelled) => {
|
|
return Err(ApiError::ShuttingDown);
|
|
}
|
|
Err(e) => {
|
|
// This is unexpected: remote deletion should be infallible, unless the object store
|
|
// at large is unavailable.
|
|
tracing::error!("Error deleting via node {node}: {e}");
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(e)));
|
|
}
|
|
}
|
|
|
|
// Fall through: deletion of the tenant on pageservers is complete, we may proceed to drop
|
|
// our in-memory state and database state.
|
|
|
|
// Ordering: we delete persistent state first: if we then
|
|
// crash, we will drop the in-memory state.
|
|
|
|
// Drop persistent state.
|
|
self.persistence.delete_tenant(tenant_id).await?;
|
|
|
|
// Drop in-memory state
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (_nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
// Dereference Scheduler from shards before dropping them
|
|
for (_tenant_shard_id, shard) in
|
|
tenants.range_mut(TenantShardId::tenant_range(tenant_id))
|
|
{
|
|
shard.intent.clear(scheduler);
|
|
}
|
|
|
|
tenants.retain(|tenant_shard_id, _shard| tenant_shard_id.tenant_id != tenant_id);
|
|
tracing::info!(
|
|
"Deleted tenant {tenant_id}, now have {} tenants",
|
|
locked.tenants.len()
|
|
);
|
|
};
|
|
|
|
// Delete the tenant from safekeepers (if needed)
|
|
self.tenant_delete_safekeepers(tenant_id)
|
|
.instrument(tracing::info_span!("tenant_delete_safekeepers", %tenant_id))
|
|
.await?;
|
|
|
|
// Success is represented as 404, to imitate the existing pageserver deletion API
|
|
Ok(StatusCode::NOT_FOUND)
|
|
}
|
|
|
|
/// Naming: this configures the storage controller's policies for a tenant, whereas [`Self::tenant_config_set`] is "set the TenantConfig"
|
|
/// for a tenant. The TenantConfig is passed through to pageservers, whereas this function modifies
|
|
/// the tenant's policies (configuration) within the storage controller
|
|
pub(crate) async fn tenant_update_policy(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
req: TenantPolicyRequest,
|
|
) -> Result<(), ApiError> {
|
|
// We require an exclusive lock, because we are updating persistent and in-memory state
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::UpdatePolicy,
|
|
)
|
|
.await;
|
|
|
|
self.maybe_load_tenant(tenant_id, &_tenant_lock).await?;
|
|
|
|
failpoint_support::sleep_millis_async!("tenant-update-policy-exclusive-lock");
|
|
|
|
let TenantPolicyRequest {
|
|
placement,
|
|
mut scheduling,
|
|
} = req;
|
|
|
|
if let Some(PlacementPolicy::Detached | PlacementPolicy::Secondary) = placement {
|
|
// When someone configures a tenant to detach, we force the scheduling policy to enable
|
|
// this to take effect.
|
|
if scheduling.is_none() {
|
|
scheduling = Some(ShardSchedulingPolicy::Active);
|
|
}
|
|
}
|
|
|
|
self.persistence
|
|
.update_tenant_shard(
|
|
TenantFilter::Tenant(tenant_id),
|
|
placement.clone(),
|
|
None,
|
|
None,
|
|
scheduling,
|
|
)
|
|
.await?;
|
|
|
|
let mut schedule_context = ScheduleContext::default();
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
for (shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
|
|
if let Some(placement) = &placement {
|
|
shard.policy = placement.clone();
|
|
|
|
tracing::info!(tenant_id=%shard_id.tenant_id, shard_id=%shard_id.shard_slug(),
|
|
"Updated placement policy to {placement:?}");
|
|
}
|
|
|
|
if let Some(scheduling) = &scheduling {
|
|
shard.set_scheduling_policy(*scheduling);
|
|
|
|
tracing::info!(tenant_id=%shard_id.tenant_id, shard_id=%shard_id.shard_slug(),
|
|
"Updated scheduling policy to {scheduling:?}");
|
|
}
|
|
|
|
// In case scheduling is being switched back on, try it now.
|
|
shard.schedule(scheduler, &mut schedule_context).ok();
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_create_pageservers(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
mut create_req: TimelineCreateRequest,
|
|
) -> Result<TimelineInfo, ApiError> {
|
|
tracing::info!(
|
|
"Creating timeline {}/{}",
|
|
tenant_id,
|
|
create_req.new_timeline_id,
|
|
);
|
|
|
|
self.tenant_remote_mutation(tenant_id, move |mut targets| async move {
|
|
if targets.0.is_empty() {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant not found").into(),
|
|
));
|
|
};
|
|
|
|
let (shard_zero_tid, shard_zero_locations) =
|
|
targets.0.pop_first().expect("Must have at least one shard");
|
|
assert!(shard_zero_tid.is_shard_zero());
|
|
|
|
async fn create_one(
|
|
tenant_shard_id: TenantShardId,
|
|
locations: ShardMutationLocations,
|
|
http_client: reqwest::Client,
|
|
jwt: Option<String>,
|
|
mut create_req: TimelineCreateRequest,
|
|
) -> Result<TimelineInfo, ApiError> {
|
|
let latest = locations.latest.node;
|
|
|
|
tracing::info!(
|
|
"Creating timeline on shard {}/{}, attached to node {latest} in generation {:?}",
|
|
tenant_shard_id,
|
|
create_req.new_timeline_id,
|
|
locations.latest.generation
|
|
);
|
|
|
|
let client =
|
|
PageserverClient::new(latest.get_id(), http_client.clone(), latest.base_url(), jwt.as_deref());
|
|
|
|
let timeline_info = client
|
|
.timeline_create(tenant_shard_id, &create_req)
|
|
.await
|
|
.map_err(|e| passthrough_api_error(&latest, e))?;
|
|
|
|
// If we are going to create the timeline on some stale locations for shard 0, then ask them to re-use
|
|
// the initdb generated by the latest location, rather than generating their own. This avoids racing uploads
|
|
// of initdb to S3 which might not be binary-identical if different pageservers have different postgres binaries.
|
|
if tenant_shard_id.is_shard_zero() {
|
|
if let models::TimelineCreateRequestMode::Bootstrap { existing_initdb_timeline_id, .. } = &mut create_req.mode {
|
|
*existing_initdb_timeline_id = Some(create_req.new_timeline_id);
|
|
}
|
|
}
|
|
|
|
// We propagate timeline creations to all attached locations such that a compute
|
|
// for the new timeline is able to start regardless of the current state of the
|
|
// tenant shard reconciliation.
|
|
for location in locations.other {
|
|
tracing::info!(
|
|
"Creating timeline on shard {}/{}, stale attached to node {} in generation {:?}",
|
|
tenant_shard_id,
|
|
create_req.new_timeline_id,
|
|
location.node,
|
|
location.generation
|
|
);
|
|
|
|
let client = PageserverClient::new(
|
|
location.node.get_id(),
|
|
http_client.clone(),
|
|
location.node.base_url(),
|
|
jwt.as_deref(),
|
|
);
|
|
|
|
let res = client
|
|
.timeline_create(tenant_shard_id, &create_req)
|
|
.await;
|
|
|
|
if let Err(e) = res {
|
|
match e {
|
|
mgmt_api::Error::ApiError(StatusCode::NOT_FOUND, _) => {
|
|
// Tenant might have been detached from the stale location,
|
|
// so ignore 404s.
|
|
},
|
|
_ => {
|
|
return Err(passthrough_api_error(&location.node, e));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(timeline_info)
|
|
}
|
|
|
|
// Because the caller might not provide an explicit LSN, we must do the creation first on a single shard, and then
|
|
// use whatever LSN that shard picked when creating on subsequent shards. We arbitrarily use shard zero as the shard
|
|
// that will get the first creation request, and propagate the LSN to all the >0 shards.
|
|
//
|
|
// This also enables non-zero shards to use the initdb that shard 0 generated and uploaded to S3, rather than
|
|
// independently generating their own initdb. This guarantees that shards cannot end up with different initial
|
|
// states if e.g. they have different postgres binary versions.
|
|
let timeline_info = create_one(
|
|
shard_zero_tid,
|
|
shard_zero_locations,
|
|
self.http_client.clone(),
|
|
self.config.pageserver_jwt_token.clone(),
|
|
create_req.clone(),
|
|
)
|
|
.await?;
|
|
|
|
// Update the create request for shards >= 0
|
|
match &mut create_req.mode {
|
|
models::TimelineCreateRequestMode::Branch { ancestor_start_lsn, .. } if ancestor_start_lsn.is_none() => {
|
|
// Propagate the LSN that shard zero picked, if caller didn't provide one
|
|
*ancestor_start_lsn = timeline_info.ancestor_lsn;
|
|
},
|
|
models::TimelineCreateRequestMode::Bootstrap { existing_initdb_timeline_id, .. } => {
|
|
// For shards >= 0, do not run initdb: use the one that shard 0 uploaded to S3
|
|
*existing_initdb_timeline_id = Some(create_req.new_timeline_id)
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
// Create timeline on remaining shards with number >0
|
|
if !targets.0.is_empty() {
|
|
// If we had multiple shards, issue requests for the remainder now.
|
|
let jwt = &self.config.pageserver_jwt_token;
|
|
self.tenant_for_shards(
|
|
targets
|
|
.0
|
|
.iter()
|
|
.map(|t| (*t.0, t.1.latest.node.clone()))
|
|
.collect(),
|
|
|tenant_shard_id: TenantShardId, _node: Node| {
|
|
let create_req = create_req.clone();
|
|
let mutation_locations = targets.0.remove(&tenant_shard_id).unwrap();
|
|
Box::pin(create_one(
|
|
tenant_shard_id,
|
|
mutation_locations,
|
|
self.http_client.clone(),
|
|
jwt.clone(),
|
|
create_req,
|
|
))
|
|
},
|
|
)
|
|
.await?;
|
|
}
|
|
|
|
Ok(timeline_info)
|
|
})
|
|
.await?
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_create(
|
|
self: &Arc<Self>,
|
|
tenant_id: TenantId,
|
|
create_req: TimelineCreateRequest,
|
|
) -> Result<TimelineCreateResponseStorcon, ApiError> {
|
|
let safekeepers = self.config.timelines_onto_safekeepers;
|
|
let timeline_id = create_req.new_timeline_id;
|
|
|
|
tracing::info!(
|
|
mode=%create_req.mode_tag(),
|
|
%safekeepers,
|
|
"Creating timeline {}/{}",
|
|
tenant_id,
|
|
timeline_id,
|
|
);
|
|
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::TimelineCreate,
|
|
)
|
|
.await;
|
|
failpoint_support::sleep_millis_async!("tenant-create-timeline-shared-lock");
|
|
let is_import = create_req.is_import();
|
|
let read_only = matches!(
|
|
create_req.mode,
|
|
models::TimelineCreateRequestMode::Branch {
|
|
read_only: true,
|
|
..
|
|
}
|
|
);
|
|
|
|
if is_import {
|
|
// Ensure that there is no split on-going.
|
|
// [`Self::tenant_shard_split`] holds the exclusive tenant lock
|
|
// for the duration of the split, but here we handle the case
|
|
// where we restarted and the split is being aborted.
|
|
let locked = self.inner.read().unwrap();
|
|
let splitting = locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.any(|(_id, shard)| shard.splitting != SplitState::Idle);
|
|
|
|
if splitting {
|
|
return Err(ApiError::Conflict("Tenant is splitting shard".to_string()));
|
|
}
|
|
}
|
|
|
|
let timeline_info = self
|
|
.tenant_timeline_create_pageservers(tenant_id, create_req)
|
|
.await?;
|
|
|
|
let selected_safekeepers = if is_import {
|
|
let shards = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.map(|(ts_id, _)| ts_id.to_index())
|
|
.collect::<Vec<_>>()
|
|
};
|
|
|
|
if !shards
|
|
.iter()
|
|
.map(|shard_index| shard_index.shard_count)
|
|
.all_equal()
|
|
{
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Inconsistent shard count"
|
|
)));
|
|
}
|
|
|
|
let import = TimelineImport {
|
|
tenant_id,
|
|
timeline_id,
|
|
shard_statuses: ShardImportStatuses::new(shards),
|
|
};
|
|
|
|
let inserted = self
|
|
.persistence
|
|
.insert_timeline_import(import.to_persistent())
|
|
.await
|
|
.context("timeline import insert")
|
|
.map_err(ApiError::InternalServerError)?;
|
|
|
|
// Set the importing flag on the tenant shards
|
|
self.inner
|
|
.write()
|
|
.unwrap()
|
|
.tenants
|
|
.range_mut(TenantShardId::tenant_range(tenant_id))
|
|
.for_each(|(_id, shard)| shard.importing = TimelineImportState::Importing);
|
|
|
|
match inserted {
|
|
true => {
|
|
tracing::info!(%tenant_id, %timeline_id, "Inserted timeline import");
|
|
}
|
|
false => {
|
|
tracing::info!(%tenant_id, %timeline_id, "Timeline import entry already present");
|
|
}
|
|
}
|
|
|
|
None
|
|
} else if safekeepers || read_only {
|
|
// Note that for imported timelines, we do not create the timeline on the safekeepers
|
|
// straight away. Instead, we do it once the import finalized such that we know what
|
|
// start LSN to provide for the safekeepers. This is done in
|
|
// [`Self::finalize_timeline_import`].
|
|
let res = self
|
|
.tenant_timeline_create_safekeepers(tenant_id, &timeline_info, read_only)
|
|
.instrument(tracing::info_span!("timeline_create_safekeepers", %tenant_id, timeline_id=%timeline_info.timeline_id))
|
|
.await?;
|
|
Some(res)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
Ok(TimelineCreateResponseStorcon {
|
|
timeline_info,
|
|
safekeepers: selected_safekeepers,
|
|
})
|
|
}
|
|
|
|
#[instrument(skip_all, fields(
|
|
tenant_id=%req.tenant_shard_id.tenant_id,
|
|
shard_id=%req.tenant_shard_id.shard_slug(),
|
|
timeline_id=%req.timeline_id,
|
|
))]
|
|
pub(crate) async fn handle_timeline_shard_import_progress(
|
|
self: &Arc<Self>,
|
|
req: TimelineImportStatusRequest,
|
|
) -> Result<ShardImportStatus, ApiError> {
|
|
let validity = self
|
|
.validate_shard_generation(req.tenant_shard_id, req.generation)
|
|
.await?;
|
|
match validity {
|
|
ShardGenerationValidity::Valid => {
|
|
// fallthrough
|
|
}
|
|
ShardGenerationValidity::Mismatched { claimed, actual } => {
|
|
tracing::info!(
|
|
claimed=?claimed.into(),
|
|
actual=?actual.and_then(|g| g.into()),
|
|
"Rejecting import progress fetch from stale generation"
|
|
);
|
|
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!("Invalid generation")));
|
|
}
|
|
}
|
|
|
|
let maybe_import = self
|
|
.persistence
|
|
.get_timeline_import(req.tenant_shard_id.tenant_id, req.timeline_id)
|
|
.await?;
|
|
|
|
let import = maybe_import.ok_or_else(|| {
|
|
ApiError::NotFound(
|
|
format!(
|
|
"import for {}/{} not found",
|
|
req.tenant_shard_id.tenant_id, req.timeline_id
|
|
)
|
|
.into(),
|
|
)
|
|
})?;
|
|
|
|
import
|
|
.shard_statuses
|
|
.0
|
|
.get(&req.tenant_shard_id.to_index())
|
|
.cloned()
|
|
.ok_or_else(|| {
|
|
ApiError::NotFound(
|
|
format!("shard {} not found", req.tenant_shard_id.shard_slug()).into(),
|
|
)
|
|
})
|
|
}
|
|
|
|
#[instrument(skip_all, fields(
|
|
tenant_id=%req.tenant_shard_id.tenant_id,
|
|
shard_id=%req.tenant_shard_id.shard_slug(),
|
|
timeline_id=%req.timeline_id,
|
|
))]
|
|
pub(crate) async fn handle_timeline_shard_import_progress_upcall(
|
|
self: &Arc<Self>,
|
|
req: PutTimelineImportStatusRequest,
|
|
) -> Result<(), ApiError> {
|
|
let validity = self
|
|
.validate_shard_generation(req.tenant_shard_id, req.generation)
|
|
.await?;
|
|
match validity {
|
|
ShardGenerationValidity::Valid => {
|
|
// fallthrough
|
|
}
|
|
ShardGenerationValidity::Mismatched { claimed, actual } => {
|
|
tracing::info!(
|
|
claimed=?claimed.into(),
|
|
actual=?actual.and_then(|g| g.into()),
|
|
"Rejecting import progress update from stale generation"
|
|
);
|
|
|
|
return Err(ApiError::PreconditionFailed("Invalid generation".into()));
|
|
}
|
|
}
|
|
|
|
let res = self
|
|
.persistence
|
|
.update_timeline_import(req.tenant_shard_id, req.timeline_id, req.status)
|
|
.await;
|
|
let timeline_import = match res {
|
|
Ok(Ok(Some(timeline_import))) => timeline_import,
|
|
Ok(Ok(None)) => {
|
|
// Idempotency: we've already seen and handled this update.
|
|
return Ok(());
|
|
}
|
|
Ok(Err(logical_err)) => {
|
|
return Err(logical_err.into());
|
|
}
|
|
Err(db_err) => {
|
|
return Err(db_err.into());
|
|
}
|
|
};
|
|
|
|
tracing::info!(
|
|
tenant_id=%req.tenant_shard_id.tenant_id,
|
|
timeline_id=%req.timeline_id,
|
|
shard_id=%req.tenant_shard_id.shard_slug(),
|
|
"Updated timeline import status to: {timeline_import:?}");
|
|
|
|
if timeline_import.is_complete() {
|
|
tokio::task::spawn({
|
|
let this = self.clone();
|
|
async move { this.finalize_timeline_import(timeline_import).await }
|
|
});
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Check that a provided generation for some tenant shard is the most recent one.
|
|
///
|
|
/// Validate with the in-mem state first, and, if that passes, validate with the
|
|
/// database state which is authoritative.
|
|
async fn validate_shard_generation(
|
|
self: &Arc<Self>,
|
|
tenant_shard_id: TenantShardId,
|
|
generation: Generation,
|
|
) -> Result<ShardGenerationValidity, ApiError> {
|
|
{
|
|
let locked = self.inner.read().unwrap();
|
|
let tenant_shard =
|
|
locked
|
|
.tenants
|
|
.get(&tenant_shard_id)
|
|
.ok_or(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"{} shard not found",
|
|
tenant_shard_id
|
|
)))?;
|
|
|
|
if tenant_shard.generation != Some(generation) {
|
|
return Ok(ShardGenerationValidity::Mismatched {
|
|
claimed: generation,
|
|
actual: tenant_shard.generation,
|
|
});
|
|
}
|
|
}
|
|
|
|
let mut db_generations = self
|
|
.persistence
|
|
.shard_generations(std::iter::once(&tenant_shard_id))
|
|
.await?;
|
|
let (_tid, db_generation) =
|
|
db_generations
|
|
.pop()
|
|
.ok_or(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"{} shard not found",
|
|
tenant_shard_id
|
|
)))?;
|
|
|
|
if db_generation != Some(generation) {
|
|
return Ok(ShardGenerationValidity::Mismatched {
|
|
claimed: generation,
|
|
actual: db_generation,
|
|
});
|
|
}
|
|
|
|
Ok(ShardGenerationValidity::Valid)
|
|
}
|
|
|
|
/// Finalize the import of a timeline
|
|
///
|
|
/// This method should be called once all shards have reported that the import is complete.
|
|
/// Firstly, it polls the post import timeline activation endpoint exposed by the pageserver.
|
|
/// Once the timeline is active on all shards, the timeline also gets created on the
|
|
/// safekeepers. Finally, notify cplane of the import completion (whether failed or
|
|
/// successful), and remove the import from the database and in-memory.
|
|
///
|
|
/// If this method gets pre-empted by shut down, it will be called again at start-up (on-going
|
|
/// imports are stored in the database).
|
|
///
|
|
/// # Cancel-Safety
|
|
/// Not cancel safe.
|
|
/// If the caller stops polling, the import will not be removed from
|
|
/// [`ServiceState::imports_finalizing`].
|
|
#[instrument(skip_all, fields(
|
|
tenant_id=%import.tenant_id,
|
|
timeline_id=%import.timeline_id,
|
|
))]
|
|
|
|
async fn finalize_timeline_import(
|
|
self: &Arc<Self>,
|
|
import: TimelineImport,
|
|
) -> Result<(), TimelineImportFinalizeError> {
|
|
let tenant_timeline = (import.tenant_id, import.timeline_id);
|
|
|
|
let (_finalize_import_guard, cancel) = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let gate = Gate::default();
|
|
let cancel = CancellationToken::default();
|
|
|
|
let guard = gate.enter().unwrap();
|
|
|
|
locked.imports_finalizing.insert(
|
|
tenant_timeline,
|
|
FinalizingImport {
|
|
gate,
|
|
cancel: cancel.clone(),
|
|
},
|
|
);
|
|
|
|
(guard, cancel)
|
|
};
|
|
|
|
let res = tokio::select! {
|
|
res = self.finalize_timeline_import_impl(import) => {
|
|
res
|
|
},
|
|
_ = cancel.cancelled() => {
|
|
Err(TimelineImportFinalizeError::Cancelled)
|
|
}
|
|
};
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
locked.imports_finalizing.remove(&tenant_timeline);
|
|
|
|
res
|
|
}
|
|
|
|
async fn finalize_timeline_import_impl(
|
|
self: &Arc<Self>,
|
|
import: TimelineImport,
|
|
) -> Result<(), TimelineImportFinalizeError> {
|
|
tracing::info!("Finalizing timeline import");
|
|
|
|
pausable_failpoint!("timeline-import-pre-cplane-notification");
|
|
|
|
let tenant_id = import.tenant_id;
|
|
let timeline_id = import.timeline_id;
|
|
|
|
let import_error = import.completion_error();
|
|
match import_error {
|
|
Some(err) => {
|
|
self.notify_cplane_and_delete_import(tenant_id, timeline_id, Err(err))
|
|
.await?;
|
|
tracing::warn!("Timeline import completed with shard errors");
|
|
Ok(())
|
|
}
|
|
None => match self.activate_timeline_post_import(&import).await {
|
|
Ok(timeline_info) => {
|
|
tracing::info!("Post import timeline activation complete");
|
|
|
|
if self.config.timelines_onto_safekeepers {
|
|
// Now that we know the start LSN of this timeline, create it on the
|
|
// safekeepers.
|
|
self.tenant_timeline_create_safekeepers_until_success(
|
|
import.tenant_id,
|
|
timeline_info,
|
|
)
|
|
.await?;
|
|
}
|
|
|
|
self.notify_cplane_and_delete_import(tenant_id, timeline_id, Ok(()))
|
|
.await?;
|
|
|
|
tracing::info!("Timeline import completed successfully");
|
|
Ok(())
|
|
}
|
|
Err(TimelineImportFinalizeError::ShuttingDown) => {
|
|
// We got pre-empted by shut down and will resume after the restart.
|
|
Err(TimelineImportFinalizeError::ShuttingDown)
|
|
}
|
|
Err(err) => {
|
|
// Any finalize error apart from shut down is permanent and requires us to notify
|
|
// cplane such that it can clean up.
|
|
tracing::error!("Import finalize failed with permanent error: {err}");
|
|
self.notify_cplane_and_delete_import(
|
|
tenant_id,
|
|
timeline_id,
|
|
Err(err.to_string()),
|
|
)
|
|
.await?;
|
|
Err(err)
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
async fn notify_cplane_and_delete_import(
|
|
self: &Arc<Self>,
|
|
tenant_id: TenantId,
|
|
timeline_id: TimelineId,
|
|
import_result: ImportResult,
|
|
) -> Result<(), TimelineImportFinalizeError> {
|
|
let import_failed = import_result.is_err();
|
|
tracing::info!(%import_failed, "Notifying cplane of import completion");
|
|
|
|
let client = UpcallClient::new(self.get_config(), self.cancel.child_token());
|
|
client
|
|
.notify_import_complete(tenant_id, timeline_id, import_result)
|
|
.await
|
|
.map_err(|_err| TimelineImportFinalizeError::ShuttingDown)?;
|
|
|
|
if let Err(err) = self
|
|
.persistence
|
|
.delete_timeline_import(tenant_id, timeline_id)
|
|
.await
|
|
{
|
|
tracing::warn!("Failed to delete timeline import entry from database: {err}");
|
|
}
|
|
|
|
self.inner
|
|
.write()
|
|
.unwrap()
|
|
.tenants
|
|
.range_mut(TenantShardId::tenant_range(tenant_id))
|
|
.for_each(|(_id, shard)| shard.importing = TimelineImportState::Idle);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Activate an imported timeline on all shards once the import is complete.
|
|
/// Returns the [`TimelineInfo`] reported by shard zero.
|
|
async fn activate_timeline_post_import(
|
|
self: &Arc<Self>,
|
|
import: &TimelineImport,
|
|
) -> Result<TimelineInfo, TimelineImportFinalizeError> {
|
|
const TIMELINE_ACTIVATE_TIMEOUT: Duration = Duration::from_millis(128);
|
|
|
|
let mut shards_to_activate: HashSet<ShardIndex> =
|
|
import.shard_statuses.0.keys().cloned().collect();
|
|
let mut shard_zero_timeline_info = None;
|
|
|
|
while !shards_to_activate.is_empty() {
|
|
if self.cancel.is_cancelled() {
|
|
return Err(TimelineImportFinalizeError::ShuttingDown);
|
|
}
|
|
|
|
let targets = {
|
|
let locked = self.inner.read().unwrap();
|
|
let mut targets = Vec::new();
|
|
|
|
for (tenant_shard_id, shard) in locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(import.tenant_id))
|
|
{
|
|
if !import
|
|
.shard_statuses
|
|
.0
|
|
.contains_key(&tenant_shard_id.to_index())
|
|
{
|
|
return Err(TimelineImportFinalizeError::MismatchedShards(
|
|
tenant_shard_id.to_index(),
|
|
));
|
|
}
|
|
|
|
if let Some(node_id) = shard.intent.get_attached() {
|
|
let node = locked
|
|
.nodes
|
|
.get(node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
targets.push((*tenant_shard_id, node.clone()));
|
|
}
|
|
}
|
|
|
|
targets
|
|
};
|
|
|
|
let targeted_tenant_shards: Vec<_> = targets.iter().map(|(tid, _node)| *tid).collect();
|
|
|
|
let results = self
|
|
.tenant_for_shards_api(
|
|
targets,
|
|
|tenant_shard_id, client| async move {
|
|
client
|
|
.activate_post_import(
|
|
tenant_shard_id,
|
|
import.timeline_id,
|
|
TIMELINE_ACTIVATE_TIMEOUT,
|
|
)
|
|
.await
|
|
},
|
|
1,
|
|
1,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await;
|
|
|
|
let mut failed = 0;
|
|
for (tid, result) in targeted_tenant_shards.iter().zip(results.into_iter()) {
|
|
match result {
|
|
Ok(ok) => {
|
|
if tid.is_shard_zero() {
|
|
shard_zero_timeline_info = Some(ok);
|
|
}
|
|
|
|
shards_to_activate.remove(&tid.to_index());
|
|
}
|
|
Err(_err) => {
|
|
failed += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if failed > 0 {
|
|
tracing::info!(
|
|
"Failed to activate timeline on {failed} shards post import. Will retry"
|
|
);
|
|
}
|
|
|
|
tokio::select! {
|
|
_ = tokio::time::sleep(Duration::from_millis(250)) => {},
|
|
_ = self.cancel.cancelled() => {
|
|
return Err(TimelineImportFinalizeError::ShuttingDown);
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(shard_zero_timeline_info.expect("All shards replied"))
|
|
}
|
|
|
|
async fn finalize_timeline_imports(self: &Arc<Self>, imports: Vec<TimelineImport>) {
|
|
futures::future::join_all(
|
|
imports
|
|
.into_iter()
|
|
.map(|import| self.finalize_timeline_import(import)),
|
|
)
|
|
.await;
|
|
}
|
|
|
|
/// Delete a timeline import if it exists
|
|
///
|
|
/// Firstly, delete the entry from the database. Any updates
|
|
/// from pageservers after the update will fail with a 404, so the
|
|
/// import cannot progress into finalizing state if it's not there already.
|
|
/// Secondly, cancel the finalization if one is in progress.
|
|
pub(crate) async fn maybe_delete_timeline_import(
|
|
self: &Arc<Self>,
|
|
tenant_id: TenantId,
|
|
timeline_id: TimelineId,
|
|
) -> Result<(), DatabaseError> {
|
|
let tenant_has_ongoing_import = {
|
|
let locked = self.inner.read().unwrap();
|
|
locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.any(|(_tid, shard)| shard.importing == TimelineImportState::Importing)
|
|
};
|
|
|
|
if !tenant_has_ongoing_import {
|
|
return Ok(());
|
|
}
|
|
|
|
self.persistence
|
|
.delete_timeline_import(tenant_id, timeline_id)
|
|
.await?;
|
|
|
|
let maybe_finalizing = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
locked.imports_finalizing.remove(&(tenant_id, timeline_id))
|
|
};
|
|
|
|
if let Some(finalizing) = maybe_finalizing {
|
|
finalizing.cancel.cancel();
|
|
finalizing.gate.close().await;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_archival_config(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
timeline_id: TimelineId,
|
|
req: TimelineArchivalConfigRequest,
|
|
) -> Result<(), ApiError> {
|
|
tracing::info!(
|
|
"Setting archival config of timeline {tenant_id}/{timeline_id} to '{:?}'",
|
|
req.state
|
|
);
|
|
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::TimelineArchivalConfig,
|
|
)
|
|
.await;
|
|
|
|
self.tenant_remote_mutation(tenant_id, move |targets| async move {
|
|
if targets.0.is_empty() {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant not found").into(),
|
|
));
|
|
}
|
|
async fn config_one(
|
|
tenant_shard_id: TenantShardId,
|
|
timeline_id: TimelineId,
|
|
node: Node,
|
|
http_client: reqwest::Client,
|
|
jwt: Option<String>,
|
|
req: TimelineArchivalConfigRequest,
|
|
) -> Result<(), ApiError> {
|
|
tracing::info!(
|
|
"Setting archival config of timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
|
|
);
|
|
|
|
let client = PageserverClient::new(node.get_id(), http_client, node.base_url(), jwt.as_deref());
|
|
|
|
client
|
|
.timeline_archival_config(tenant_shard_id, timeline_id, &req)
|
|
.await
|
|
.map_err(|e| match e {
|
|
mgmt_api::Error::ApiError(StatusCode::PRECONDITION_FAILED, msg) => {
|
|
ApiError::PreconditionFailed(msg.into_boxed_str())
|
|
}
|
|
_ => passthrough_api_error(&node, e),
|
|
})
|
|
}
|
|
|
|
// no shard needs to go first/last; the operation should be idempotent
|
|
// TODO: it would be great to ensure that all shards return the same error
|
|
let locations = targets.0.iter().map(|t| (*t.0, t.1.latest.node.clone())).collect();
|
|
let results = self
|
|
.tenant_for_shards(locations, |tenant_shard_id, node| {
|
|
futures::FutureExt::boxed(config_one(
|
|
tenant_shard_id,
|
|
timeline_id,
|
|
node,
|
|
self.http_client.clone(),
|
|
self.config.pageserver_jwt_token.clone(),
|
|
req.clone(),
|
|
))
|
|
})
|
|
.await?;
|
|
assert!(!results.is_empty(), "must have at least one result");
|
|
|
|
Ok(())
|
|
}).await?
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_detach_ancestor(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
timeline_id: TimelineId,
|
|
behavior: Option<DetachBehavior>,
|
|
) -> Result<models::detach_ancestor::AncestorDetached, ApiError> {
|
|
tracing::info!("Detaching timeline {tenant_id}/{timeline_id}",);
|
|
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::TimelineDetachAncestor,
|
|
)
|
|
.await;
|
|
|
|
self.tenant_remote_mutation(tenant_id, move |targets| async move {
|
|
if targets.0.is_empty() {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant not found").into(),
|
|
));
|
|
}
|
|
|
|
async fn detach_one(
|
|
tenant_shard_id: TenantShardId,
|
|
timeline_id: TimelineId,
|
|
node: Node,
|
|
http_client: reqwest::Client,
|
|
jwt: Option<String>,
|
|
behavior: Option<DetachBehavior>,
|
|
) -> Result<(ShardNumber, models::detach_ancestor::AncestorDetached), ApiError> {
|
|
tracing::info!(
|
|
"Detaching timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
|
|
);
|
|
|
|
let client = PageserverClient::new(node.get_id(), http_client, node.base_url(), jwt.as_deref());
|
|
|
|
client
|
|
.timeline_detach_ancestor(tenant_shard_id, timeline_id, behavior)
|
|
.await
|
|
.map_err(|e| {
|
|
use mgmt_api::Error;
|
|
|
|
match e {
|
|
// no ancestor (ever)
|
|
Error::ApiError(StatusCode::CONFLICT, msg) => ApiError::Conflict(format!(
|
|
"{node}: {}",
|
|
msg.strip_prefix("Conflict: ").unwrap_or(&msg)
|
|
)),
|
|
// too many ancestors
|
|
Error::ApiError(StatusCode::BAD_REQUEST, msg) => {
|
|
ApiError::BadRequest(anyhow::anyhow!("{node}: {msg}"))
|
|
}
|
|
Error::ApiError(StatusCode::INTERNAL_SERVER_ERROR, msg) => {
|
|
// avoid turning these into conflicts to remain compatible with
|
|
// pageservers, 500 errors are sadly retryable with timeline ancestor
|
|
// detach
|
|
ApiError::InternalServerError(anyhow::anyhow!("{node}: {msg}"))
|
|
}
|
|
// rest can be mapped as usual
|
|
other => passthrough_api_error(&node, other),
|
|
}
|
|
})
|
|
.map(|res| (tenant_shard_id.shard_number, res))
|
|
}
|
|
|
|
// no shard needs to go first/last; the operation should be idempotent
|
|
let locations = targets.0.iter().map(|t| (*t.0, t.1.latest.node.clone())).collect();
|
|
let mut results = self
|
|
.tenant_for_shards(locations, |tenant_shard_id, node| {
|
|
futures::FutureExt::boxed(detach_one(
|
|
tenant_shard_id,
|
|
timeline_id,
|
|
node,
|
|
self.http_client.clone(),
|
|
self.config.pageserver_jwt_token.clone(),
|
|
behavior,
|
|
))
|
|
})
|
|
.await?;
|
|
|
|
let any = results.pop().expect("we must have at least one response");
|
|
|
|
let mismatching = results
|
|
.iter()
|
|
.filter(|(_, res)| res != &any.1)
|
|
.collect::<Vec<_>>();
|
|
if !mismatching.is_empty() {
|
|
// this can be hit by races which should not happen because operation lock on cplane
|
|
let matching = results.len() - mismatching.len();
|
|
tracing::error!(
|
|
matching,
|
|
compared_against=?any,
|
|
?mismatching,
|
|
"shards returned different results"
|
|
);
|
|
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!("pageservers returned mixed results for ancestor detach; manual intervention is required.")));
|
|
}
|
|
|
|
Ok(any.1)
|
|
}).await?
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_block_unblock_gc(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
timeline_id: TimelineId,
|
|
dir: BlockUnblock,
|
|
) -> Result<(), ApiError> {
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::TimelineGcBlockUnblock,
|
|
)
|
|
.await;
|
|
|
|
self.tenant_remote_mutation(tenant_id, move |targets| async move {
|
|
if targets.0.is_empty() {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant not found").into(),
|
|
));
|
|
}
|
|
|
|
async fn do_one(
|
|
tenant_shard_id: TenantShardId,
|
|
timeline_id: TimelineId,
|
|
node: Node,
|
|
http_client: reqwest::Client,
|
|
jwt: Option<String>,
|
|
dir: BlockUnblock,
|
|
) -> Result<(), ApiError> {
|
|
let client = PageserverClient::new(
|
|
node.get_id(),
|
|
http_client,
|
|
node.base_url(),
|
|
jwt.as_deref(),
|
|
);
|
|
|
|
client
|
|
.timeline_block_unblock_gc(tenant_shard_id, timeline_id, dir)
|
|
.await
|
|
.map_err(|e| passthrough_api_error(&node, e))
|
|
}
|
|
|
|
// no shard needs to go first/last; the operation should be idempotent
|
|
let locations = targets
|
|
.0
|
|
.iter()
|
|
.map(|t| (*t.0, t.1.latest.node.clone()))
|
|
.collect();
|
|
self.tenant_for_shards(locations, |tenant_shard_id, node| {
|
|
futures::FutureExt::boxed(do_one(
|
|
tenant_shard_id,
|
|
timeline_id,
|
|
node,
|
|
self.http_client.clone(),
|
|
self.config.pageserver_jwt_token.clone(),
|
|
dir,
|
|
))
|
|
})
|
|
.await
|
|
})
|
|
.await??;
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_lsn_lease(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
timeline_id: TimelineId,
|
|
lsn: Lsn,
|
|
) -> Result<LsnLease, ApiError> {
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::TimelineLsnLease,
|
|
)
|
|
.await;
|
|
|
|
let targets = {
|
|
let locked = self.inner.read().unwrap();
|
|
let mut targets = Vec::new();
|
|
|
|
// If the request got an unsharded tenant id, then apply
|
|
// the operation to all shards. Otherwise, apply it to a specific shard.
|
|
let shards_range = TenantShardId::tenant_range(tenant_id);
|
|
|
|
for (tenant_shard_id, shard) in locked.tenants.range(shards_range) {
|
|
if let Some(node_id) = shard.intent.get_attached() {
|
|
let node = locked
|
|
.nodes
|
|
.get(node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
|
|
targets.push((*tenant_shard_id, node.clone()));
|
|
}
|
|
}
|
|
targets
|
|
};
|
|
|
|
let res = self
|
|
.tenant_for_shards_api(
|
|
targets,
|
|
|tenant_shard_id, client| async move {
|
|
client
|
|
.timeline_lease_lsn(tenant_shard_id, timeline_id, lsn)
|
|
.await
|
|
},
|
|
1,
|
|
1,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await;
|
|
|
|
let mut valid_until = None;
|
|
for r in res {
|
|
match r {
|
|
Ok(lease) => {
|
|
if let Some(ref mut valid_until) = valid_until {
|
|
*valid_until = std::cmp::min(*valid_until, lease.valid_until);
|
|
} else {
|
|
valid_until = Some(lease.valid_until);
|
|
}
|
|
}
|
|
Err(e) => {
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(e)));
|
|
}
|
|
}
|
|
}
|
|
Ok(LsnLease {
|
|
valid_until: valid_until.unwrap_or_else(SystemTime::now),
|
|
})
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_download_heatmap_layers(
|
|
&self,
|
|
tenant_shard_id: TenantShardId,
|
|
timeline_id: TimelineId,
|
|
concurrency: Option<usize>,
|
|
recurse: bool,
|
|
) -> Result<(), ApiError> {
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_shard_id.tenant_id,
|
|
TenantOperations::DownloadHeatmapLayers,
|
|
)
|
|
.await;
|
|
|
|
let targets = {
|
|
let locked = self.inner.read().unwrap();
|
|
let mut targets = Vec::new();
|
|
|
|
// If the request got an unsharded tenant id, then apply
|
|
// the operation to all shards. Otherwise, apply it to a specific shard.
|
|
let shards_range = if tenant_shard_id.is_unsharded() {
|
|
TenantShardId::tenant_range(tenant_shard_id.tenant_id)
|
|
} else {
|
|
tenant_shard_id.range()
|
|
};
|
|
|
|
for (tenant_shard_id, shard) in locked.tenants.range(shards_range) {
|
|
if let Some(node_id) = shard.intent.get_attached() {
|
|
let node = locked
|
|
.nodes
|
|
.get(node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
|
|
targets.push((*tenant_shard_id, node.clone()));
|
|
}
|
|
}
|
|
targets
|
|
};
|
|
|
|
self.tenant_for_shards_api(
|
|
targets,
|
|
|tenant_shard_id, client| async move {
|
|
client
|
|
.timeline_download_heatmap_layers(
|
|
tenant_shard_id,
|
|
timeline_id,
|
|
concurrency,
|
|
recurse,
|
|
)
|
|
.await
|
|
},
|
|
1,
|
|
1,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Helper for concurrently calling a pageserver API on a number of shards, such as timeline creation.
|
|
///
|
|
/// On success, the returned vector contains exactly the same number of elements as the input `locations`
|
|
/// and returned element at index `i` is the result for `req_fn(op(locations[i])`.
|
|
async fn tenant_for_shards<F, R>(
|
|
&self,
|
|
locations: Vec<(TenantShardId, Node)>,
|
|
mut req_fn: F,
|
|
) -> Result<Vec<R>, ApiError>
|
|
where
|
|
F: FnMut(
|
|
TenantShardId,
|
|
Node,
|
|
)
|
|
-> std::pin::Pin<Box<dyn futures::Future<Output = Result<R, ApiError>> + Send>>,
|
|
{
|
|
let mut futs = FuturesUnordered::new();
|
|
let mut results = Vec::with_capacity(locations.len());
|
|
|
|
for (idx, (tenant_shard_id, node)) in locations.into_iter().enumerate() {
|
|
let fut = req_fn(tenant_shard_id, node);
|
|
futs.push(async move { (idx, fut.await) });
|
|
}
|
|
|
|
while let Some((idx, r)) = futs.next().await {
|
|
results.push((idx, r?));
|
|
}
|
|
|
|
results.sort_by_key(|(idx, _)| *idx);
|
|
Ok(results.into_iter().map(|(_, r)| r).collect())
|
|
}
|
|
|
|
/// Concurrently invoke a pageserver API call on many shards at once.
|
|
///
|
|
/// The returned Vec has the same length as the `locations` Vec,
|
|
/// and returned element at index `i` is the result for `op(locations[i])`.
|
|
pub(crate) async fn tenant_for_shards_api<T, O, F>(
|
|
&self,
|
|
locations: Vec<(TenantShardId, Node)>,
|
|
op: O,
|
|
warn_threshold: u32,
|
|
max_retries: u32,
|
|
timeout: Duration,
|
|
cancel: &CancellationToken,
|
|
) -> Vec<mgmt_api::Result<T>>
|
|
where
|
|
O: Fn(TenantShardId, PageserverClient) -> F + Copy,
|
|
F: std::future::Future<Output = mgmt_api::Result<T>>,
|
|
{
|
|
let mut futs = FuturesUnordered::new();
|
|
let mut results = Vec::with_capacity(locations.len());
|
|
|
|
for (idx, (tenant_shard_id, node)) in locations.into_iter().enumerate() {
|
|
futs.push(async move {
|
|
let r = node
|
|
.with_client_retries(
|
|
|client| op(tenant_shard_id, client),
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
warn_threshold,
|
|
max_retries,
|
|
timeout,
|
|
cancel,
|
|
)
|
|
.await;
|
|
(idx, r)
|
|
});
|
|
}
|
|
|
|
while let Some((idx, r)) = futs.next().await {
|
|
results.push((idx, r.unwrap_or(Err(mgmt_api::Error::Cancelled))));
|
|
}
|
|
|
|
results.sort_by_key(|(idx, _)| *idx);
|
|
results.into_iter().map(|(_, r)| r).collect()
|
|
}
|
|
|
|
/// Helper for safely working with the shards in a tenant remotely on pageservers, for example
|
|
/// when creating and deleting timelines:
|
|
/// - Makes sure shards are attached somewhere if they weren't already
|
|
/// - Looks up the shards and the nodes where they were most recently attached
|
|
/// - Guarantees that after the inner function returns, the shards' generations haven't moved on: this
|
|
/// ensures that the remote operation acted on the most recent generation, and is therefore durable.
|
|
async fn tenant_remote_mutation<R, O, F>(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
op: O,
|
|
) -> Result<R, ApiError>
|
|
where
|
|
O: FnOnce(TenantMutationLocations) -> F,
|
|
F: std::future::Future<Output = R>,
|
|
{
|
|
let mutation_locations = {
|
|
let mut locations = TenantMutationLocations::default();
|
|
|
|
// Load the currently attached pageservers for the latest generation of each shard. This can
|
|
// run concurrently with reconciliations, and it is not guaranteed that the node we find here
|
|
// will still be the latest when we're done: we will check generations again at the end of
|
|
// this function to handle that.
|
|
let generations = self.persistence.tenant_generations(tenant_id).await?;
|
|
|
|
if generations
|
|
.iter()
|
|
.any(|i| i.generation.is_none() || i.generation_pageserver.is_none())
|
|
{
|
|
let shard_generations = generations
|
|
.into_iter()
|
|
.map(|i| (i.tenant_shard_id, (i.generation, i.generation_pageserver)))
|
|
.collect::<HashMap<_, _>>();
|
|
|
|
// One or more shards has not been attached to a pageserver. Check if this is because it's configured
|
|
// to be detached (409: caller should give up), or because it's meant to be attached but isn't yet (503: caller should retry)
|
|
let locked = self.inner.read().unwrap();
|
|
for (shard_id, shard) in
|
|
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
|
|
{
|
|
match shard.policy {
|
|
PlacementPolicy::Attached(_) => {
|
|
// This shard is meant to be attached: the caller is not wrong to try and
|
|
// use this function, but we can't service the request right now.
|
|
let Some(generation) = shard_generations.get(shard_id) else {
|
|
// This can only happen if there is a split brain controller modifying the database. This should
|
|
// never happen when testing, and if it happens in production we can only log the issue.
|
|
debug_assert!(false);
|
|
tracing::error!(
|
|
"Shard {shard_id} not found in generation state! Is another rogue controller running?"
|
|
);
|
|
continue;
|
|
};
|
|
let (generation, generation_pageserver) = generation;
|
|
if let Some(generation) = generation {
|
|
if generation_pageserver.is_none() {
|
|
// This is legitimate only in a very narrow window where the shard was only just configured into
|
|
// Attached mode after being created in Secondary or Detached mode, and it has had its generation
|
|
// set but not yet had a Reconciler run (reconciler is the only thing that sets generation_pageserver).
|
|
tracing::warn!(
|
|
"Shard {shard_id} generation is set ({generation:?}) but generation_pageserver is None, reconciler not run yet?"
|
|
);
|
|
}
|
|
} else {
|
|
// This should never happen: a shard with no generation is only permitted when it was created in some state
|
|
// other than PlacementPolicy::Attached (and generation is always written to DB before setting Attached in memory)
|
|
debug_assert!(false);
|
|
tracing::error!(
|
|
"Shard {shard_id} generation is None, but it is in PlacementPolicy::Attached mode!"
|
|
);
|
|
continue;
|
|
}
|
|
}
|
|
PlacementPolicy::Secondary | PlacementPolicy::Detached => {
|
|
return Err(ApiError::Conflict(format!(
|
|
"Shard {shard_id} tenant has policy {:?}",
|
|
shard.policy
|
|
)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return Err(ApiError::ResourceUnavailable(
|
|
"One or more shards in tenant is not yet attached".into(),
|
|
));
|
|
}
|
|
|
|
let locked = self.inner.read().unwrap();
|
|
for ShardGenerationState {
|
|
tenant_shard_id,
|
|
generation,
|
|
generation_pageserver,
|
|
} in generations
|
|
{
|
|
let node_id = generation_pageserver.expect("We checked for None above");
|
|
let node = locked
|
|
.nodes
|
|
.get(&node_id)
|
|
.ok_or(ApiError::Conflict(format!(
|
|
"Raced with removal of node {node_id}"
|
|
)))?;
|
|
let generation = generation.expect("Checked above");
|
|
|
|
let tenant = locked.tenants.get(&tenant_shard_id);
|
|
|
|
// TODO(vlad): Abstract the logic that finds stale attached locations
|
|
// from observed state into a [`Service`] method.
|
|
let other_locations = match tenant {
|
|
Some(tenant) => {
|
|
let mut other = tenant.attached_locations();
|
|
let latest_location_index =
|
|
other.iter().position(|&l| l == (node.get_id(), generation));
|
|
if let Some(idx) = latest_location_index {
|
|
other.remove(idx);
|
|
}
|
|
|
|
other
|
|
}
|
|
None => Vec::default(),
|
|
};
|
|
|
|
let location = ShardMutationLocations {
|
|
latest: MutationLocation {
|
|
node: node.clone(),
|
|
generation,
|
|
},
|
|
other: other_locations
|
|
.into_iter()
|
|
.filter_map(|(node_id, generation)| {
|
|
let node = locked.nodes.get(&node_id)?;
|
|
|
|
Some(MutationLocation {
|
|
node: node.clone(),
|
|
generation,
|
|
})
|
|
})
|
|
.collect(),
|
|
};
|
|
locations.0.insert(tenant_shard_id, location);
|
|
}
|
|
|
|
locations
|
|
};
|
|
|
|
let result = op(mutation_locations.clone()).await;
|
|
|
|
// Post-check: are all the generations of all the shards the same as they were initially? This proves that
|
|
// our remote operation executed on the latest generation and is therefore persistent.
|
|
{
|
|
let latest_generations = self.persistence.tenant_generations(tenant_id).await?;
|
|
if latest_generations
|
|
.into_iter()
|
|
.map(
|
|
|ShardGenerationState {
|
|
tenant_shard_id,
|
|
generation,
|
|
generation_pageserver: _,
|
|
}| (tenant_shard_id, generation),
|
|
)
|
|
.collect::<Vec<_>>()
|
|
!= mutation_locations
|
|
.0
|
|
.into_iter()
|
|
.map(|i| (i.0, Some(i.1.latest.generation)))
|
|
.collect::<Vec<_>>()
|
|
{
|
|
// We raced with something that incremented the generation, and therefore cannot be
|
|
// confident that our actions are persistent (they might have hit an old generation).
|
|
//
|
|
// This is safe but requires a retry: ask the client to do that by giving them a 503 response.
|
|
return Err(ApiError::ResourceUnavailable(
|
|
"Tenant attachment changed, please retry".into(),
|
|
));
|
|
}
|
|
}
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
pub(crate) async fn tenant_timeline_delete(
|
|
self: &Arc<Self>,
|
|
tenant_id: TenantId,
|
|
timeline_id: TimelineId,
|
|
) -> Result<StatusCode, ApiError> {
|
|
tracing::info!("Deleting timeline {}/{}", tenant_id, timeline_id,);
|
|
let _tenant_lock = trace_shared_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::TimelineDelete,
|
|
)
|
|
.await;
|
|
|
|
let status_code = self.tenant_remote_mutation(tenant_id, move |mut targets| async move {
|
|
if targets.0.is_empty() {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant not found").into(),
|
|
));
|
|
}
|
|
|
|
let (shard_zero_tid, shard_zero_locations) = targets.0.pop_first().expect("Must have at least one shard");
|
|
assert!(shard_zero_tid.is_shard_zero());
|
|
|
|
async fn delete_one(
|
|
tenant_shard_id: TenantShardId,
|
|
timeline_id: TimelineId,
|
|
node: Node,
|
|
http_client: reqwest::Client,
|
|
jwt: Option<String>,
|
|
) -> Result<StatusCode, ApiError> {
|
|
tracing::info!(
|
|
"Deleting timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
|
|
);
|
|
|
|
let client = PageserverClient::new(node.get_id(), http_client, node.base_url(), jwt.as_deref());
|
|
let res = client
|
|
.timeline_delete(tenant_shard_id, timeline_id)
|
|
.await;
|
|
|
|
match res {
|
|
Ok(ok) => Ok(ok),
|
|
Err(mgmt_api::Error::ApiError(StatusCode::CONFLICT, _)) => Ok(StatusCode::CONFLICT),
|
|
Err(mgmt_api::Error::ApiError(StatusCode::SERVICE_UNAVAILABLE, msg)) => Err(ApiError::ResourceUnavailable(msg.into())),
|
|
Err(e) => {
|
|
Err(
|
|
ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Error deleting timeline {timeline_id} on {tenant_shard_id} on node {node}: {e}",
|
|
))
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
let locations = targets.0.iter().map(|t| (*t.0, t.1.latest.node.clone())).collect();
|
|
let statuses = self
|
|
.tenant_for_shards(locations, |tenant_shard_id: TenantShardId, node: Node| {
|
|
Box::pin(delete_one(
|
|
tenant_shard_id,
|
|
timeline_id,
|
|
node,
|
|
self.http_client.clone(),
|
|
self.config.pageserver_jwt_token.clone(),
|
|
))
|
|
})
|
|
.await?;
|
|
|
|
// If any shards >0 haven't finished deletion yet, don't start deletion on shard zero.
|
|
// We return 409 (Conflict) if deletion was already in progress on any of the shards
|
|
// and 202 (Accepted) if deletion was not already in progress on any of the shards.
|
|
if statuses.iter().any(|s| s == &StatusCode::CONFLICT) {
|
|
return Ok(StatusCode::CONFLICT);
|
|
}
|
|
|
|
if statuses.iter().any(|s| s != &StatusCode::NOT_FOUND) {
|
|
return Ok(StatusCode::ACCEPTED);
|
|
}
|
|
|
|
// Delete shard zero last: this is not strictly necessary, but since a caller's GET on a timeline will be routed
|
|
// to shard zero, it gives a more obvious behavior that a GET returns 404 once the deletion is done.
|
|
let shard_zero_status = delete_one(
|
|
shard_zero_tid,
|
|
timeline_id,
|
|
shard_zero_locations.latest.node,
|
|
self.http_client.clone(),
|
|
self.config.pageserver_jwt_token.clone(),
|
|
)
|
|
.await?;
|
|
Ok(shard_zero_status)
|
|
}).await?;
|
|
|
|
self.tenant_timeline_delete_safekeepers(tenant_id, timeline_id)
|
|
.await?;
|
|
|
|
status_code
|
|
}
|
|
/// When you know the TenantId but not a specific shard, and would like to get the node holding shard 0.
|
|
pub(crate) async fn tenant_shard0_node(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
) -> Result<(Node, TenantShardId), ApiError> {
|
|
let tenant_shard_id = {
|
|
let locked = self.inner.read().unwrap();
|
|
let Some((tenant_shard_id, _shard)) = locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.next()
|
|
else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant {tenant_id} not found").into(),
|
|
));
|
|
};
|
|
|
|
*tenant_shard_id
|
|
};
|
|
|
|
self.tenant_shard_node(tenant_shard_id)
|
|
.await
|
|
.map(|node| (node, tenant_shard_id))
|
|
}
|
|
|
|
/// When you need to send an HTTP request to the pageserver that holds a shard of a tenant, this
|
|
/// function looks up and returns node. If the shard isn't found, returns Err(ApiError::NotFound)
|
|
pub(crate) async fn tenant_shard_node(
|
|
&self,
|
|
tenant_shard_id: TenantShardId,
|
|
) -> Result<Node, ApiError> {
|
|
// Look up in-memory state and maybe use the node from there.
|
|
{
|
|
let locked = self.inner.read().unwrap();
|
|
let Some(shard) = locked.tenants.get(&tenant_shard_id) else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant shard {tenant_shard_id} not found").into(),
|
|
));
|
|
};
|
|
|
|
let Some(intent_node_id) = shard.intent.get_attached() else {
|
|
tracing::warn!(
|
|
tenant_id=%tenant_shard_id.tenant_id, shard_id=%tenant_shard_id.shard_slug(),
|
|
"Shard not scheduled (policy {:?}), cannot generate pass-through URL",
|
|
shard.policy
|
|
);
|
|
return Err(ApiError::Conflict(
|
|
"Cannot call timeline API on non-attached tenant".to_string(),
|
|
));
|
|
};
|
|
|
|
if shard.reconciler.is_none() {
|
|
// Optimization: while no reconcile is in flight, we may trust our in-memory state
|
|
// to tell us which pageserver to use. Otherwise we will fall through and hit the database
|
|
let Some(node) = locked.nodes.get(intent_node_id) else {
|
|
// This should never happen
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Shard refers to nonexistent node"
|
|
)));
|
|
};
|
|
return Ok(node.clone());
|
|
}
|
|
};
|
|
|
|
// Look up the latest attached pageserver location from the database
|
|
// generation state: this will reflect the progress of any ongoing migration.
|
|
// Note that it is not guaranteed to _stay_ here, our caller must still handle
|
|
// the case where they call through to the pageserver and get a 404.
|
|
let db_result = self
|
|
.persistence
|
|
.tenant_generations(tenant_shard_id.tenant_id)
|
|
.await?;
|
|
let Some(ShardGenerationState {
|
|
tenant_shard_id: _,
|
|
generation: _,
|
|
generation_pageserver: Some(node_id),
|
|
}) = db_result
|
|
.into_iter()
|
|
.find(|s| s.tenant_shard_id == tenant_shard_id)
|
|
else {
|
|
// This can happen if we raced with a tenant deletion or a shard split. On a retry
|
|
// the caller will either succeed (shard split case), get a proper 404 (deletion case),
|
|
// or a conflict response (case where tenant was detached in background)
|
|
return Err(ApiError::ResourceUnavailable(
|
|
format!("Shard {tenant_shard_id} not found in database, or is not attached").into(),
|
|
));
|
|
};
|
|
let locked = self.inner.read().unwrap();
|
|
let Some(node) = locked.nodes.get(&node_id) else {
|
|
// This should never happen
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Shard refers to nonexistent node"
|
|
)));
|
|
};
|
|
|
|
Ok(node.clone())
|
|
}
|
|
|
|
pub(crate) fn tenant_locate(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
) -> Result<TenantLocateResponse, ApiError> {
|
|
let locked = self.inner.read().unwrap();
|
|
tracing::info!("Locating shards for tenant {tenant_id}");
|
|
|
|
let mut result = Vec::new();
|
|
let mut shard_params: Option<ShardParameters> = None;
|
|
|
|
for (tenant_shard_id, shard) in locked.tenants.range(TenantShardId::tenant_range(tenant_id))
|
|
{
|
|
let node_id =
|
|
shard
|
|
.intent
|
|
.get_attached()
|
|
.ok_or(ApiError::BadRequest(anyhow::anyhow!(
|
|
"Cannot locate a tenant that is not attached"
|
|
)))?;
|
|
|
|
let node = locked
|
|
.nodes
|
|
.get(&node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
|
|
result.push(node.shard_location(*tenant_shard_id));
|
|
|
|
match &shard_params {
|
|
None => {
|
|
shard_params = Some(ShardParameters {
|
|
stripe_size: shard.shard.stripe_size,
|
|
count: shard.shard.count,
|
|
});
|
|
}
|
|
Some(params) => {
|
|
if params.stripe_size != shard.shard.stripe_size {
|
|
// This should never happen. We enforce at runtime because it's simpler than
|
|
// adding an extra per-tenant data structure to store the things that should be the same
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Inconsistent shard stripe size parameters!"
|
|
)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if result.is_empty() {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("No shards for this tenant ID found").into(),
|
|
));
|
|
}
|
|
let shard_params = shard_params.expect("result is non-empty, therefore this is set");
|
|
tracing::info!(
|
|
"Located tenant {} with params {:?} on shards {}",
|
|
tenant_id,
|
|
shard_params,
|
|
result
|
|
.iter()
|
|
.map(|s| format!("{s:?}"))
|
|
.collect::<Vec<_>>()
|
|
.join(",")
|
|
);
|
|
|
|
Ok(TenantLocateResponse {
|
|
shards: result,
|
|
shard_params,
|
|
})
|
|
}
|
|
|
|
/// Returns None if the input iterator of shards does not include a shard with number=0
|
|
fn tenant_describe_impl<'a>(
|
|
&self,
|
|
shards: impl Iterator<Item = &'a TenantShard>,
|
|
) -> Option<TenantDescribeResponse> {
|
|
let mut shard_zero = None;
|
|
let mut describe_shards = Vec::new();
|
|
|
|
for shard in shards {
|
|
if shard.tenant_shard_id.is_shard_zero() {
|
|
shard_zero = Some(shard);
|
|
}
|
|
|
|
describe_shards.push(TenantDescribeResponseShard {
|
|
tenant_shard_id: shard.tenant_shard_id,
|
|
node_attached: *shard.intent.get_attached(),
|
|
node_secondary: shard.intent.get_secondary().to_vec(),
|
|
last_error: shard
|
|
.last_error
|
|
.lock()
|
|
.unwrap()
|
|
.as_ref()
|
|
.map(|e| format!("{e}"))
|
|
.unwrap_or("".to_string())
|
|
.clone(),
|
|
is_reconciling: shard.reconciler.is_some(),
|
|
is_pending_compute_notification: shard.pending_compute_notification,
|
|
is_splitting: matches!(shard.splitting, SplitState::Splitting),
|
|
is_importing: shard.importing == TimelineImportState::Importing,
|
|
scheduling_policy: shard.get_scheduling_policy(),
|
|
preferred_az_id: shard.preferred_az().map(ToString::to_string),
|
|
})
|
|
}
|
|
|
|
let shard_zero = shard_zero?;
|
|
|
|
Some(TenantDescribeResponse {
|
|
tenant_id: shard_zero.tenant_shard_id.tenant_id,
|
|
shards: describe_shards,
|
|
stripe_size: shard_zero.shard.stripe_size,
|
|
policy: shard_zero.policy.clone(),
|
|
config: shard_zero.config.clone(),
|
|
})
|
|
}
|
|
|
|
pub(crate) fn tenant_describe(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
) -> Result<TenantDescribeResponse, ApiError> {
|
|
let locked = self.inner.read().unwrap();
|
|
|
|
self.tenant_describe_impl(
|
|
locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.map(|(_k, v)| v),
|
|
)
|
|
.ok_or_else(|| ApiError::NotFound(anyhow::anyhow!("Tenant {tenant_id} not found").into()))
|
|
}
|
|
|
|
/// limit & offset are pagination parameters. Since we are walking an in-memory HashMap, `offset` does not
|
|
/// avoid traversing data, it just avoid returning it. This is suitable for our purposes, since our in memory
|
|
/// maps are small enough to traverse fast, our pagination is just to avoid serializing huge JSON responses
|
|
/// in our external API.
|
|
pub(crate) fn tenant_list(
|
|
&self,
|
|
limit: Option<usize>,
|
|
start_after: Option<TenantId>,
|
|
) -> Vec<TenantDescribeResponse> {
|
|
let locked = self.inner.read().unwrap();
|
|
|
|
// Apply start_from parameter
|
|
let shard_range = match start_after {
|
|
None => locked.tenants.range(..),
|
|
Some(tenant_id) => locked.tenants.range(
|
|
TenantShardId {
|
|
tenant_id,
|
|
shard_number: ShardNumber(u8::MAX),
|
|
shard_count: ShardCount(u8::MAX),
|
|
}..,
|
|
),
|
|
};
|
|
|
|
let mut result = Vec::new();
|
|
for (_tenant_id, tenant_shards) in &shard_range.group_by(|(id, _shard)| id.tenant_id) {
|
|
result.push(
|
|
self.tenant_describe_impl(tenant_shards.map(|(_k, v)| v))
|
|
.expect("Groups are always non-empty"),
|
|
);
|
|
|
|
// Enforce `limit` parameter
|
|
if let Some(limit) = limit {
|
|
if result.len() >= limit {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
#[instrument(skip_all, fields(tenant_id=%op.tenant_id))]
|
|
async fn abort_tenant_shard_split(
|
|
&self,
|
|
op: &TenantShardSplitAbort,
|
|
) -> Result<(), TenantShardSplitAbortError> {
|
|
// Cleaning up a split:
|
|
// - Parent shards are not destroyed during a split, just detached.
|
|
// - Failed pageserver split API calls can leave the remote node with just the parent attached,
|
|
// just the children attached, or both.
|
|
//
|
|
// Therefore our work to do is to:
|
|
// 1. Clean up storage controller's internal state to just refer to parents, no children
|
|
// 2. Call out to pageservers to ensure that children are detached
|
|
// 3. Call out to pageservers to ensure that parents are attached.
|
|
//
|
|
// Crash safety:
|
|
// - If the storage controller stops running during this cleanup *after* clearing the splitting state
|
|
// from our database, then [`Self::startup_reconcile`] will regard child attachments as garbage
|
|
// and detach them.
|
|
// - TODO: If the storage controller stops running during this cleanup *before* clearing the splitting state
|
|
// from our database, then we will re-enter this cleanup routine on startup.
|
|
|
|
let TenantShardSplitAbort {
|
|
tenant_id,
|
|
new_shard_count,
|
|
new_stripe_size,
|
|
..
|
|
} = op;
|
|
|
|
// First abort persistent state, if any exists.
|
|
match self
|
|
.persistence
|
|
.abort_shard_split(*tenant_id, *new_shard_count)
|
|
.await?
|
|
{
|
|
AbortShardSplitStatus::Aborted => {
|
|
// Proceed to roll back any child shards created on pageservers
|
|
}
|
|
AbortShardSplitStatus::Complete => {
|
|
// The split completed (we might hit that path if e.g. our database transaction
|
|
// to write the completion landed in the database, but we dropped connection
|
|
// before seeing the result).
|
|
//
|
|
// We must update in-memory state to reflect the successful split.
|
|
self.tenant_shard_split_commit_inmem(
|
|
*tenant_id,
|
|
*new_shard_count,
|
|
*new_stripe_size,
|
|
);
|
|
return Ok(());
|
|
}
|
|
}
|
|
|
|
// Clean up in-memory state, and accumulate the list of child locations that need detaching
|
|
let detach_locations: Vec<(Node, TenantShardId)> = {
|
|
let mut detach_locations = Vec::new();
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
for (tenant_shard_id, shard) in
|
|
tenants.range_mut(TenantShardId::tenant_range(op.tenant_id))
|
|
{
|
|
if shard.shard.count == op.new_shard_count {
|
|
// Surprising: the phase of [`Self::do_tenant_shard_split`] which inserts child shards in-memory
|
|
// is infallible, so if we got an error we shouldn't have got that far.
|
|
tracing::warn!(
|
|
"During split abort, child shard {tenant_shard_id} found in-memory"
|
|
);
|
|
continue;
|
|
}
|
|
|
|
// Add the children of this shard to this list of things to detach
|
|
if let Some(node_id) = shard.intent.get_attached() {
|
|
for child_id in tenant_shard_id.split(*new_shard_count) {
|
|
detach_locations.push((
|
|
nodes
|
|
.get(node_id)
|
|
.expect("Intent references nonexistent node")
|
|
.clone(),
|
|
child_id,
|
|
));
|
|
}
|
|
} else {
|
|
tracing::warn!(
|
|
"During split abort, shard {tenant_shard_id} has no attached location"
|
|
);
|
|
}
|
|
|
|
tracing::info!("Restoring parent shard {tenant_shard_id}");
|
|
|
|
// Drop any intents that refer to unavailable nodes, to enable this abort to proceed even
|
|
// if the original attachment location is offline.
|
|
if let Some(node_id) = shard.intent.get_attached() {
|
|
if !nodes.get(node_id).unwrap().is_available() {
|
|
tracing::info!(
|
|
"Demoting attached intent for {tenant_shard_id} on unavailable node {node_id}"
|
|
);
|
|
shard.intent.demote_attached(scheduler, *node_id);
|
|
}
|
|
}
|
|
for node_id in shard.intent.get_secondary().clone() {
|
|
if !nodes.get(&node_id).unwrap().is_available() {
|
|
tracing::info!(
|
|
"Dropping secondary intent for {tenant_shard_id} on unavailable node {node_id}"
|
|
);
|
|
shard.intent.remove_secondary(scheduler, node_id);
|
|
}
|
|
}
|
|
|
|
shard.splitting = SplitState::Idle;
|
|
if let Err(e) = shard.schedule(scheduler, &mut ScheduleContext::default()) {
|
|
// If this shard can't be scheduled now (perhaps due to offline nodes or
|
|
// capacity issues), that must not prevent us rolling back a split. In this
|
|
// case it should be eventually scheduled in the background.
|
|
tracing::warn!("Failed to schedule {tenant_shard_id} during shard abort: {e}")
|
|
}
|
|
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High);
|
|
}
|
|
|
|
// We don't expect any new_shard_count shards to exist here, but drop them just in case
|
|
tenants
|
|
.retain(|id, s| !(id.tenant_id == *tenant_id && s.shard.count == *new_shard_count));
|
|
|
|
detach_locations
|
|
};
|
|
|
|
for (node, child_id) in detach_locations {
|
|
if !node.is_available() {
|
|
// An unavailable node cannot be cleaned up now: to avoid blocking forever, we will permit this, and
|
|
// rely on the reconciliation that happens when a node transitions to Active to clean up. Since we have
|
|
// removed child shards from our in-memory state and database, the reconciliation will implicitly remove
|
|
// them from the node.
|
|
tracing::warn!(
|
|
"Node {node} unavailable, can't clean up during split abort. It will be cleaned up when it is reactivated."
|
|
);
|
|
continue;
|
|
}
|
|
|
|
// Detach the remote child. If the pageserver split API call is still in progress, this call will get
|
|
// a 503 and retry, up to our limit.
|
|
tracing::info!("Detaching {child_id} on {node}...");
|
|
match node
|
|
.with_client_retries(
|
|
|client| async move {
|
|
let config = LocationConfig {
|
|
mode: LocationConfigMode::Detached,
|
|
generation: None,
|
|
secondary_conf: None,
|
|
shard_number: child_id.shard_number.0,
|
|
shard_count: child_id.shard_count.literal(),
|
|
// Stripe size and tenant config don't matter when detaching
|
|
shard_stripe_size: 0,
|
|
tenant_conf: TenantConfig::default(),
|
|
};
|
|
|
|
client.location_config(child_id, config, None, false).await
|
|
},
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
1,
|
|
10,
|
|
Duration::from_secs(5),
|
|
&self.reconcilers_cancel,
|
|
)
|
|
.await
|
|
{
|
|
Some(Ok(_)) => {}
|
|
Some(Err(e)) => {
|
|
// We failed to communicate with the remote node. This is problematic: we may be
|
|
// leaving it with a rogue child shard.
|
|
tracing::warn!(
|
|
"Failed to detach child {child_id} from node {node} during abort"
|
|
);
|
|
return Err(e.into());
|
|
}
|
|
None => {
|
|
// Cancellation: we were shutdown or the node went offline. Shutdown is fine, we'll
|
|
// clean up on restart. The node going offline requires a retry.
|
|
return Err(TenantShardSplitAbortError::Unavailable);
|
|
}
|
|
};
|
|
}
|
|
|
|
tracing::info!("Successfully aborted split");
|
|
Ok(())
|
|
}
|
|
|
|
/// Infallible final stage of [`Self::tenant_shard_split`]: update the contents
|
|
/// of the tenant map to reflect the child shards that exist after the split.
|
|
fn tenant_shard_split_commit_inmem(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
new_shard_count: ShardCount,
|
|
new_stripe_size: Option<ShardStripeSize>,
|
|
) -> (
|
|
TenantShardSplitResponse,
|
|
Vec<(TenantShardId, NodeId, ShardStripeSize)>,
|
|
Vec<ReconcilerWaiter>,
|
|
) {
|
|
let mut response = TenantShardSplitResponse {
|
|
new_shards: Vec::new(),
|
|
};
|
|
let mut child_locations = Vec::new();
|
|
let mut waiters = Vec::new();
|
|
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
|
|
let parent_ids = locked
|
|
.tenants
|
|
.range(TenantShardId::tenant_range(tenant_id))
|
|
.map(|(shard_id, _)| *shard_id)
|
|
.collect::<Vec<_>>();
|
|
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
for parent_id in parent_ids {
|
|
let child_ids = parent_id.split(new_shard_count);
|
|
|
|
let (
|
|
pageserver,
|
|
generation,
|
|
policy,
|
|
parent_ident,
|
|
config,
|
|
preferred_az,
|
|
secondary_count,
|
|
) = {
|
|
let mut old_state = tenants
|
|
.remove(&parent_id)
|
|
.expect("It was present, we just split it");
|
|
|
|
// A non-splitting state is impossible, because [`Self::tenant_shard_split`] holds
|
|
// a TenantId lock and passes it through to [`TenantShardSplitAbort`] in case of cleanup:
|
|
// nothing else can clear this.
|
|
assert!(matches!(old_state.splitting, SplitState::Splitting));
|
|
|
|
let old_attached = old_state.intent.get_attached().unwrap();
|
|
old_state.intent.clear(scheduler);
|
|
let generation = old_state.generation.expect("Shard must have been attached");
|
|
(
|
|
old_attached,
|
|
generation,
|
|
old_state.policy.clone(),
|
|
old_state.shard,
|
|
old_state.config.clone(),
|
|
old_state.preferred_az().cloned(),
|
|
old_state.intent.get_secondary().len(),
|
|
)
|
|
};
|
|
|
|
let mut schedule_context = ScheduleContext::default();
|
|
for child in child_ids {
|
|
let mut child_shard = parent_ident;
|
|
child_shard.number = child.shard_number;
|
|
child_shard.count = child.shard_count;
|
|
if let Some(stripe_size) = new_stripe_size {
|
|
child_shard.stripe_size = stripe_size;
|
|
}
|
|
|
|
let mut child_observed: HashMap<NodeId, ObservedStateLocation> = HashMap::new();
|
|
child_observed.insert(
|
|
pageserver,
|
|
ObservedStateLocation {
|
|
conf: Some(attached_location_conf(
|
|
generation,
|
|
&child_shard,
|
|
&config,
|
|
&policy,
|
|
secondary_count,
|
|
)),
|
|
},
|
|
);
|
|
|
|
let mut child_state =
|
|
TenantShard::new(child, child_shard, policy.clone(), preferred_az.clone());
|
|
child_state.intent =
|
|
IntentState::single(scheduler, Some(pageserver), preferred_az.clone());
|
|
child_state.observed = ObservedState {
|
|
locations: child_observed,
|
|
};
|
|
child_state.generation = Some(generation);
|
|
child_state.config = config.clone();
|
|
|
|
// The child's TenantShard::splitting is intentionally left at the default value of Idle,
|
|
// as at this point in the split process we have succeeded and this part is infallible:
|
|
// we will never need to do any special recovery from this state.
|
|
|
|
child_locations.push((child, pageserver, child_shard.stripe_size));
|
|
|
|
if let Err(e) = child_state.schedule(scheduler, &mut schedule_context) {
|
|
// This is not fatal, because we've implicitly already got an attached
|
|
// location for the child shard. Failure here just means we couldn't
|
|
// find a secondary (e.g. because cluster is overloaded).
|
|
tracing::warn!("Failed to schedule child shard {child}: {e}");
|
|
}
|
|
// In the background, attach secondary locations for the new shards
|
|
if let Some(waiter) = self.maybe_reconcile_shard(
|
|
&mut child_state,
|
|
nodes,
|
|
ReconcilerPriority::High,
|
|
) {
|
|
waiters.push(waiter);
|
|
}
|
|
|
|
tenants.insert(child, child_state);
|
|
response.new_shards.push(child);
|
|
}
|
|
}
|
|
(response, child_locations, waiters)
|
|
}
|
|
}
|
|
|
|
async fn tenant_shard_split_start_secondaries(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
waiters: Vec<ReconcilerWaiter>,
|
|
) {
|
|
// Wait for initial reconcile of child shards, this creates the secondary locations
|
|
if let Err(e) = self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
|
|
// This is not a failure to split: it's some issue reconciling the new child shards, perhaps
|
|
// their secondaries couldn't be attached.
|
|
tracing::warn!("Failed to reconcile after split: {e}");
|
|
return;
|
|
}
|
|
|
|
// Take the state lock to discover the attached & secondary intents for all shards
|
|
let (attached, secondary) = {
|
|
let locked = self.inner.read().unwrap();
|
|
let mut attached = Vec::new();
|
|
let mut secondary = Vec::new();
|
|
|
|
for (tenant_shard_id, shard) in
|
|
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
|
|
{
|
|
let Some(node_id) = shard.intent.get_attached() else {
|
|
// Unexpected. Race with a PlacementPolicy change?
|
|
tracing::warn!(
|
|
"No attached node on {tenant_shard_id} immediately after shard split!"
|
|
);
|
|
continue;
|
|
};
|
|
|
|
let Some(secondary_node_id) = shard.intent.get_secondary().first() else {
|
|
// No secondary location. Nothing for us to do.
|
|
continue;
|
|
};
|
|
|
|
let attached_node = locked
|
|
.nodes
|
|
.get(node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
|
|
let secondary_node = locked
|
|
.nodes
|
|
.get(secondary_node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
|
|
attached.push((*tenant_shard_id, attached_node.clone()));
|
|
secondary.push((*tenant_shard_id, secondary_node.clone()));
|
|
}
|
|
(attached, secondary)
|
|
};
|
|
|
|
if secondary.is_empty() {
|
|
// No secondary locations; nothing for us to do
|
|
return;
|
|
}
|
|
|
|
for result in self
|
|
.tenant_for_shards_api(
|
|
attached,
|
|
|tenant_shard_id, client| async move {
|
|
client.tenant_heatmap_upload(tenant_shard_id).await
|
|
},
|
|
1,
|
|
1,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
{
|
|
if let Err(e) = result {
|
|
tracing::warn!("Error calling heatmap upload after shard split: {e}");
|
|
return;
|
|
}
|
|
}
|
|
|
|
for result in self
|
|
.tenant_for_shards_api(
|
|
secondary,
|
|
|tenant_shard_id, client| async move {
|
|
client
|
|
.tenant_secondary_download(tenant_shard_id, Some(Duration::ZERO))
|
|
.await
|
|
},
|
|
1,
|
|
1,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
{
|
|
if let Err(e) = result {
|
|
tracing::warn!("Error calling secondary download after shard split: {e}");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) async fn tenant_shard_split(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
split_req: TenantShardSplitRequest,
|
|
) -> Result<TenantShardSplitResponse, ApiError> {
|
|
// TODO: return 503 if we get stuck waiting for this lock
|
|
// (issue https://github.com/neondatabase/neon/issues/7108)
|
|
let _tenant_lock = trace_exclusive_lock(
|
|
&self.tenant_op_locks,
|
|
tenant_id,
|
|
TenantOperations::ShardSplit,
|
|
)
|
|
.await;
|
|
|
|
let _gate = self
|
|
.reconcilers_gate
|
|
.enter()
|
|
.map_err(|_| ApiError::ShuttingDown)?;
|
|
|
|
// Timeline imports on the pageserver side can't handle shard-splits.
|
|
// If the tenant is importing a timeline, dont't shard split it.
|
|
match self
|
|
.persistence
|
|
.is_tenant_importing_timeline(tenant_id)
|
|
.await
|
|
{
|
|
Ok(importing) => {
|
|
if importing {
|
|
return Err(ApiError::Conflict(
|
|
"Cannot shard split during timeline import".to_string(),
|
|
));
|
|
}
|
|
}
|
|
Err(err) => {
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Failed to check for running imports: {err}"
|
|
)));
|
|
}
|
|
}
|
|
|
|
let new_shard_count = ShardCount::new(split_req.new_shard_count);
|
|
let new_stripe_size = split_req.new_stripe_size;
|
|
|
|
// Validate the request and construct parameters. This phase is fallible, but does not require
|
|
// rollback on errors, as it does no I/O and mutates no state.
|
|
let shard_split_params = match self.prepare_tenant_shard_split(tenant_id, split_req)? {
|
|
ShardSplitAction::NoOp(resp) => return Ok(resp),
|
|
ShardSplitAction::Split(params) => params,
|
|
};
|
|
|
|
// Execute this split: this phase mutates state and does remote I/O on pageservers. If it fails,
|
|
// we must roll back.
|
|
let r = self
|
|
.do_tenant_shard_split(tenant_id, shard_split_params)
|
|
.await;
|
|
|
|
let (response, waiters) = match r {
|
|
Ok(r) => r,
|
|
Err(e) => {
|
|
// Split might be part-done, we must do work to abort it.
|
|
tracing::warn!("Enqueuing background abort of split on {tenant_id}");
|
|
self.abort_tx
|
|
.send(TenantShardSplitAbort {
|
|
tenant_id,
|
|
new_shard_count,
|
|
new_stripe_size,
|
|
_tenant_lock,
|
|
_gate,
|
|
})
|
|
// Ignore error sending: that just means we're shutting down: aborts are ephemeral so it's fine to drop it.
|
|
.ok();
|
|
return Err(e);
|
|
}
|
|
};
|
|
|
|
// The split is now complete. As an optimization, we will trigger all the child shards to upload
|
|
// a heatmap immediately, and all their secondary locations to start downloading: this avoids waiting
|
|
// for the background heatmap/download interval before secondaries get warm enough to migrate shards
|
|
// in [`Self::optimize_all`]
|
|
self.tenant_shard_split_start_secondaries(tenant_id, waiters)
|
|
.await;
|
|
Ok(response)
|
|
}
|
|
|
|
fn prepare_tenant_shard_split(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
split_req: TenantShardSplitRequest,
|
|
) -> Result<ShardSplitAction, ApiError> {
|
|
fail::fail_point!("shard-split-validation", |_| Err(ApiError::BadRequest(
|
|
anyhow::anyhow!("failpoint")
|
|
)));
|
|
|
|
let mut policy = None;
|
|
let mut config = None;
|
|
let mut shard_ident = None;
|
|
let mut preferred_az_id = None;
|
|
// Validate input, and calculate which shards we will create
|
|
let (old_shard_count, targets) =
|
|
{
|
|
let locked = self.inner.read().unwrap();
|
|
|
|
let pageservers = locked.nodes.clone();
|
|
|
|
let mut targets = Vec::new();
|
|
|
|
// In case this is a retry, count how many already-split shards we found
|
|
let mut children_found = Vec::new();
|
|
let mut old_shard_count = None;
|
|
|
|
for (tenant_shard_id, shard) in
|
|
locked.tenants.range(TenantShardId::tenant_range(tenant_id))
|
|
{
|
|
match shard.shard.count.count().cmp(&split_req.new_shard_count) {
|
|
Ordering::Equal => {
|
|
// Already split this
|
|
children_found.push(*tenant_shard_id);
|
|
continue;
|
|
}
|
|
Ordering::Greater => {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"Requested count {} but already have shards at count {}",
|
|
split_req.new_shard_count,
|
|
shard.shard.count.count()
|
|
)));
|
|
}
|
|
Ordering::Less => {
|
|
// Fall through: this shard has lower count than requested,
|
|
// is a candidate for splitting.
|
|
}
|
|
}
|
|
|
|
match old_shard_count {
|
|
None => old_shard_count = Some(shard.shard.count),
|
|
Some(old_shard_count) => {
|
|
if old_shard_count != shard.shard.count {
|
|
// We may hit this case if a caller asked for two splits to
|
|
// different sizes, before the first one is complete.
|
|
// e.g. 1->2, 2->4, where the 4 call comes while we have a mixture
|
|
// of shard_count=1 and shard_count=2 shards in the map.
|
|
return Err(ApiError::Conflict(
|
|
"Cannot split, currently mid-split".to_string(),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
if policy.is_none() {
|
|
policy = Some(shard.policy.clone());
|
|
}
|
|
if shard_ident.is_none() {
|
|
shard_ident = Some(shard.shard);
|
|
}
|
|
if config.is_none() {
|
|
config = Some(shard.config.clone());
|
|
}
|
|
if preferred_az_id.is_none() {
|
|
preferred_az_id = shard.preferred_az().cloned();
|
|
}
|
|
|
|
if tenant_shard_id.shard_count.count() == split_req.new_shard_count {
|
|
tracing::info!(
|
|
"Tenant shard {} already has shard count {}",
|
|
tenant_shard_id,
|
|
split_req.new_shard_count
|
|
);
|
|
continue;
|
|
}
|
|
|
|
let node_id = shard.intent.get_attached().ok_or(ApiError::BadRequest(
|
|
anyhow::anyhow!("Cannot split a tenant that is not attached"),
|
|
))?;
|
|
|
|
let node = pageservers
|
|
.get(&node_id)
|
|
.expect("Pageservers may not be deleted while referenced");
|
|
|
|
targets.push(ShardSplitTarget {
|
|
parent_id: *tenant_shard_id,
|
|
node: node.clone(),
|
|
child_ids: tenant_shard_id
|
|
.split(ShardCount::new(split_req.new_shard_count)),
|
|
});
|
|
}
|
|
|
|
if targets.is_empty() {
|
|
if children_found.len() == split_req.new_shard_count as usize {
|
|
return Ok(ShardSplitAction::NoOp(TenantShardSplitResponse {
|
|
new_shards: children_found,
|
|
}));
|
|
} else {
|
|
// No shards found to split, and no existing children found: the
|
|
// tenant doesn't exist at all.
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
|
|
));
|
|
}
|
|
}
|
|
|
|
(old_shard_count, targets)
|
|
};
|
|
|
|
// unwrap safety: we would have returned above if we didn't find at least one shard to split
|
|
let old_shard_count = old_shard_count.unwrap();
|
|
let shard_ident = if let Some(new_stripe_size) = split_req.new_stripe_size {
|
|
// This ShardIdentity will be used as the template for all children, so this implicitly
|
|
// applies the new stripe size to the children.
|
|
let mut shard_ident = shard_ident.unwrap();
|
|
if shard_ident.count.count() > 1 && shard_ident.stripe_size != new_stripe_size {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"Attempted to change stripe size ({:?}->{new_stripe_size:?}) on a tenant with multiple shards",
|
|
shard_ident.stripe_size
|
|
)));
|
|
}
|
|
|
|
shard_ident.stripe_size = new_stripe_size;
|
|
tracing::info!("applied stripe size {}", shard_ident.stripe_size.0);
|
|
shard_ident
|
|
} else {
|
|
shard_ident.unwrap()
|
|
};
|
|
let policy = policy.unwrap();
|
|
let config = config.unwrap();
|
|
|
|
Ok(ShardSplitAction::Split(Box::new(ShardSplitParams {
|
|
old_shard_count,
|
|
new_shard_count: ShardCount::new(split_req.new_shard_count),
|
|
new_stripe_size: split_req.new_stripe_size,
|
|
targets,
|
|
policy,
|
|
config,
|
|
shard_ident,
|
|
preferred_az_id,
|
|
})))
|
|
}
|
|
|
|
async fn do_tenant_shard_split(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
params: Box<ShardSplitParams>,
|
|
) -> Result<(TenantShardSplitResponse, Vec<ReconcilerWaiter>), ApiError> {
|
|
// FIXME: we have dropped self.inner lock, and not yet written anything to the database: another
|
|
// request could occur here, deleting or mutating the tenant. begin_shard_split checks that the
|
|
// parent shards exist as expected, but it would be neater to do the above pre-checks within the
|
|
// same database transaction rather than pre-check in-memory and then maybe-fail the database write.
|
|
// (https://github.com/neondatabase/neon/issues/6676)
|
|
|
|
let ShardSplitParams {
|
|
old_shard_count,
|
|
new_shard_count,
|
|
new_stripe_size,
|
|
mut targets,
|
|
policy,
|
|
config,
|
|
shard_ident,
|
|
preferred_az_id,
|
|
} = *params;
|
|
|
|
// Drop any secondary locations: pageservers do not support splitting these, and in any case the
|
|
// end-state for a split tenant will usually be to have secondary locations on different nodes.
|
|
// The reconciliation calls in this block also implicitly cancel+barrier wrt any ongoing reconciliation
|
|
// at the time of split.
|
|
let waiters = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let mut waiters = Vec::new();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
for target in &mut targets {
|
|
let Some(shard) = tenants.get_mut(&target.parent_id) else {
|
|
// Paranoia check: this shouldn't happen: we have the oplock for this tenant ID.
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Shard {} not found",
|
|
target.parent_id
|
|
)));
|
|
};
|
|
|
|
if shard.intent.get_attached() != &Some(target.node.get_id()) {
|
|
// Paranoia check: this shouldn't happen: we have the oplock for this tenant ID.
|
|
return Err(ApiError::Conflict(format!(
|
|
"Shard {} unexpectedly rescheduled during split",
|
|
target.parent_id
|
|
)));
|
|
}
|
|
|
|
// Irrespective of PlacementPolicy, clear secondary locations from intent
|
|
shard.intent.clear_secondary(scheduler);
|
|
|
|
// Run Reconciler to execute detach fo secondary locations.
|
|
if let Some(waiter) =
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
|
|
{
|
|
waiters.push(waiter);
|
|
}
|
|
}
|
|
waiters
|
|
};
|
|
self.await_waiters(waiters, RECONCILE_TIMEOUT).await?;
|
|
|
|
// Before creating any new child shards in memory or on the pageservers, persist them: this
|
|
// enables us to ensure that we will always be able to clean up if something goes wrong. This also
|
|
// acts as the protection against two concurrent attempts to split: one of them will get a database
|
|
// error trying to insert the child shards.
|
|
let mut child_tsps = Vec::new();
|
|
for target in &targets {
|
|
let mut this_child_tsps = Vec::new();
|
|
for child in &target.child_ids {
|
|
let mut child_shard = shard_ident;
|
|
child_shard.number = child.shard_number;
|
|
child_shard.count = child.shard_count;
|
|
|
|
tracing::info!(
|
|
"Create child shard persistence with stripe size {}",
|
|
shard_ident.stripe_size.0
|
|
);
|
|
|
|
this_child_tsps.push(TenantShardPersistence {
|
|
tenant_id: child.tenant_id.to_string(),
|
|
shard_number: child.shard_number.0 as i32,
|
|
shard_count: child.shard_count.literal() as i32,
|
|
shard_stripe_size: shard_ident.stripe_size.0 as i32,
|
|
// Note: this generation is a placeholder, [`Persistence::begin_shard_split`] will
|
|
// populate the correct generation as part of its transaction, to protect us
|
|
// against racing with changes in the state of the parent.
|
|
generation: None,
|
|
generation_pageserver: Some(target.node.get_id().0 as i64),
|
|
placement_policy: serde_json::to_string(&policy).unwrap(),
|
|
config: serde_json::to_string(&config).unwrap(),
|
|
splitting: SplitState::Splitting,
|
|
|
|
// Scheduling policies and preferred AZ do not carry through to children
|
|
scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
|
|
.unwrap(),
|
|
preferred_az_id: preferred_az_id.as_ref().map(|az| az.0.clone()),
|
|
});
|
|
}
|
|
|
|
child_tsps.push((target.parent_id, this_child_tsps));
|
|
}
|
|
|
|
if let Err(e) = self
|
|
.persistence
|
|
.begin_shard_split(old_shard_count, tenant_id, child_tsps)
|
|
.await
|
|
{
|
|
match e {
|
|
DatabaseError::Query(diesel::result::Error::DatabaseError(
|
|
DatabaseErrorKind::UniqueViolation,
|
|
_,
|
|
)) => {
|
|
// Inserting a child shard violated a unique constraint: we raced with another call to
|
|
// this function
|
|
tracing::warn!("Conflicting attempt to split {tenant_id}: {e}");
|
|
return Err(ApiError::Conflict("Tenant is already splitting".into()));
|
|
}
|
|
_ => return Err(ApiError::InternalServerError(e.into())),
|
|
}
|
|
}
|
|
fail::fail_point!("shard-split-post-begin", |_| Err(
|
|
ApiError::InternalServerError(anyhow::anyhow!("failpoint"))
|
|
));
|
|
|
|
// Now that I have persisted the splitting state, apply it in-memory. This is infallible, so
|
|
// callers may assume that if splitting is set in memory, then it was persisted, and if splitting
|
|
// is not set in memory, then it was not persisted.
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
for target in &targets {
|
|
if let Some(parent_shard) = locked.tenants.get_mut(&target.parent_id) {
|
|
parent_shard.splitting = SplitState::Splitting;
|
|
// Put the observed state to None, to reflect that it is indeterminate once we start the
|
|
// split operation.
|
|
parent_shard
|
|
.observed
|
|
.locations
|
|
.insert(target.node.get_id(), ObservedStateLocation { conf: None });
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: issue split calls concurrently (this only matters once we're splitting
|
|
// N>1 shards into M shards -- initially we're usually splitting 1 shard into N).
|
|
|
|
for target in &targets {
|
|
let ShardSplitTarget {
|
|
parent_id,
|
|
node,
|
|
child_ids,
|
|
} = target;
|
|
let client = PageserverClient::new(
|
|
node.get_id(),
|
|
self.http_client.clone(),
|
|
node.base_url(),
|
|
self.config.pageserver_jwt_token.as_deref(),
|
|
);
|
|
let response = client
|
|
.tenant_shard_split(
|
|
*parent_id,
|
|
TenantShardSplitRequest {
|
|
new_shard_count: new_shard_count.literal(),
|
|
new_stripe_size,
|
|
},
|
|
)
|
|
.await
|
|
.map_err(|e| ApiError::Conflict(format!("Failed to split {parent_id}: {e}")))?;
|
|
|
|
fail::fail_point!("shard-split-post-remote", |_| Err(ApiError::Conflict(
|
|
"failpoint".to_string()
|
|
)));
|
|
|
|
failpoint_support::sleep_millis_async!(
|
|
"shard-split-post-remote-sleep",
|
|
&self.reconcilers_cancel
|
|
);
|
|
|
|
tracing::info!(
|
|
"Split {} into {}",
|
|
parent_id,
|
|
response
|
|
.new_shards
|
|
.iter()
|
|
.map(|s| format!("{s:?}"))
|
|
.collect::<Vec<_>>()
|
|
.join(",")
|
|
);
|
|
|
|
if &response.new_shards != child_ids {
|
|
// This should never happen: the pageserver should agree with us on how shard splits work.
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Splitting shard {} resulted in unexpected IDs: {:?} (expected {:?})",
|
|
parent_id,
|
|
response.new_shards,
|
|
child_ids
|
|
)));
|
|
}
|
|
}
|
|
|
|
fail::fail_point!("shard-split-pre-complete", |_| Err(ApiError::Conflict(
|
|
"failpoint".to_string()
|
|
)));
|
|
|
|
pausable_failpoint!("shard-split-pre-complete-pause");
|
|
|
|
// TODO: if the pageserver restarted concurrently with our split API call,
|
|
// the actual generation of the child shard might differ from the generation
|
|
// we expect it to have. In order for our in-database generation to end up
|
|
// correct, we should carry the child generation back in the response and apply it here
|
|
// in complete_shard_split (and apply the correct generation in memory)
|
|
// (or, we can carry generation in the request and reject the request if
|
|
// it doesn't match, but that requires more retry logic on this side)
|
|
|
|
self.persistence
|
|
.complete_shard_split(tenant_id, old_shard_count, new_shard_count)
|
|
.await?;
|
|
|
|
fail::fail_point!("shard-split-post-complete", |_| Err(
|
|
ApiError::InternalServerError(anyhow::anyhow!("failpoint"))
|
|
));
|
|
|
|
// Replace all the shards we just split with their children: this phase is infallible.
|
|
let (response, child_locations, waiters) =
|
|
self.tenant_shard_split_commit_inmem(tenant_id, new_shard_count, new_stripe_size);
|
|
|
|
// Notify all page servers to detach and clean up the old shards because they will no longer
|
|
// be needed. This is best-effort: if it fails, it will be cleaned up on a subsequent
|
|
// Pageserver re-attach/startup.
|
|
let shards_to_cleanup = targets
|
|
.iter()
|
|
.map(|target| (target.parent_id, target.node.get_id()))
|
|
.collect();
|
|
self.cleanup_locations(shards_to_cleanup).await;
|
|
|
|
// Send compute notifications for all the new shards
|
|
let mut failed_notifications = Vec::new();
|
|
for (child_id, child_ps, stripe_size) in child_locations {
|
|
if let Err(e) = self
|
|
.compute_hook
|
|
.notify(
|
|
compute_hook::ShardUpdate {
|
|
tenant_shard_id: child_id,
|
|
node_id: child_ps,
|
|
stripe_size,
|
|
preferred_az: preferred_az_id.as_ref().map(Cow::Borrowed),
|
|
},
|
|
&self.reconcilers_cancel,
|
|
)
|
|
.await
|
|
{
|
|
tracing::warn!(
|
|
"Failed to update compute of {}->{} during split, proceeding anyway to complete split ({e})",
|
|
child_id,
|
|
child_ps
|
|
);
|
|
failed_notifications.push(child_id);
|
|
}
|
|
}
|
|
|
|
// If we failed any compute notifications, make a note to retry later.
|
|
if !failed_notifications.is_empty() {
|
|
let mut locked = self.inner.write().unwrap();
|
|
for failed in failed_notifications {
|
|
if let Some(shard) = locked.tenants.get_mut(&failed) {
|
|
shard.pending_compute_notification = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok((response, waiters))
|
|
}
|
|
|
|
/// A graceful migration: update the preferred node and let optimisation handle the migration
|
|
/// in the background (may take a long time as it will fully warm up a location before cutting over)
|
|
///
|
|
/// Our external API calls this a 'prewarm=true' migration, but internally it isn't a special prewarm step: it's
|
|
/// just a migration that uses the same graceful procedure as our background scheduling optimisations would use.
|
|
fn tenant_shard_migrate_with_prewarm(
|
|
&self,
|
|
migrate_req: &TenantShardMigrateRequest,
|
|
shard: &mut TenantShard,
|
|
scheduler: &mut Scheduler,
|
|
schedule_context: ScheduleContext,
|
|
) -> Result<Option<ScheduleOptimization>, ApiError> {
|
|
shard.set_preferred_node(Some(migrate_req.node_id));
|
|
|
|
// Generate whatever the initial change to the intent is: this could be creation of a secondary, or
|
|
// cutting over to an existing secondary. Caller is responsible for validating this before applying it,
|
|
// e.g. by checking secondary is warm enough.
|
|
Ok(shard.optimize_attachment(scheduler, &schedule_context))
|
|
}
|
|
|
|
/// Immediate migration: directly update the intent state and kick off a reconciler
|
|
fn tenant_shard_migrate_immediate(
|
|
&self,
|
|
migrate_req: &TenantShardMigrateRequest,
|
|
nodes: &Arc<HashMap<NodeId, Node>>,
|
|
shard: &mut TenantShard,
|
|
scheduler: &mut Scheduler,
|
|
) -> Result<Option<ReconcilerWaiter>, ApiError> {
|
|
// Non-graceful migration: update the intent state immediately
|
|
let old_attached = *shard.intent.get_attached();
|
|
match shard.policy {
|
|
PlacementPolicy::Attached(n) => {
|
|
// If our new attached node was a secondary, it no longer should be.
|
|
shard
|
|
.intent
|
|
.remove_secondary(scheduler, migrate_req.node_id);
|
|
|
|
shard
|
|
.intent
|
|
.set_attached(scheduler, Some(migrate_req.node_id));
|
|
|
|
// If we were already attached to something, demote that to a secondary
|
|
if let Some(old_attached) = old_attached {
|
|
if n > 0 {
|
|
// Remove other secondaries to make room for the location we'll demote
|
|
while shard.intent.get_secondary().len() >= n {
|
|
shard.intent.pop_secondary(scheduler);
|
|
}
|
|
|
|
shard.intent.push_secondary(scheduler, old_attached);
|
|
}
|
|
}
|
|
}
|
|
PlacementPolicy::Secondary => {
|
|
shard.intent.clear(scheduler);
|
|
shard.intent.push_secondary(scheduler, migrate_req.node_id);
|
|
}
|
|
PlacementPolicy::Detached => {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"Cannot migrate a tenant that is PlacementPolicy::Detached: configure it to an attached policy first"
|
|
)));
|
|
}
|
|
}
|
|
|
|
tracing::info!("Migrating: new intent {:?}", shard.intent);
|
|
shard.sequence = shard.sequence.next();
|
|
shard.set_preferred_node(None); // Abort any in-flight graceful migration
|
|
Ok(self.maybe_configured_reconcile_shard(
|
|
shard,
|
|
nodes,
|
|
(&migrate_req.migration_config).into(),
|
|
))
|
|
}
|
|
|
|
pub(crate) async fn tenant_shard_migrate(
|
|
&self,
|
|
tenant_shard_id: TenantShardId,
|
|
migrate_req: TenantShardMigrateRequest,
|
|
) -> Result<TenantShardMigrateResponse, ApiError> {
|
|
// Depending on whether the migration is a change and whether it's graceful or immediate, we might
|
|
// get a different outcome to handle
|
|
enum MigrationOutcome {
|
|
Optimization(Option<ScheduleOptimization>),
|
|
Reconcile(Option<ReconcilerWaiter>),
|
|
}
|
|
|
|
let outcome = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
let Some(node) = nodes.get(&migrate_req.node_id) else {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"Node {} not found",
|
|
migrate_req.node_id
|
|
)));
|
|
};
|
|
|
|
// Migration to unavavailable node requires force flag
|
|
if !node.is_available() {
|
|
if migrate_req.migration_config.override_scheduler {
|
|
// Warn but proceed: the caller may intend to manually adjust the placement of
|
|
// a shard even if the node is down, e.g. if intervening during an incident.
|
|
tracing::warn!("Forcibly migrating to unavailable node {node}");
|
|
} else {
|
|
tracing::warn!("Node {node} is unavailable, refusing migration");
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!("Node {node} is unavailable").into_boxed_str(),
|
|
));
|
|
}
|
|
}
|
|
|
|
// Calculate the ScheduleContext for this tenant
|
|
let mut schedule_context = ScheduleContext::default();
|
|
for (_shard_id, shard) in
|
|
tenants.range(TenantShardId::tenant_range(tenant_shard_id.tenant_id))
|
|
{
|
|
schedule_context.avoid(&shard.intent.all_pageservers());
|
|
}
|
|
|
|
// Look up the specific shard we will migrate
|
|
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant shard not found").into(),
|
|
));
|
|
};
|
|
|
|
// Migration to a node with unfavorable scheduling score requires a force flag, because it might just
|
|
// be migrated back by the optimiser.
|
|
if let Some(better_node) = shard.find_better_location::<AttachedShardTag>(
|
|
scheduler,
|
|
&schedule_context,
|
|
migrate_req.node_id,
|
|
&[],
|
|
) {
|
|
if !migrate_req.migration_config.override_scheduler {
|
|
return Err(ApiError::PreconditionFailed(
|
|
"Migration to a worse-scoring node".into(),
|
|
));
|
|
} else {
|
|
tracing::info!(
|
|
"Migrating to a worse-scoring node {} (optimiser would prefer {better_node})",
|
|
migrate_req.node_id
|
|
);
|
|
}
|
|
}
|
|
|
|
if let Some(origin_node_id) = migrate_req.origin_node_id {
|
|
if shard.intent.get_attached() != &Some(origin_node_id) {
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!(
|
|
"Migration expected to originate from {} but shard is on {:?}",
|
|
origin_node_id,
|
|
shard.intent.get_attached()
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
}
|
|
|
|
if shard.intent.get_attached() == &Some(migrate_req.node_id) {
|
|
// No-op case: we will still proceed to wait for reconciliation in case it is
|
|
// incomplete from an earlier update to the intent.
|
|
tracing::info!("Migrating: intent is unchanged {:?}", shard.intent);
|
|
|
|
// An instruction to migrate to the currently attached node should
|
|
// cancel any pending graceful migration
|
|
shard.set_preferred_node(None);
|
|
|
|
MigrationOutcome::Reconcile(self.maybe_configured_reconcile_shard(
|
|
shard,
|
|
nodes,
|
|
(&migrate_req.migration_config).into(),
|
|
))
|
|
} else if migrate_req.migration_config.prewarm {
|
|
MigrationOutcome::Optimization(self.tenant_shard_migrate_with_prewarm(
|
|
&migrate_req,
|
|
shard,
|
|
scheduler,
|
|
schedule_context,
|
|
)?)
|
|
} else {
|
|
MigrationOutcome::Reconcile(self.tenant_shard_migrate_immediate(
|
|
&migrate_req,
|
|
nodes,
|
|
shard,
|
|
scheduler,
|
|
)?)
|
|
}
|
|
};
|
|
|
|
// We may need to validate + apply an optimisation, or we may need to just retrive a reconcile waiter
|
|
let waiter = match outcome {
|
|
MigrationOutcome::Optimization(Some(optimization)) => {
|
|
// Validate and apply the optimization -- this would happen anyway in background reconcile loop, but
|
|
// we might as well do it more promptly as this is a direct external request.
|
|
let mut validated = self
|
|
.optimize_all_validate(vec![(tenant_shard_id, optimization)])
|
|
.await;
|
|
if let Some((_shard_id, optimization)) = validated.pop() {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
|
|
// Rare but possible: tenant is removed between generating optimisation and validating it.
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant shard not found").into(),
|
|
));
|
|
};
|
|
|
|
if !shard.apply_optimization(scheduler, optimization) {
|
|
// This can happen but is unusual enough to warn on: something else changed in the shard that made the optimisation stale
|
|
// and therefore not applied.
|
|
tracing::warn!(
|
|
"Schedule optimisation generated during graceful migration was not applied, shard changed?"
|
|
);
|
|
}
|
|
self.maybe_configured_reconcile_shard(
|
|
shard,
|
|
nodes,
|
|
(&migrate_req.migration_config).into(),
|
|
)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
MigrationOutcome::Optimization(None) => None,
|
|
MigrationOutcome::Reconcile(waiter) => waiter,
|
|
};
|
|
|
|
// Finally, wait for any reconcile we started to complete. In the case of immediate-mode migrations to cold
|
|
// locations, this has a good chance of timing out.
|
|
if let Some(waiter) = waiter {
|
|
waiter.wait_timeout(RECONCILE_TIMEOUT).await?;
|
|
} else {
|
|
tracing::info!("Migration is a no-op");
|
|
}
|
|
|
|
Ok(TenantShardMigrateResponse {})
|
|
}
|
|
|
|
pub(crate) async fn tenant_shard_migrate_secondary(
|
|
&self,
|
|
tenant_shard_id: TenantShardId,
|
|
migrate_req: TenantShardMigrateRequest,
|
|
) -> Result<TenantShardMigrateResponse, ApiError> {
|
|
let waiter = {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
let Some(node) = nodes.get(&migrate_req.node_id) else {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"Node {} not found",
|
|
migrate_req.node_id
|
|
)));
|
|
};
|
|
|
|
if !node.is_available() {
|
|
// Warn but proceed: the caller may intend to manually adjust the placement of
|
|
// a shard even if the node is down, e.g. if intervening during an incident.
|
|
tracing::warn!("Migrating to unavailable node {node}");
|
|
}
|
|
|
|
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant shard not found").into(),
|
|
));
|
|
};
|
|
|
|
if shard.intent.get_secondary().len() == 1
|
|
&& shard.intent.get_secondary()[0] == migrate_req.node_id
|
|
{
|
|
tracing::info!(
|
|
"Migrating secondary to {node}: intent is unchanged {:?}",
|
|
shard.intent
|
|
);
|
|
} else if shard.intent.get_attached() == &Some(migrate_req.node_id) {
|
|
tracing::info!(
|
|
"Migrating secondary to {node}: already attached where we were asked to create a secondary"
|
|
);
|
|
} else {
|
|
let old_secondaries = shard.intent.get_secondary().clone();
|
|
for secondary in old_secondaries {
|
|
shard.intent.remove_secondary(scheduler, secondary);
|
|
}
|
|
|
|
shard.intent.push_secondary(scheduler, migrate_req.node_id);
|
|
shard.sequence = shard.sequence.next();
|
|
tracing::info!(
|
|
"Migrating secondary to {node}: new intent {:?}",
|
|
shard.intent
|
|
);
|
|
}
|
|
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::High)
|
|
};
|
|
|
|
if let Some(waiter) = waiter {
|
|
waiter.wait_timeout(RECONCILE_TIMEOUT).await?;
|
|
} else {
|
|
tracing::info!("Migration is a no-op");
|
|
}
|
|
|
|
Ok(TenantShardMigrateResponse {})
|
|
}
|
|
|
|
/// 'cancel' in this context means cancel any ongoing reconcile
|
|
pub(crate) async fn tenant_shard_cancel_reconcile(
|
|
&self,
|
|
tenant_shard_id: TenantShardId,
|
|
) -> Result<(), ApiError> {
|
|
// Take state lock and fire the cancellation token, after which we drop lock and wait for any ongoing reconcile to complete
|
|
let waiter = {
|
|
let locked = self.inner.write().unwrap();
|
|
let Some(shard) = locked.tenants.get(&tenant_shard_id) else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Tenant shard not found").into(),
|
|
));
|
|
};
|
|
|
|
let waiter = shard.get_waiter();
|
|
match waiter {
|
|
None => {
|
|
tracing::info!("Shard does not have an ongoing Reconciler");
|
|
return Ok(());
|
|
}
|
|
Some(waiter) => {
|
|
tracing::info!("Cancelling Reconciler");
|
|
shard.cancel_reconciler();
|
|
waiter
|
|
}
|
|
}
|
|
};
|
|
|
|
// Cancellation should be prompt. If this fails we have still done our job of firing the
|
|
// cancellation token, but by returning an ApiError we will indicate to the caller that
|
|
// the Reconciler is misbehaving and not respecting the cancellation token
|
|
self.await_waiters(vec![waiter], SHORT_RECONCILE_TIMEOUT)
|
|
.await?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// This is for debug/support only: we simply drop all state for a tenant, without
|
|
/// detaching or deleting it on pageservers.
|
|
pub(crate) async fn tenant_drop(&self, tenant_id: TenantId) -> Result<(), ApiError> {
|
|
self.persistence.delete_tenant(tenant_id).await?;
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (_nodes, tenants, scheduler) = locked.parts_mut();
|
|
let mut shards = Vec::new();
|
|
for (tenant_shard_id, _) in tenants.range(TenantShardId::tenant_range(tenant_id)) {
|
|
shards.push(*tenant_shard_id);
|
|
}
|
|
|
|
for shard_id in shards {
|
|
if let Some(mut shard) = tenants.remove(&shard_id) {
|
|
shard.intent.clear(scheduler);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// This is for debug/support only: assuming tenant data is already present in S3, we "create" a
|
|
/// tenant with a very high generation number so that it will see the existing data.
|
|
/// It does not create timelines on safekeepers, because they might already exist on some
|
|
/// safekeeper set. So, the timelines are not storcon-managed after the import.
|
|
pub(crate) async fn tenant_import(
|
|
&self,
|
|
tenant_id: TenantId,
|
|
) -> Result<TenantCreateResponse, ApiError> {
|
|
// Pick an arbitrary available pageserver to use for scanning the tenant in remote storage
|
|
let maybe_node = {
|
|
self.inner
|
|
.read()
|
|
.unwrap()
|
|
.nodes
|
|
.values()
|
|
.find(|n| n.is_available())
|
|
.cloned()
|
|
};
|
|
let Some(node) = maybe_node else {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!("No nodes available")));
|
|
};
|
|
|
|
let client = PageserverClient::new(
|
|
node.get_id(),
|
|
self.http_client.clone(),
|
|
node.base_url(),
|
|
self.config.pageserver_jwt_token.as_deref(),
|
|
);
|
|
|
|
let scan_result = client
|
|
.tenant_scan_remote_storage(tenant_id)
|
|
.await
|
|
.map_err(|e| passthrough_api_error(&node, e))?;
|
|
|
|
// A post-split tenant may contain a mixture of shard counts in remote storage: pick the highest count.
|
|
let Some(shard_count) = scan_result
|
|
.shards
|
|
.iter()
|
|
.map(|s| s.tenant_shard_id.shard_count)
|
|
.max()
|
|
else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("No shards found").into(),
|
|
));
|
|
};
|
|
|
|
// Ideally we would set each newly imported shard's generation independently, but for correctness it is sufficient
|
|
// to
|
|
let generation = scan_result
|
|
.shards
|
|
.iter()
|
|
.map(|s| s.generation)
|
|
.max()
|
|
.expect("We already validated >0 shards");
|
|
|
|
// Find the tenant's stripe size. This wasn't always persisted in the tenant manifest, so
|
|
// fall back to the original default stripe size of 32768 (256 MB) if it's not specified.
|
|
const ORIGINAL_STRIPE_SIZE: ShardStripeSize = ShardStripeSize(32768);
|
|
let stripe_size = scan_result
|
|
.shards
|
|
.iter()
|
|
.find(|s| s.tenant_shard_id.shard_count == shard_count && s.generation == generation)
|
|
.expect("we validated >0 shards above")
|
|
.stripe_size
|
|
.unwrap_or_else(|| {
|
|
if shard_count.count() > 1 {
|
|
warn!("unknown stripe size, assuming {ORIGINAL_STRIPE_SIZE}");
|
|
}
|
|
ORIGINAL_STRIPE_SIZE
|
|
});
|
|
|
|
let (response, waiters) = self
|
|
.do_tenant_create(TenantCreateRequest {
|
|
new_tenant_id: TenantShardId::unsharded(tenant_id),
|
|
generation,
|
|
|
|
shard_parameters: ShardParameters {
|
|
count: shard_count,
|
|
stripe_size,
|
|
},
|
|
placement_policy: Some(PlacementPolicy::Attached(0)), // No secondaries, for convenient debug/hacking
|
|
config: TenantConfig::default(),
|
|
})
|
|
.await?;
|
|
|
|
if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
|
|
// Since this is a debug/support operation, all kinds of weird issues are possible (e.g. this
|
|
// tenant doesn't exist in the control plane), so don't fail the request if it can't fully
|
|
// reconcile, as reconciliation includes notifying compute.
|
|
tracing::warn!(%tenant_id, "Reconcile not done yet while importing tenant ({e})");
|
|
}
|
|
|
|
Ok(response)
|
|
}
|
|
|
|
/// For debug/support: a full JSON dump of TenantShards. Returns a response so that
|
|
/// we don't have to make TenantShard clonable in the return path.
|
|
pub(crate) fn tenants_dump(&self) -> Result<hyper::Response<hyper::Body>, ApiError> {
|
|
let serialized = {
|
|
let locked = self.inner.read().unwrap();
|
|
let result = locked.tenants.values().collect::<Vec<_>>();
|
|
serde_json::to_string(&result).map_err(|e| ApiError::InternalServerError(e.into()))?
|
|
};
|
|
|
|
hyper::Response::builder()
|
|
.status(hyper::StatusCode::OK)
|
|
.header(hyper::header::CONTENT_TYPE, "application/json")
|
|
.body(hyper::Body::from(serialized))
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))
|
|
}
|
|
|
|
/// Check the consistency of in-memory state vs. persistent state, and check that the
|
|
/// scheduler's statistics are up to date.
|
|
///
|
|
/// These consistency checks expect an **idle** system. If changes are going on while
|
|
/// we run, then we can falsely indicate a consistency issue. This is sufficient for end-of-test
|
|
/// checks, but not suitable for running continuously in the background in the field.
|
|
pub(crate) async fn consistency_check(&self) -> Result<(), ApiError> {
|
|
let (mut expect_nodes, mut expect_shards) = {
|
|
let locked = self.inner.read().unwrap();
|
|
|
|
locked
|
|
.scheduler
|
|
.consistency_check(locked.nodes.values(), locked.tenants.values())
|
|
.context("Scheduler checks")
|
|
.map_err(ApiError::InternalServerError)?;
|
|
|
|
let expect_nodes = locked
|
|
.nodes
|
|
.values()
|
|
.map(|n| n.to_persistent())
|
|
.collect::<Vec<_>>();
|
|
|
|
let expect_shards = locked
|
|
.tenants
|
|
.values()
|
|
.map(|t| t.to_persistent())
|
|
.collect::<Vec<_>>();
|
|
|
|
// This method can only validate the state of an idle system: if a reconcile is in
|
|
// progress, fail out early to avoid giving false errors on state that won't match
|
|
// between database and memory under a ReconcileResult is processed.
|
|
for t in locked.tenants.values() {
|
|
if t.reconciler.is_some() {
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Shard {} reconciliation in progress",
|
|
t.tenant_shard_id
|
|
)));
|
|
}
|
|
}
|
|
|
|
(expect_nodes, expect_shards)
|
|
};
|
|
|
|
let mut nodes = self.persistence.list_nodes().await?;
|
|
expect_nodes.sort_by_key(|n| n.node_id);
|
|
nodes.sort_by_key(|n| n.node_id);
|
|
|
|
// Errors relating to nodes are deferred so that we don't skip the shard checks below if we have a node error
|
|
let node_result = if nodes != expect_nodes {
|
|
tracing::error!("Consistency check failed on nodes.");
|
|
tracing::error!(
|
|
"Nodes in memory: {}",
|
|
serde_json::to_string(&expect_nodes)
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))?
|
|
);
|
|
tracing::error!(
|
|
"Nodes in database: {}",
|
|
serde_json::to_string(&nodes)
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))?
|
|
);
|
|
Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Node consistency failure"
|
|
)))
|
|
} else {
|
|
Ok(())
|
|
};
|
|
|
|
let mut persistent_shards = self.persistence.load_active_tenant_shards().await?;
|
|
persistent_shards
|
|
.sort_by_key(|tsp| (tsp.tenant_id.clone(), tsp.shard_number, tsp.shard_count));
|
|
|
|
expect_shards.sort_by_key(|tsp| (tsp.tenant_id.clone(), tsp.shard_number, tsp.shard_count));
|
|
|
|
// Because JSON contents of persistent tenants might disagree with the fields in current `TenantConfig`
|
|
// definition, we will do an encode/decode cycle to ensure any legacy fields are dropped and any new
|
|
// fields are added, before doing a comparison.
|
|
for tsp in &mut persistent_shards {
|
|
let config: TenantConfig = serde_json::from_str(&tsp.config)
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))?;
|
|
tsp.config = serde_json::to_string(&config).expect("Encoding config is infallible");
|
|
}
|
|
|
|
if persistent_shards != expect_shards {
|
|
tracing::error!("Consistency check failed on shards.");
|
|
|
|
tracing::error!(
|
|
"Shards in memory: {}",
|
|
serde_json::to_string(&expect_shards)
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))?
|
|
);
|
|
tracing::error!(
|
|
"Shards in database: {}",
|
|
serde_json::to_string(&persistent_shards)
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))?
|
|
);
|
|
|
|
// The total dump log lines above are useful in testing but in the field grafana will
|
|
// usually just drop them because they're so large. So we also do some explicit logging
|
|
// of just the diffs.
|
|
let persistent_shards = persistent_shards
|
|
.into_iter()
|
|
.map(|tsp| (tsp.get_tenant_shard_id().unwrap(), tsp))
|
|
.collect::<HashMap<_, _>>();
|
|
let expect_shards = expect_shards
|
|
.into_iter()
|
|
.map(|tsp| (tsp.get_tenant_shard_id().unwrap(), tsp))
|
|
.collect::<HashMap<_, _>>();
|
|
for (tenant_shard_id, persistent_tsp) in &persistent_shards {
|
|
match expect_shards.get(tenant_shard_id) {
|
|
None => {
|
|
tracing::error!(
|
|
"Shard {} found in database but not in memory",
|
|
tenant_shard_id
|
|
);
|
|
}
|
|
Some(expect_tsp) => {
|
|
if expect_tsp != persistent_tsp {
|
|
tracing::error!(
|
|
"Shard {} is inconsistent. In memory: {}, database has: {}",
|
|
tenant_shard_id,
|
|
serde_json::to_string(expect_tsp).unwrap(),
|
|
serde_json::to_string(&persistent_tsp).unwrap()
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Having already logged any differences, log any shards that simply aren't present in the database
|
|
for (tenant_shard_id, memory_tsp) in &expect_shards {
|
|
if !persistent_shards.contains_key(tenant_shard_id) {
|
|
tracing::error!(
|
|
"Shard {} found in memory but not in database: {}",
|
|
tenant_shard_id,
|
|
serde_json::to_string(memory_tsp)
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))?
|
|
);
|
|
}
|
|
}
|
|
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Shard consistency failure"
|
|
)));
|
|
}
|
|
|
|
node_result
|
|
}
|
|
|
|
/// For debug/support: a JSON dump of the [`Scheduler`]. Returns a response so that
|
|
/// we don't have to make TenantShard clonable in the return path.
|
|
pub(crate) fn scheduler_dump(&self) -> Result<hyper::Response<hyper::Body>, ApiError> {
|
|
let serialized = {
|
|
let locked = self.inner.read().unwrap();
|
|
serde_json::to_string(&locked.scheduler)
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))?
|
|
};
|
|
|
|
hyper::Response::builder()
|
|
.status(hyper::StatusCode::OK)
|
|
.header(hyper::header::CONTENT_TYPE, "application/json")
|
|
.body(hyper::Body::from(serialized))
|
|
.map_err(|e| ApiError::InternalServerError(e.into()))
|
|
}
|
|
|
|
/// This is for debug/support only: we simply drop all state for a tenant, without
|
|
/// detaching or deleting it on pageservers. We do not try and re-schedule any
|
|
/// tenants that were on this node.
|
|
pub(crate) async fn node_drop(&self, node_id: NodeId) -> Result<(), ApiError> {
|
|
self.persistence.set_tombstone(node_id).await?;
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
|
|
for shard in locked.tenants.values_mut() {
|
|
shard.deref_node(node_id);
|
|
shard.observed.locations.remove(&node_id);
|
|
}
|
|
|
|
let mut nodes = (*locked.nodes).clone();
|
|
nodes.remove(&node_id);
|
|
locked.nodes = Arc::new(nodes);
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_pageserver_nodes
|
|
.set(locked.nodes.len() as i64);
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_https_pageserver_nodes
|
|
.set(locked.nodes.values().filter(|n| n.has_https_port()).count() as i64);
|
|
|
|
locked.scheduler.node_remove(node_id);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// If a node has any work on it, it will be rescheduled: this is "clean" in the sense
|
|
/// that we don't leave any bad state behind in the storage controller, but unclean
|
|
/// in the sense that we are not carefully draining the node.
|
|
pub(crate) async fn node_delete(&self, node_id: NodeId) -> Result<(), ApiError> {
|
|
let _node_lock =
|
|
trace_exclusive_lock(&self.node_op_locks, node_id, NodeOperations::Delete).await;
|
|
|
|
// 1. Atomically update in-memory state:
|
|
// - set the scheduling state to Pause to make subsequent scheduling ops skip it
|
|
// - update shards' intents to exclude the node, and reschedule any shards whose intents we modified.
|
|
// - drop the node from the main nodes map, so that when running reconciles complete they do not
|
|
// re-insert references to this node into the ObservedState of shards
|
|
// - drop the node from the scheduler
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
{
|
|
let mut nodes_mut = (*nodes).deref().clone();
|
|
match nodes_mut.get_mut(&node_id) {
|
|
Some(node) => {
|
|
// We do not bother setting this in the database, because we're about to delete the row anyway, and
|
|
// if we crash it would not be desirable to leave the node paused after a restart.
|
|
node.set_scheduling(NodeSchedulingPolicy::Pause);
|
|
}
|
|
None => {
|
|
tracing::info!(
|
|
"Node not found: presuming this is a retry and returning success"
|
|
);
|
|
return Ok(());
|
|
}
|
|
}
|
|
|
|
*nodes = Arc::new(nodes_mut);
|
|
}
|
|
|
|
for (_tenant_id, mut schedule_context, shards) in
|
|
TenantShardContextIterator::new(tenants, ScheduleMode::Normal)
|
|
{
|
|
for shard in shards {
|
|
if shard.deref_node(node_id) {
|
|
if let Err(e) = shard.schedule(scheduler, &mut schedule_context) {
|
|
// TODO: implement force flag to remove a node even if we can't reschedule
|
|
// a tenant
|
|
tracing::error!(
|
|
"Refusing to delete node, shard {} can't be rescheduled: {e}",
|
|
shard.tenant_shard_id
|
|
);
|
|
return Err(e.into());
|
|
} else {
|
|
tracing::info!(
|
|
"Rescheduled shard {} away from node during deletion",
|
|
shard.tenant_shard_id
|
|
)
|
|
}
|
|
|
|
self.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::Normal);
|
|
}
|
|
|
|
// Here we remove an existing observed location for the node we're removing, and it will
|
|
// not be re-added by a reconciler's completion because we filter out removed nodes in
|
|
// process_result.
|
|
//
|
|
// Note that we update the shard's observed state _after_ calling maybe_reconcile_shard: that
|
|
// means any reconciles we spawned will know about the node we're deleting, enabling them
|
|
// to do live migrations if it's still online.
|
|
shard.observed.locations.remove(&node_id);
|
|
}
|
|
}
|
|
|
|
scheduler.node_remove(node_id);
|
|
|
|
{
|
|
let mut nodes_mut = (**nodes).clone();
|
|
if let Some(mut removed_node) = nodes_mut.remove(&node_id) {
|
|
// Ensure that any reconciler holding an Arc<> to this node will
|
|
// drop out when trying to RPC to it (setting Offline state sets the
|
|
// cancellation token on the Node object).
|
|
removed_node.set_availability(NodeAvailability::Offline);
|
|
}
|
|
*nodes = Arc::new(nodes_mut);
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_pageserver_nodes
|
|
.set(nodes.len() as i64);
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_https_pageserver_nodes
|
|
.set(nodes.values().filter(|n| n.has_https_port()).count() as i64);
|
|
}
|
|
}
|
|
|
|
// Note: some `generation_pageserver` columns on tenant shards in the database may still refer to
|
|
// the removed node, as this column means "The pageserver to which this generation was issued", and
|
|
// their generations won't get updated until the reconcilers moving them away from this node complete.
|
|
// That is safe because in Service::spawn we only use generation_pageserver if it refers to a node
|
|
// that exists.
|
|
|
|
// 2. Actually delete the node from in-memory state and set tombstone to the database
|
|
// for preventing the node to register again.
|
|
tracing::info!("Deleting node from database");
|
|
self.persistence.set_tombstone(node_id).await?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn node_list(&self) -> Result<Vec<Node>, ApiError> {
|
|
let nodes = {
|
|
self.inner
|
|
.read()
|
|
.unwrap()
|
|
.nodes
|
|
.values()
|
|
.cloned()
|
|
.collect::<Vec<_>>()
|
|
};
|
|
|
|
Ok(nodes)
|
|
}
|
|
|
|
pub(crate) async fn tombstone_list(&self) -> Result<Vec<Node>, ApiError> {
|
|
self.persistence
|
|
.list_tombstones()
|
|
.await?
|
|
.into_iter()
|
|
.map(|np| Node::from_persistent(np, false))
|
|
.collect::<Result<Vec<_>, _>>()
|
|
.map_err(ApiError::InternalServerError)
|
|
}
|
|
|
|
pub(crate) async fn tombstone_delete(&self, node_id: NodeId) -> Result<(), ApiError> {
|
|
let _node_lock = trace_exclusive_lock(
|
|
&self.node_op_locks,
|
|
node_id,
|
|
NodeOperations::DeleteTombstone,
|
|
)
|
|
.await;
|
|
|
|
if matches!(self.get_node(node_id).await, Err(ApiError::NotFound(_))) {
|
|
self.persistence.delete_node(node_id).await?;
|
|
Ok(())
|
|
} else {
|
|
Err(ApiError::Conflict(format!(
|
|
"Node {node_id} is in use, consider using tombstone API first"
|
|
)))
|
|
}
|
|
}
|
|
|
|
pub(crate) async fn get_node(&self, node_id: NodeId) -> Result<Node, ApiError> {
|
|
self.inner
|
|
.read()
|
|
.unwrap()
|
|
.nodes
|
|
.get(&node_id)
|
|
.cloned()
|
|
.ok_or(ApiError::NotFound(
|
|
format!("Node {node_id} not registered").into(),
|
|
))
|
|
}
|
|
|
|
pub(crate) async fn get_node_shards(
|
|
&self,
|
|
node_id: NodeId,
|
|
) -> Result<NodeShardResponse, ApiError> {
|
|
let locked = self.inner.read().unwrap();
|
|
let mut shards = Vec::new();
|
|
for (tid, tenant) in locked.tenants.iter() {
|
|
let is_intended_secondary = match (
|
|
tenant.intent.get_attached() == &Some(node_id),
|
|
tenant.intent.get_secondary().contains(&node_id),
|
|
) {
|
|
(true, true) => {
|
|
return Err(ApiError::InternalServerError(anyhow::anyhow!(
|
|
"{} attached as primary+secondary on the same node",
|
|
tid
|
|
)));
|
|
}
|
|
(true, false) => Some(false),
|
|
(false, true) => Some(true),
|
|
(false, false) => None,
|
|
};
|
|
let is_observed_secondary = if let Some(ObservedStateLocation { conf: Some(conf) }) =
|
|
tenant.observed.locations.get(&node_id)
|
|
{
|
|
Some(conf.secondary_conf.is_some())
|
|
} else {
|
|
None
|
|
};
|
|
if is_intended_secondary.is_some() || is_observed_secondary.is_some() {
|
|
shards.push(NodeShard {
|
|
tenant_shard_id: *tid,
|
|
is_intended_secondary,
|
|
is_observed_secondary,
|
|
});
|
|
}
|
|
}
|
|
Ok(NodeShardResponse { node_id, shards })
|
|
}
|
|
|
|
pub(crate) async fn get_leader(&self) -> DatabaseResult<Option<ControllerPersistence>> {
|
|
self.persistence.get_leader().await
|
|
}
|
|
|
|
pub(crate) async fn node_register(
|
|
&self,
|
|
register_req: NodeRegisterRequest,
|
|
) -> Result<(), ApiError> {
|
|
let _node_lock = trace_exclusive_lock(
|
|
&self.node_op_locks,
|
|
register_req.node_id,
|
|
NodeOperations::Register,
|
|
)
|
|
.await;
|
|
|
|
#[derive(PartialEq)]
|
|
enum RegistrationStatus {
|
|
UpToDate,
|
|
NeedUpdate,
|
|
Mismatched,
|
|
New,
|
|
}
|
|
|
|
let registration_status = {
|
|
let locked = self.inner.read().unwrap();
|
|
if let Some(node) = locked.nodes.get(®ister_req.node_id) {
|
|
if node.registration_match(®ister_req) {
|
|
if node.need_update(®ister_req) {
|
|
RegistrationStatus::NeedUpdate
|
|
} else {
|
|
RegistrationStatus::UpToDate
|
|
}
|
|
} else {
|
|
RegistrationStatus::Mismatched
|
|
}
|
|
} else {
|
|
RegistrationStatus::New
|
|
}
|
|
};
|
|
|
|
match registration_status {
|
|
RegistrationStatus::UpToDate => {
|
|
tracing::info!(
|
|
"Node {} re-registered with matching address and is up to date",
|
|
register_req.node_id
|
|
);
|
|
|
|
return Ok(());
|
|
}
|
|
RegistrationStatus::Mismatched => {
|
|
// TODO: decide if we want to allow modifying node addresses without removing and re-adding
|
|
// the node. Safest/simplest thing is to refuse it, and usually we deploy with
|
|
// a fixed address through the lifetime of a node.
|
|
tracing::warn!(
|
|
"Node {} tried to register with different address",
|
|
register_req.node_id
|
|
);
|
|
return Err(ApiError::Conflict(
|
|
"Node is already registered with different address".to_string(),
|
|
));
|
|
}
|
|
RegistrationStatus::New | RegistrationStatus::NeedUpdate => {
|
|
// fallthrough
|
|
}
|
|
}
|
|
|
|
// We do not require that a node is actually online when registered (it will start life
|
|
// with it's availability set to Offline), but we _do_ require that its DNS record exists. We're
|
|
// therefore not immune to asymmetric L3 connectivity issues, but we are protected against nodes
|
|
// that register themselves with a broken DNS config. We check only the HTTP hostname, because
|
|
// the postgres hostname might only be resolvable to clients (e.g. if we're on a different VPC than clients).
|
|
if tokio::net::lookup_host(format!(
|
|
"{}:{}",
|
|
register_req.listen_http_addr, register_req.listen_http_port
|
|
))
|
|
.await
|
|
.is_err()
|
|
{
|
|
// If we have a transient DNS issue, it's up to the caller to retry their registration. Because
|
|
// we can't robustly distinguish between an intermittent issue and a totally bogus DNS situation,
|
|
// we return a soft 503 error, to encourage callers to retry past transient issues.
|
|
return Err(ApiError::ResourceUnavailable(
|
|
format!(
|
|
"Node {} tried to register with unknown DNS name '{}'",
|
|
register_req.node_id, register_req.listen_http_addr
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
if self.config.use_https_pageserver_api && register_req.listen_https_port.is_none() {
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!(
|
|
"Node {} has no https port, but use_https is enabled",
|
|
register_req.node_id
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
if register_req.listen_grpc_addr.is_some() != register_req.listen_grpc_port.is_some() {
|
|
return Err(ApiError::BadRequest(anyhow::anyhow!(
|
|
"must specify both gRPC address and port"
|
|
)));
|
|
}
|
|
|
|
// Ordering: we must persist the new node _before_ adding it to in-memory state.
|
|
// This ensures that before we use it for anything or expose it via any external
|
|
// API, it is guaranteed to be available after a restart.
|
|
let new_node = Node::new(
|
|
register_req.node_id,
|
|
register_req.listen_http_addr,
|
|
register_req.listen_http_port,
|
|
register_req.listen_https_port,
|
|
register_req.listen_pg_addr,
|
|
register_req.listen_pg_port,
|
|
register_req.listen_grpc_addr,
|
|
register_req.listen_grpc_port,
|
|
register_req.availability_zone_id.clone(),
|
|
self.config.use_https_pageserver_api,
|
|
);
|
|
let new_node = match new_node {
|
|
Ok(new_node) => new_node,
|
|
Err(error) => return Err(ApiError::InternalServerError(error)),
|
|
};
|
|
|
|
match registration_status {
|
|
RegistrationStatus::New => {
|
|
self.persistence.insert_node(&new_node).await.map_err(|e| {
|
|
if matches!(
|
|
e,
|
|
crate::persistence::DatabaseError::Query(
|
|
diesel::result::Error::DatabaseError(
|
|
diesel::result::DatabaseErrorKind::UniqueViolation,
|
|
_,
|
|
)
|
|
)
|
|
) {
|
|
// The node can be deleted by tombstone API, and not show up in the list of nodes.
|
|
// If you see this error, check tombstones first.
|
|
ApiError::Conflict(format!("Node {} is already exists", new_node.get_id()))
|
|
} else {
|
|
ApiError::from(e)
|
|
}
|
|
})?;
|
|
}
|
|
RegistrationStatus::NeedUpdate => {
|
|
self.persistence
|
|
.update_node_on_registration(
|
|
register_req.node_id,
|
|
register_req.listen_https_port,
|
|
)
|
|
.await?
|
|
}
|
|
_ => unreachable!("Other statuses have been processed earlier"),
|
|
}
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
let mut new_nodes = (*locked.nodes).clone();
|
|
|
|
locked.scheduler.node_upsert(&new_node);
|
|
new_nodes.insert(register_req.node_id, new_node);
|
|
|
|
locked.nodes = Arc::new(new_nodes);
|
|
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_pageserver_nodes
|
|
.set(locked.nodes.len() as i64);
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_https_pageserver_nodes
|
|
.set(locked.nodes.values().filter(|n| n.has_https_port()).count() as i64);
|
|
|
|
match registration_status {
|
|
RegistrationStatus::New => {
|
|
tracing::info!(
|
|
"Registered pageserver {} ({}), now have {} pageservers",
|
|
register_req.node_id,
|
|
register_req.availability_zone_id,
|
|
locked.nodes.len()
|
|
);
|
|
}
|
|
RegistrationStatus::NeedUpdate => {
|
|
tracing::info!(
|
|
"Re-registered and updated node {} ({})",
|
|
register_req.node_id,
|
|
register_req.availability_zone_id,
|
|
);
|
|
}
|
|
_ => unreachable!("Other statuses have been processed earlier"),
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Configure in-memory and persistent state of a node as requested
|
|
///
|
|
/// Note that this function does not trigger any immediate side effects in response
|
|
/// to the changes. That part is handled by [`Self::handle_node_availability_transition`].
|
|
async fn node_state_configure(
|
|
&self,
|
|
node_id: NodeId,
|
|
availability: Option<NodeAvailability>,
|
|
scheduling: Option<NodeSchedulingPolicy>,
|
|
node_lock: &TracingExclusiveGuard<NodeOperations>,
|
|
) -> Result<AvailabilityTransition, ApiError> {
|
|
if let Some(scheduling) = scheduling {
|
|
// Scheduling is a persistent part of Node: we must write updates to the database before
|
|
// applying them in memory
|
|
self.persistence
|
|
.update_node_scheduling_policy(node_id, scheduling)
|
|
.await?;
|
|
}
|
|
|
|
// If we're activating a node, then before setting it active we must reconcile any shard locations
|
|
// on that node, in case it is out of sync, e.g. due to being unavailable during controller startup,
|
|
// by calling [`Self::node_activate_reconcile`]
|
|
//
|
|
// The transition we calculate here remains valid later in the function because we hold the op lock on the node:
|
|
// nothing else can mutate its availability while we run.
|
|
let availability_transition = if let Some(input_availability) = availability.as_ref() {
|
|
let (activate_node, availability_transition) = {
|
|
let locked = self.inner.read().unwrap();
|
|
let Some(node) = locked.nodes.get(&node_id) else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Node {} not registered", node_id).into(),
|
|
));
|
|
};
|
|
|
|
(
|
|
node.clone(),
|
|
node.get_availability_transition(input_availability),
|
|
)
|
|
};
|
|
|
|
if matches!(availability_transition, AvailabilityTransition::ToActive) {
|
|
self.node_activate_reconcile(activate_node, node_lock)
|
|
.await?;
|
|
}
|
|
availability_transition
|
|
} else {
|
|
AvailabilityTransition::Unchanged
|
|
};
|
|
|
|
// Apply changes from the request to our in-memory state for the Node
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, _tenants, scheduler) = locked.parts_mut();
|
|
|
|
let mut new_nodes = (**nodes).clone();
|
|
|
|
let Some(node) = new_nodes.get_mut(&node_id) else {
|
|
return Err(ApiError::NotFound(
|
|
anyhow::anyhow!("Node not registered").into(),
|
|
));
|
|
};
|
|
|
|
if let Some(availability) = availability {
|
|
node.set_availability(availability);
|
|
}
|
|
|
|
if let Some(scheduling) = scheduling {
|
|
node.set_scheduling(scheduling);
|
|
}
|
|
|
|
// Update the scheduler, in case the elegibility of the node for new shards has changed
|
|
scheduler.node_upsert(node);
|
|
|
|
let new_nodes = Arc::new(new_nodes);
|
|
locked.nodes = new_nodes;
|
|
|
|
Ok(availability_transition)
|
|
}
|
|
|
|
/// Handle availability transition of one node
|
|
///
|
|
/// Note that you should first call [`Self::node_state_configure`] to update
|
|
/// the in-memory state referencing that node. If you need to handle more than one transition
|
|
/// consider using [`Self::handle_node_availability_transitions`].
|
|
async fn handle_node_availability_transition(
|
|
&self,
|
|
node_id: NodeId,
|
|
transition: AvailabilityTransition,
|
|
_node_lock: &TracingExclusiveGuard<NodeOperations>,
|
|
) -> Result<(), ApiError> {
|
|
// Modify scheduling state for any Tenants that are affected by a change in the node's availability state.
|
|
match transition {
|
|
AvailabilityTransition::ToOffline => {
|
|
tracing::info!("Node {} transition to offline", node_id);
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
let mut tenants_affected: usize = 0;
|
|
|
|
for (_tenant_id, mut schedule_context, shards) in
|
|
TenantShardContextIterator::new(tenants, ScheduleMode::Normal)
|
|
{
|
|
for tenant_shard in shards {
|
|
let tenant_shard_id = tenant_shard.tenant_shard_id;
|
|
if let Some(observed_loc) =
|
|
tenant_shard.observed.locations.get_mut(&node_id)
|
|
{
|
|
// When a node goes offline, we set its observed configuration to None, indicating unknown: we will
|
|
// not assume our knowledge of the node's configuration is accurate until it comes back online
|
|
observed_loc.conf = None;
|
|
}
|
|
|
|
if nodes.len() == 1 {
|
|
// Special case for single-node cluster: there is no point trying to reschedule
|
|
// any tenant shards: avoid doing so, in order to avoid spewing warnings about
|
|
// failures to schedule them.
|
|
continue;
|
|
}
|
|
|
|
if !nodes
|
|
.values()
|
|
.any(|n| matches!(n.may_schedule(), MaySchedule::Yes(_)))
|
|
{
|
|
// Special case for when all nodes are unavailable and/or unschedulable: there is no point
|
|
// trying to reschedule since there's nowhere else to go. Without this
|
|
// branch we incorrectly detach tenants in response to node unavailability.
|
|
continue;
|
|
}
|
|
|
|
if tenant_shard.intent.demote_attached(scheduler, node_id) {
|
|
tenant_shard.sequence = tenant_shard.sequence.next();
|
|
|
|
match tenant_shard.schedule(scheduler, &mut schedule_context) {
|
|
Err(e) => {
|
|
// It is possible that some tenants will become unschedulable when too many pageservers
|
|
// go offline: in this case there isn't much we can do other than make the issue observable.
|
|
// TODO: give TenantShard a scheduling error attribute to be queried later.
|
|
tracing::warn!(%tenant_shard_id, "Scheduling error when marking pageserver {} offline: {e}", node_id);
|
|
}
|
|
Ok(()) => {
|
|
if self
|
|
.maybe_reconcile_shard(
|
|
tenant_shard,
|
|
nodes,
|
|
ReconcilerPriority::Normal,
|
|
)
|
|
.is_some()
|
|
{
|
|
tenants_affected += 1;
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
tracing::info!(
|
|
"Launched {} reconciler tasks for tenants affected by node {} going offline",
|
|
tenants_affected,
|
|
node_id
|
|
)
|
|
}
|
|
AvailabilityTransition::ToActive => {
|
|
tracing::info!("Node {} transition to active", node_id);
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, _scheduler) = locked.parts_mut();
|
|
|
|
// When a node comes back online, we must reconcile any tenant that has a None observed
|
|
// location on the node.
|
|
for tenant_shard in tenants.values_mut() {
|
|
// If a reconciliation is already in progress, rely on the previous scheduling
|
|
// decision and skip triggering a new reconciliation.
|
|
if tenant_shard.reconciler.is_some() {
|
|
continue;
|
|
}
|
|
|
|
if let Some(observed_loc) = tenant_shard.observed.locations.get_mut(&node_id) {
|
|
if observed_loc.conf.is_none() {
|
|
self.maybe_reconcile_shard(
|
|
tenant_shard,
|
|
nodes,
|
|
ReconcilerPriority::Normal,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: in the background, we should balance work back onto this pageserver
|
|
}
|
|
// No action required for the intermediate unavailable state.
|
|
// When we transition into active or offline from the unavailable state,
|
|
// the correct handling above will kick in.
|
|
AvailabilityTransition::ToWarmingUpFromActive => {
|
|
tracing::info!("Node {} transition to unavailable from active", node_id);
|
|
}
|
|
AvailabilityTransition::ToWarmingUpFromOffline => {
|
|
tracing::info!("Node {} transition to unavailable from offline", node_id);
|
|
}
|
|
AvailabilityTransition::Unchanged => {
|
|
tracing::debug!("Node {} no availability change during config", node_id);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Handle availability transition for multiple nodes
|
|
///
|
|
/// Note that you should first call [`Self::node_state_configure`] for
|
|
/// all nodes being handled here for the handling to use fresh in-memory state.
|
|
async fn handle_node_availability_transitions(
|
|
&self,
|
|
transitions: Vec<(
|
|
NodeId,
|
|
TracingExclusiveGuard<NodeOperations>,
|
|
AvailabilityTransition,
|
|
)>,
|
|
) -> Result<(), Vec<(NodeId, ApiError)>> {
|
|
let mut errors = Vec::default();
|
|
for (node_id, node_lock, transition) in transitions {
|
|
let res = self
|
|
.handle_node_availability_transition(node_id, transition, &node_lock)
|
|
.await;
|
|
if let Err(err) = res {
|
|
errors.push((node_id, err));
|
|
}
|
|
}
|
|
|
|
if errors.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
Err(errors)
|
|
}
|
|
}
|
|
|
|
pub(crate) async fn node_configure(
|
|
&self,
|
|
node_id: NodeId,
|
|
availability: Option<NodeAvailability>,
|
|
scheduling: Option<NodeSchedulingPolicy>,
|
|
) -> Result<(), ApiError> {
|
|
let node_lock =
|
|
trace_exclusive_lock(&self.node_op_locks, node_id, NodeOperations::Configure).await;
|
|
|
|
let transition = self
|
|
.node_state_configure(node_id, availability, scheduling, &node_lock)
|
|
.await?;
|
|
self.handle_node_availability_transition(node_id, transition, &node_lock)
|
|
.await
|
|
}
|
|
|
|
/// Wrapper around [`Self::node_configure`] which only allows changes while there is no ongoing
|
|
/// operation for HTTP api.
|
|
pub(crate) async fn external_node_configure(
|
|
&self,
|
|
node_id: NodeId,
|
|
availability: Option<NodeAvailability>,
|
|
scheduling: Option<NodeSchedulingPolicy>,
|
|
) -> Result<(), ApiError> {
|
|
{
|
|
let locked = self.inner.read().unwrap();
|
|
if let Some(op) = locked.ongoing_operation.as_ref().map(|op| op.operation) {
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!("Ongoing background operation forbids configuring: {op}").into(),
|
|
));
|
|
}
|
|
}
|
|
|
|
self.node_configure(node_id, availability, scheduling).await
|
|
}
|
|
|
|
pub(crate) async fn start_node_drain(
|
|
self: &Arc<Self>,
|
|
node_id: NodeId,
|
|
) -> Result<(), ApiError> {
|
|
let (ongoing_op, node_available, node_policy, schedulable_nodes_count) = {
|
|
let locked = self.inner.read().unwrap();
|
|
let nodes = &locked.nodes;
|
|
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
|
|
anyhow::anyhow!("Node {} not registered", node_id).into(),
|
|
))?;
|
|
let schedulable_nodes_count = nodes
|
|
.iter()
|
|
.filter(|(_, n)| matches!(n.may_schedule(), MaySchedule::Yes(_)))
|
|
.count();
|
|
|
|
(
|
|
locked
|
|
.ongoing_operation
|
|
.as_ref()
|
|
.map(|ongoing| ongoing.operation),
|
|
node.is_available(),
|
|
node.get_scheduling(),
|
|
schedulable_nodes_count,
|
|
)
|
|
};
|
|
|
|
if let Some(ongoing) = ongoing_op {
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!("Background operation already ongoing for node: {ongoing}").into(),
|
|
));
|
|
}
|
|
|
|
if !node_available {
|
|
return Err(ApiError::ResourceUnavailable(
|
|
format!("Node {node_id} is currently unavailable").into(),
|
|
));
|
|
}
|
|
|
|
if schedulable_nodes_count == 0 {
|
|
return Err(ApiError::PreconditionFailed(
|
|
"No other schedulable nodes to drain to".into(),
|
|
));
|
|
}
|
|
|
|
match node_policy {
|
|
NodeSchedulingPolicy::Active => {
|
|
self.node_configure(node_id, None, Some(NodeSchedulingPolicy::Draining))
|
|
.await?;
|
|
|
|
let cancel = self.cancel.child_token();
|
|
let gate_guard = self.gate.enter().map_err(|_| ApiError::ShuttingDown)?;
|
|
|
|
self.inner.write().unwrap().ongoing_operation = Some(OperationHandler {
|
|
operation: Operation::Drain(Drain { node_id }),
|
|
cancel: cancel.clone(),
|
|
});
|
|
|
|
let span = tracing::info_span!(parent: None, "drain_node", %node_id);
|
|
|
|
tokio::task::spawn({
|
|
let service = self.clone();
|
|
let cancel = cancel.clone();
|
|
async move {
|
|
let _gate_guard = gate_guard;
|
|
|
|
scopeguard::defer! {
|
|
let prev = service.inner.write().unwrap().ongoing_operation.take();
|
|
|
|
if let Some(Operation::Drain(removed_drain)) = prev.map(|h| h.operation) {
|
|
assert_eq!(removed_drain.node_id, node_id, "We always take the same operation");
|
|
} else {
|
|
panic!("We always remove the same operation")
|
|
}
|
|
}
|
|
|
|
tracing::info!("Drain background operation starting");
|
|
let res = service.drain_node(node_id, cancel).await;
|
|
match res {
|
|
Ok(()) => {
|
|
tracing::info!("Drain background operation completed successfully");
|
|
}
|
|
Err(OperationError::Cancelled) => {
|
|
tracing::info!("Drain background operation was cancelled");
|
|
}
|
|
Err(err) => {
|
|
tracing::error!("Drain background operation encountered: {err}")
|
|
}
|
|
}
|
|
}
|
|
}.instrument(span));
|
|
}
|
|
NodeSchedulingPolicy::Draining => {
|
|
return Err(ApiError::Conflict(format!(
|
|
"Node {node_id} has drain in progress"
|
|
)));
|
|
}
|
|
policy => {
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!("Node {node_id} cannot be drained due to {policy:?} policy").into(),
|
|
));
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn cancel_node_drain(&self, node_id: NodeId) -> Result<(), ApiError> {
|
|
let node_available = {
|
|
let locked = self.inner.read().unwrap();
|
|
let nodes = &locked.nodes;
|
|
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
|
|
anyhow::anyhow!("Node {} not registered", node_id).into(),
|
|
))?;
|
|
|
|
node.is_available()
|
|
};
|
|
|
|
if !node_available {
|
|
return Err(ApiError::ResourceUnavailable(
|
|
format!("Node {node_id} is currently unavailable").into(),
|
|
));
|
|
}
|
|
|
|
if let Some(op_handler) = self.inner.read().unwrap().ongoing_operation.as_ref() {
|
|
if let Operation::Drain(drain) = op_handler.operation {
|
|
if drain.node_id == node_id {
|
|
tracing::info!("Cancelling background drain operation for node {node_id}");
|
|
op_handler.cancel.cancel();
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
|
|
Err(ApiError::PreconditionFailed(
|
|
format!("Node {node_id} has no drain in progress").into(),
|
|
))
|
|
}
|
|
|
|
pub(crate) async fn start_node_fill(self: &Arc<Self>, node_id: NodeId) -> Result<(), ApiError> {
|
|
let (ongoing_op, node_available, node_policy, total_nodes_count) = {
|
|
let locked = self.inner.read().unwrap();
|
|
let nodes = &locked.nodes;
|
|
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
|
|
anyhow::anyhow!("Node {} not registered", node_id).into(),
|
|
))?;
|
|
|
|
(
|
|
locked
|
|
.ongoing_operation
|
|
.as_ref()
|
|
.map(|ongoing| ongoing.operation),
|
|
node.is_available(),
|
|
node.get_scheduling(),
|
|
nodes.len(),
|
|
)
|
|
};
|
|
|
|
if let Some(ongoing) = ongoing_op {
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!("Background operation already ongoing for node: {ongoing}").into(),
|
|
));
|
|
}
|
|
|
|
if !node_available {
|
|
return Err(ApiError::ResourceUnavailable(
|
|
format!("Node {node_id} is currently unavailable").into(),
|
|
));
|
|
}
|
|
|
|
if total_nodes_count <= 1 {
|
|
return Err(ApiError::PreconditionFailed(
|
|
"No other nodes to fill from".into(),
|
|
));
|
|
}
|
|
|
|
match node_policy {
|
|
NodeSchedulingPolicy::Active => {
|
|
self.node_configure(node_id, None, Some(NodeSchedulingPolicy::Filling))
|
|
.await?;
|
|
|
|
let cancel = self.cancel.child_token();
|
|
let gate_guard = self.gate.enter().map_err(|_| ApiError::ShuttingDown)?;
|
|
|
|
self.inner.write().unwrap().ongoing_operation = Some(OperationHandler {
|
|
operation: Operation::Fill(Fill { node_id }),
|
|
cancel: cancel.clone(),
|
|
});
|
|
|
|
let span = tracing::info_span!(parent: None, "fill_node", %node_id);
|
|
|
|
tokio::task::spawn({
|
|
let service = self.clone();
|
|
let cancel = cancel.clone();
|
|
async move {
|
|
let _gate_guard = gate_guard;
|
|
|
|
scopeguard::defer! {
|
|
let prev = service.inner.write().unwrap().ongoing_operation.take();
|
|
|
|
if let Some(Operation::Fill(removed_fill)) = prev.map(|h| h.operation) {
|
|
assert_eq!(removed_fill.node_id, node_id, "We always take the same operation");
|
|
} else {
|
|
panic!("We always remove the same operation")
|
|
}
|
|
}
|
|
|
|
tracing::info!("Fill background operation starting");
|
|
let res = service.fill_node(node_id, cancel).await;
|
|
match res {
|
|
Ok(()) => {
|
|
tracing::info!("Fill background operation completed successfully");
|
|
}
|
|
Err(OperationError::Cancelled) => {
|
|
tracing::info!("Fill background operation was cancelled");
|
|
}
|
|
Err(err) => {
|
|
tracing::error!("Fill background operation encountered: {err}")
|
|
}
|
|
}
|
|
}
|
|
}.instrument(span));
|
|
}
|
|
NodeSchedulingPolicy::Filling => {
|
|
return Err(ApiError::Conflict(format!(
|
|
"Node {node_id} has fill in progress"
|
|
)));
|
|
}
|
|
policy => {
|
|
return Err(ApiError::PreconditionFailed(
|
|
format!("Node {node_id} cannot be filled due to {policy:?} policy").into(),
|
|
));
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) async fn cancel_node_fill(&self, node_id: NodeId) -> Result<(), ApiError> {
|
|
let node_available = {
|
|
let locked = self.inner.read().unwrap();
|
|
let nodes = &locked.nodes;
|
|
let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
|
|
anyhow::anyhow!("Node {} not registered", node_id).into(),
|
|
))?;
|
|
|
|
node.is_available()
|
|
};
|
|
|
|
if !node_available {
|
|
return Err(ApiError::ResourceUnavailable(
|
|
format!("Node {node_id} is currently unavailable").into(),
|
|
));
|
|
}
|
|
|
|
if let Some(op_handler) = self.inner.read().unwrap().ongoing_operation.as_ref() {
|
|
if let Operation::Fill(fill) = op_handler.operation {
|
|
if fill.node_id == node_id {
|
|
tracing::info!("Cancelling background drain operation for node {node_id}");
|
|
op_handler.cancel.cancel();
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
|
|
Err(ApiError::PreconditionFailed(
|
|
format!("Node {node_id} has no fill in progress").into(),
|
|
))
|
|
}
|
|
|
|
/// Like [`Self::maybe_configured_reconcile_shard`], but uses the default reconciler
|
|
/// configuration
|
|
fn maybe_reconcile_shard(
|
|
&self,
|
|
shard: &mut TenantShard,
|
|
nodes: &Arc<HashMap<NodeId, Node>>,
|
|
priority: ReconcilerPriority,
|
|
) -> Option<ReconcilerWaiter> {
|
|
self.maybe_configured_reconcile_shard(shard, nodes, ReconcilerConfig::new(priority))
|
|
}
|
|
|
|
/// Before constructing a Reconciler, acquire semaphore units from the appropriate concurrency limit (depends on priority)
|
|
fn get_reconciler_units(
|
|
&self,
|
|
priority: ReconcilerPriority,
|
|
) -> Result<ReconcileUnits, TryAcquireError> {
|
|
let units = match priority {
|
|
ReconcilerPriority::Normal => self.reconciler_concurrency.clone().try_acquire_owned(),
|
|
ReconcilerPriority::High => {
|
|
match self
|
|
.priority_reconciler_concurrency
|
|
.clone()
|
|
.try_acquire_owned()
|
|
{
|
|
Ok(u) => Ok(u),
|
|
Err(TryAcquireError::NoPermits) => {
|
|
// If the high priority semaphore is exhausted, then high priority tasks may steal units from
|
|
// the normal priority semaphore.
|
|
self.reconciler_concurrency.clone().try_acquire_owned()
|
|
}
|
|
Err(e) => Err(e),
|
|
}
|
|
}
|
|
};
|
|
|
|
units.map(ReconcileUnits::new)
|
|
}
|
|
|
|
/// Wrap [`TenantShard`] reconciliation methods with acquisition of [`Gate`] and [`ReconcileUnits`],
|
|
fn maybe_configured_reconcile_shard(
|
|
&self,
|
|
shard: &mut TenantShard,
|
|
nodes: &Arc<HashMap<NodeId, Node>>,
|
|
reconciler_config: ReconcilerConfig,
|
|
) -> Option<ReconcilerWaiter> {
|
|
let reconcile_needed = shard.get_reconcile_needed(nodes);
|
|
|
|
let reconcile_reason = match reconcile_needed {
|
|
ReconcileNeeded::No => return None,
|
|
ReconcileNeeded::WaitExisting(waiter) => return Some(waiter),
|
|
ReconcileNeeded::Yes(reason) => {
|
|
// Fall through to try and acquire units for spawning reconciler
|
|
reason
|
|
}
|
|
};
|
|
|
|
let units = match self.get_reconciler_units(reconciler_config.priority) {
|
|
Ok(u) => u,
|
|
Err(_) => {
|
|
tracing::info!(tenant_id=%shard.tenant_shard_id.tenant_id, shard_id=%shard.tenant_shard_id.shard_slug(),
|
|
"Concurrency limited: enqueued for reconcile later");
|
|
if !shard.delayed_reconcile {
|
|
match self.delayed_reconcile_tx.try_send(shard.tenant_shard_id) {
|
|
Err(TrySendError::Closed(_)) => {
|
|
// Weird mid-shutdown case?
|
|
}
|
|
Err(TrySendError::Full(_)) => {
|
|
// It is safe to skip sending our ID in the channel: we will eventually get retried by the background reconcile task.
|
|
tracing::warn!(
|
|
"Many shards are waiting to reconcile: delayed_reconcile queue is full"
|
|
);
|
|
}
|
|
Ok(()) => {
|
|
shard.delayed_reconcile = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We won't spawn a reconciler, but we will construct a waiter that waits for the shard's sequence
|
|
// number to advance. When this function is eventually called again and succeeds in getting units,
|
|
// it will spawn a reconciler that makes this waiter complete.
|
|
return Some(shard.future_reconcile_waiter());
|
|
}
|
|
};
|
|
|
|
let Ok(gate_guard) = self.reconcilers_gate.enter() else {
|
|
// Gate closed: we're shutting down, drop out.
|
|
return None;
|
|
};
|
|
|
|
shard.spawn_reconciler(
|
|
reconcile_reason,
|
|
&self.result_tx,
|
|
nodes,
|
|
&self.compute_hook,
|
|
reconciler_config,
|
|
&self.config,
|
|
&self.persistence,
|
|
units,
|
|
gate_guard,
|
|
&self.reconcilers_cancel,
|
|
self.http_client.clone(),
|
|
)
|
|
}
|
|
|
|
/// Check all tenants for pending reconciliation work, and reconcile those in need.
|
|
/// Additionally, reschedule tenants that require it.
|
|
///
|
|
/// Returns how many reconciliation tasks were started, or `1` if no reconciles were
|
|
/// spawned but some _would_ have been spawned if `reconciler_concurrency` units where
|
|
/// available. A return value of 0 indicates that everything is fully reconciled already.
|
|
fn reconcile_all(&self) -> usize {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
let pageservers = nodes.clone();
|
|
|
|
// This function is an efficient place to update lazy statistics, since we are walking
|
|
// all tenants.
|
|
let mut pending_reconciles = 0;
|
|
let mut az_violations = 0;
|
|
|
|
// If we find any tenants to drop from memory, stash them to offload after
|
|
// we're done traversing the map of tenants.
|
|
let mut drop_detached_tenants = Vec::new();
|
|
|
|
let mut reconciles_spawned = 0;
|
|
for shard in tenants.values_mut() {
|
|
// Accumulate scheduling statistics
|
|
if let (Some(attached), Some(preferred)) =
|
|
(shard.intent.get_attached(), shard.preferred_az())
|
|
{
|
|
let node_az = nodes
|
|
.get(attached)
|
|
.expect("Nodes exist if referenced")
|
|
.get_availability_zone_id();
|
|
if node_az != preferred {
|
|
az_violations += 1;
|
|
}
|
|
}
|
|
|
|
// Skip checking if this shard is already enqueued for reconciliation
|
|
if shard.delayed_reconcile && self.reconciler_concurrency.available_permits() == 0 {
|
|
// If there is something delayed, then return a nonzero count so that
|
|
// callers like reconcile_all_now do not incorrectly get the impression
|
|
// that the system is in a quiescent state.
|
|
reconciles_spawned = std::cmp::max(1, reconciles_spawned);
|
|
pending_reconciles += 1;
|
|
continue;
|
|
}
|
|
|
|
// Eventual consistency: if an earlier reconcile job failed, and the shard is still
|
|
// dirty, spawn another one
|
|
if self
|
|
.maybe_reconcile_shard(shard, &pageservers, ReconcilerPriority::Normal)
|
|
.is_some()
|
|
{
|
|
reconciles_spawned += 1;
|
|
} else if shard.delayed_reconcile {
|
|
// Shard wanted to reconcile but for some reason couldn't.
|
|
pending_reconciles += 1;
|
|
}
|
|
|
|
// If this tenant is detached, try dropping it from memory. This is usually done
|
|
// proactively in [`Self::process_results`], but we do it here to handle the edge
|
|
// case where a reconcile completes while someone else is holding an op lock for the tenant.
|
|
if shard.tenant_shard_id.shard_number == ShardNumber(0)
|
|
&& shard.policy == PlacementPolicy::Detached
|
|
{
|
|
if let Some(guard) = self.tenant_op_locks.try_exclusive(
|
|
shard.tenant_shard_id.tenant_id,
|
|
TenantOperations::DropDetached,
|
|
) {
|
|
drop_detached_tenants.push((shard.tenant_shard_id.tenant_id, guard));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some metrics are calculated from SchedulerNode state, update these periodically
|
|
scheduler.update_metrics();
|
|
|
|
// Process any deferred tenant drops
|
|
for (tenant_id, guard) in drop_detached_tenants {
|
|
self.maybe_drop_tenant(tenant_id, &mut locked, &guard);
|
|
}
|
|
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_schedule_az_violation
|
|
.set(az_violations as i64);
|
|
|
|
metrics::METRICS_REGISTRY
|
|
.metrics_group
|
|
.storage_controller_pending_reconciles
|
|
.set(pending_reconciles as i64);
|
|
|
|
reconciles_spawned
|
|
}
|
|
|
|
/// `optimize` in this context means identifying shards which have valid scheduled locations, but
|
|
/// could be scheduled somewhere better:
|
|
/// - Cutting over to a secondary if the node with the secondary is more lightly loaded
|
|
/// * e.g. after a node fails then recovers, to move some work back to it
|
|
/// - Cutting over to a secondary if it improves the spread of shard attachments within a tenant
|
|
/// * e.g. after a shard split, the initial attached locations will all be on the node where
|
|
/// we did the split, but are probably better placed elsewhere.
|
|
/// - Creating new secondary locations if it improves the spreading of a sharded tenant
|
|
/// * e.g. after a shard split, some locations will be on the same node (where the split
|
|
/// happened), and will probably be better placed elsewhere.
|
|
///
|
|
/// To put it more briefly: whereas the scheduler respects soft constraints in a ScheduleContext at
|
|
/// the time of scheduling, this function looks for cases where a better-scoring location is available
|
|
/// according to those same soft constraints.
|
|
async fn optimize_all(&self) -> usize {
|
|
// Limit on how many shards' optmizations each call to this function will execute. Combined
|
|
// with the frequency of background calls, this acts as an implicit rate limit that runs a small
|
|
// trickle of optimizations in the background, rather than executing a large number in parallel
|
|
// when a change occurs.
|
|
const MAX_OPTIMIZATIONS_EXEC_PER_PASS: usize = 16;
|
|
|
|
// Synchronous prepare: scan shards for possible scheduling optimizations
|
|
let candidate_work = self.optimize_all_plan();
|
|
let candidate_work_len = candidate_work.len();
|
|
|
|
// Asynchronous validate: I/O to pageservers to make sure shards are in a good state to apply validation
|
|
let validated_work = self.optimize_all_validate(candidate_work).await;
|
|
|
|
let was_work_filtered = validated_work.len() != candidate_work_len;
|
|
|
|
// Synchronous apply: update the shards' intent states according to validated optimisations
|
|
let mut reconciles_spawned = 0;
|
|
let mut optimizations_applied = 0;
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
for (tenant_shard_id, optimization) in validated_work {
|
|
let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
|
|
// Shard was dropped between planning and execution;
|
|
continue;
|
|
};
|
|
tracing::info!(tenant_shard_id=%tenant_shard_id, "Applying optimization: {optimization:?}");
|
|
if shard.apply_optimization(scheduler, optimization) {
|
|
optimizations_applied += 1;
|
|
if self
|
|
.maybe_reconcile_shard(shard, nodes, ReconcilerPriority::Normal)
|
|
.is_some()
|
|
{
|
|
reconciles_spawned += 1;
|
|
}
|
|
}
|
|
|
|
if optimizations_applied >= MAX_OPTIMIZATIONS_EXEC_PER_PASS {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if was_work_filtered {
|
|
// If we filtered any work out during validation, ensure we return a nonzero value to indicate
|
|
// to callers that the system is not in a truly quiet state, it's going to do some work as soon
|
|
// as these validations start passing.
|
|
reconciles_spawned = std::cmp::max(reconciles_spawned, 1);
|
|
}
|
|
|
|
reconciles_spawned
|
|
}
|
|
|
|
fn optimize_all_plan(&self) -> Vec<(TenantShardId, ScheduleOptimization)> {
|
|
// How many candidate optimizations we will generate, before evaluating them for readniess: setting
|
|
// this higher than the execution limit gives us a chance to execute some work even if the first
|
|
// few optimizations we find are not ready.
|
|
const MAX_OPTIMIZATIONS_PLAN_PER_PASS: usize = 64;
|
|
|
|
let mut work = Vec::new();
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (_nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
// We are going to plan a bunch of optimisations before applying any of them, so the
|
|
// utilisation stats on nodes will be effectively stale for the >1st optimisation we
|
|
// generate. To avoid this causing unstable migrations/flapping, it's important that the
|
|
// code in TenantShard for finding optimisations uses [`NodeAttachmentSchedulingScore::disregard_utilization`]
|
|
// to ignore the utilisation component of the score.
|
|
|
|
for (_tenant_id, schedule_context, shards) in
|
|
TenantShardContextIterator::new(tenants, ScheduleMode::Speculative)
|
|
{
|
|
for shard in shards {
|
|
if work.len() >= MAX_OPTIMIZATIONS_PLAN_PER_PASS {
|
|
break;
|
|
}
|
|
match shard.get_scheduling_policy() {
|
|
ShardSchedulingPolicy::Active => {
|
|
// Ok to do optimization
|
|
}
|
|
ShardSchedulingPolicy::Essential if shard.get_preferred_node().is_some() => {
|
|
// Ok to do optimization: we are executing a graceful migration that
|
|
// has set preferred_node
|
|
}
|
|
ShardSchedulingPolicy::Essential
|
|
| ShardSchedulingPolicy::Pause
|
|
| ShardSchedulingPolicy::Stop => {
|
|
// Policy prevents optimizing this shard.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if !matches!(shard.splitting, SplitState::Idle)
|
|
|| matches!(shard.policy, PlacementPolicy::Detached)
|
|
|| shard.reconciler.is_some()
|
|
{
|
|
// Do not start any optimizations while another change to the tenant is ongoing: this
|
|
// is not necessary for correctness, but simplifies operations and implicitly throttles
|
|
// optimization changes to happen in a "trickle" over time.
|
|
continue;
|
|
}
|
|
|
|
// Fast path: we may quickly identify shards that don't have any possible optimisations
|
|
if !shard.maybe_optimizable(scheduler, &schedule_context) {
|
|
if cfg!(feature = "testing") {
|
|
// Check that maybe_optimizable doesn't disagree with the actual optimization functions.
|
|
// Only do this in testing builds because it is not a correctness-critical check, so we shouldn't
|
|
// panic in prod if we hit this, or spend cycles on it in prod.
|
|
assert!(
|
|
shard
|
|
.optimize_attachment(scheduler, &schedule_context)
|
|
.is_none()
|
|
);
|
|
assert!(
|
|
shard
|
|
.optimize_secondary(scheduler, &schedule_context)
|
|
.is_none()
|
|
);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if let Some(optimization) =
|
|
// If idle, maybe optimize attachments: if a shard has a secondary location that is preferable to
|
|
// its primary location based on soft constraints, cut it over.
|
|
shard.optimize_attachment(scheduler, &schedule_context)
|
|
{
|
|
tracing::info!(tenant_shard_id=%shard.tenant_shard_id, "Identified optimization for attachment: {optimization:?}");
|
|
work.push((shard.tenant_shard_id, optimization));
|
|
break;
|
|
} else if let Some(optimization) =
|
|
// If idle, maybe optimize secondary locations: if a shard has a secondary location that would be
|
|
// better placed on another node, based on ScheduleContext, then adjust it. This
|
|
// covers cases like after a shard split, where we might have too many shards
|
|
// in the same tenant with secondary locations on the node where they originally split.
|
|
shard.optimize_secondary(scheduler, &schedule_context)
|
|
{
|
|
tracing::info!(tenant_shard_id=%shard.tenant_shard_id, "Identified optimization for secondary: {optimization:?}");
|
|
work.push((shard.tenant_shard_id, optimization));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
work
|
|
}
|
|
|
|
async fn optimize_all_validate(
|
|
&self,
|
|
candidate_work: Vec<(TenantShardId, ScheduleOptimization)>,
|
|
) -> Vec<(TenantShardId, ScheduleOptimization)> {
|
|
// Take a clone of the node map to use outside the lock in async validation phase
|
|
let validation_nodes = { self.inner.read().unwrap().nodes.clone() };
|
|
|
|
let mut want_secondary_status = Vec::new();
|
|
|
|
// Validate our plans: this is an async phase where we may do I/O to pageservers to
|
|
// check that the state of locations is acceptable to run the optimization, such as
|
|
// checking that a secondary location is sufficiently warmed-up to cleanly cut over
|
|
// in a live migration.
|
|
let mut validated_work = Vec::new();
|
|
for (tenant_shard_id, optimization) in candidate_work {
|
|
match optimization.action {
|
|
ScheduleOptimizationAction::MigrateAttachment(MigrateAttachment {
|
|
old_attached_node_id: _,
|
|
new_attached_node_id,
|
|
}) => {
|
|
match validation_nodes.get(&new_attached_node_id) {
|
|
None => {
|
|
// Node was dropped between planning and validation
|
|
}
|
|
Some(node) => {
|
|
if !node.is_available() {
|
|
tracing::info!(
|
|
"Skipping optimization migration of {tenant_shard_id} to {new_attached_node_id} because node unavailable"
|
|
);
|
|
} else {
|
|
// Accumulate optimizations that require fetching secondary status, so that we can execute these
|
|
// remote API requests concurrently.
|
|
want_secondary_status.push((
|
|
tenant_shard_id,
|
|
node.clone(),
|
|
optimization,
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ScheduleOptimizationAction::ReplaceSecondary(_)
|
|
| ScheduleOptimizationAction::CreateSecondary(_)
|
|
| ScheduleOptimizationAction::RemoveSecondary(_) => {
|
|
// No extra checks needed to manage secondaries: this does not interrupt client access
|
|
validated_work.push((tenant_shard_id, optimization))
|
|
}
|
|
};
|
|
}
|
|
|
|
// Call into pageserver API to find out if the destination secondary location is warm enough for a reasonably smooth migration: we
|
|
// do this so that we avoid spawning a Reconciler that would have to wait minutes/hours for a destination to warm up: that reconciler
|
|
// would hold a precious reconcile semaphore unit the whole time it was waiting for the destination to warm up.
|
|
let results = self
|
|
.tenant_for_shards_api(
|
|
want_secondary_status
|
|
.iter()
|
|
.map(|i| (i.0, i.1.clone()))
|
|
.collect(),
|
|
|tenant_shard_id, client| async move {
|
|
client.tenant_secondary_status(tenant_shard_id).await
|
|
},
|
|
1,
|
|
1,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await;
|
|
|
|
for ((tenant_shard_id, node, optimization), secondary_status) in
|
|
want_secondary_status.into_iter().zip(results.into_iter())
|
|
{
|
|
match secondary_status {
|
|
Err(e) => {
|
|
tracing::info!(
|
|
"Skipping migration of {tenant_shard_id} to {node}, error querying secondary: {e}"
|
|
);
|
|
}
|
|
Ok(progress) => {
|
|
// We require secondary locations to have less than 10GiB of downloads pending before we will use
|
|
// them in an optimization
|
|
const DOWNLOAD_FRESHNESS_THRESHOLD: u64 = 10 * 1024 * 1024 * 1024;
|
|
|
|
if progress.heatmap_mtime.is_none()
|
|
|| progress.bytes_total < DOWNLOAD_FRESHNESS_THRESHOLD
|
|
&& progress.bytes_downloaded != progress.bytes_total
|
|
|| progress.bytes_total - progress.bytes_downloaded
|
|
> DOWNLOAD_FRESHNESS_THRESHOLD
|
|
{
|
|
tracing::info!(
|
|
"Skipping migration of {tenant_shard_id} to {node} because secondary isn't ready: {progress:?}"
|
|
);
|
|
|
|
#[cfg(feature = "testing")]
|
|
if progress.heatmap_mtime.is_none() {
|
|
// No heatmap might mean the attached location has never uploaded one, or that
|
|
// the secondary download hasn't happened yet. This is relatively unusual in the field,
|
|
// but fairly common in tests.
|
|
self.kick_secondary_download(tenant_shard_id).await;
|
|
}
|
|
} else {
|
|
// Location looks ready: proceed
|
|
tracing::info!(
|
|
"{tenant_shard_id} secondary on {node} is warm enough for migration: {progress:?}"
|
|
);
|
|
validated_work.push((tenant_shard_id, optimization))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
validated_work
|
|
}
|
|
|
|
/// Some aspects of scheduling optimisation wait for secondary locations to be warm. This
|
|
/// happens on multi-minute timescales in the field, which is fine because optimisation is meant
|
|
/// to be a lazy background thing. However, when testing, it is not practical to wait around, so
|
|
/// we have this helper to move things along faster.
|
|
#[cfg(feature = "testing")]
|
|
async fn kick_secondary_download(&self, tenant_shard_id: TenantShardId) {
|
|
if !self.config.kick_secondary_downloads {
|
|
// No-op if kick_secondary_downloads functionaliuty is not configured
|
|
return;
|
|
}
|
|
|
|
let (attached_node, secondaries) = {
|
|
let locked = self.inner.read().unwrap();
|
|
let Some(shard) = locked.tenants.get(&tenant_shard_id) else {
|
|
tracing::warn!(
|
|
"Skipping kick of secondary download for {tenant_shard_id}: not found"
|
|
);
|
|
return;
|
|
};
|
|
|
|
let Some(attached) = shard.intent.get_attached() else {
|
|
tracing::warn!(
|
|
"Skipping kick of secondary download for {tenant_shard_id}: no attached"
|
|
);
|
|
return;
|
|
};
|
|
|
|
let secondaries = shard
|
|
.intent
|
|
.get_secondary()
|
|
.iter()
|
|
.map(|n| locked.nodes.get(n).unwrap().clone())
|
|
.collect::<Vec<_>>();
|
|
|
|
(locked.nodes.get(attached).unwrap().clone(), secondaries)
|
|
};
|
|
|
|
// Make remote API calls to upload + download heatmaps: we ignore errors because this is just
|
|
// a 'kick' to let scheduling optimisation run more promptly.
|
|
match attached_node
|
|
.with_client_retries(
|
|
|client| async move { client.tenant_heatmap_upload(tenant_shard_id).await },
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
3,
|
|
10,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
{
|
|
Some(Err(e)) => {
|
|
tracing::info!(
|
|
"Failed to upload heatmap from {attached_node} for {tenant_shard_id}: {e}"
|
|
);
|
|
}
|
|
None => {
|
|
tracing::info!(
|
|
"Cancelled while uploading heatmap from {attached_node} for {tenant_shard_id}"
|
|
);
|
|
}
|
|
Some(Ok(_)) => {
|
|
tracing::info!(
|
|
"Successfully uploaded heatmap from {attached_node} for {tenant_shard_id}"
|
|
);
|
|
}
|
|
}
|
|
|
|
for secondary_node in secondaries {
|
|
match secondary_node
|
|
.with_client_retries(
|
|
|client| async move {
|
|
client
|
|
.tenant_secondary_download(
|
|
tenant_shard_id,
|
|
Some(Duration::from_secs(1)),
|
|
)
|
|
.await
|
|
},
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
3,
|
|
10,
|
|
SHORT_RECONCILE_TIMEOUT,
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
{
|
|
Some(Err(e)) => {
|
|
tracing::info!(
|
|
"Failed to download heatmap from {secondary_node} for {tenant_shard_id}: {e}"
|
|
);
|
|
}
|
|
None => {
|
|
tracing::info!(
|
|
"Cancelled while downloading heatmap from {secondary_node} for {tenant_shard_id}"
|
|
);
|
|
}
|
|
Some(Ok(progress)) => {
|
|
tracing::info!(
|
|
"Successfully downloaded heatmap from {secondary_node} for {tenant_shard_id}: {progress:?}"
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Asynchronously split a tenant that's eligible for automatic splits. At most one tenant will
|
|
/// be split per call.
|
|
///
|
|
/// Two sets of criteria are used: initial splits and size-based splits (in that order).
|
|
/// Initial splits are used to eagerly split unsharded tenants that may be performing initial
|
|
/// ingestion, since sharded tenants have significantly better ingestion throughput. Size-based
|
|
/// splits are used to bound the maximum shard size and balance out load.
|
|
///
|
|
/// Splits are based on max_logical_size, i.e. the logical size of the largest timeline in a
|
|
/// tenant. We use this instead of the total logical size because branches will duplicate
|
|
/// logical size without actually using more storage. We could also use visible physical size,
|
|
/// but this might overestimate tenants that frequently churn branches.
|
|
///
|
|
/// Initial splits (initial_split_threshold):
|
|
/// * Applies to tenants with 1 shard.
|
|
/// * The largest timeline (max_logical_size) exceeds initial_split_threshold.
|
|
/// * Splits into initial_split_shards.
|
|
///
|
|
/// Size-based splits (split_threshold):
|
|
/// * Applies to all tenants.
|
|
/// * The largest timeline (max_logical_size) divided by shard count exceeds split_threshold.
|
|
/// * Splits such that max_logical_size / shard_count <= split_threshold, in powers of 2.
|
|
///
|
|
/// Tenant shards are ordered by descending max_logical_size, first initial split candidates
|
|
/// then size-based split candidates. The first matching candidate is split.
|
|
///
|
|
/// The shard count is clamped to max_split_shards. If a candidate is eligible for both initial
|
|
/// and size-based splits, the largest shard count will be used.
|
|
///
|
|
/// An unsharded tenant will get DEFAULT_STRIPE_SIZE, regardless of what its ShardIdentity says.
|
|
/// A sharded tenant will retain its stripe size, as splits do not allow changing it.
|
|
///
|
|
/// TODO: consider spawning multiple splits in parallel: this is only called once every 20
|
|
/// seconds, so a large backlog can take a long time, and if a tenant fails to split it will
|
|
/// block all other splits.
|
|
async fn autosplit_tenants(self: &Arc<Self>) {
|
|
// If max_split_shards is set to 0 or 1, we can't split.
|
|
let max_split_shards = self.config.max_split_shards;
|
|
if max_split_shards <= 1 {
|
|
return;
|
|
}
|
|
|
|
// If initial_split_shards is set to 0 or 1, disable initial splits.
|
|
let mut initial_split_threshold = self.config.initial_split_threshold.unwrap_or(0);
|
|
let initial_split_shards = self.config.initial_split_shards;
|
|
if initial_split_shards <= 1 {
|
|
initial_split_threshold = 0;
|
|
}
|
|
|
|
// If no split_threshold nor initial_split_threshold, disable autosplits.
|
|
let split_threshold = self.config.split_threshold.unwrap_or(0);
|
|
if split_threshold == 0 && initial_split_threshold == 0 {
|
|
return;
|
|
}
|
|
|
|
// Fetch split candidates in prioritized order.
|
|
//
|
|
// If initial splits are enabled, fetch eligible tenants first. We prioritize initial splits
|
|
// over size-based splits, since these are often performing initial ingestion and rely on
|
|
// splits to improve ingest throughput.
|
|
let mut candidates = Vec::new();
|
|
|
|
if initial_split_threshold > 0 {
|
|
// Initial splits: fetch tenants with 1 shard where the logical size of the largest
|
|
// timeline exceeds the initial split threshold.
|
|
let initial_candidates = self
|
|
.get_top_tenant_shards(&TopTenantShardsRequest {
|
|
order_by: TenantSorting::MaxLogicalSize,
|
|
limit: 10,
|
|
where_shards_lt: Some(ShardCount(2)),
|
|
where_gt: Some(initial_split_threshold),
|
|
})
|
|
.await;
|
|
candidates.extend(initial_candidates);
|
|
}
|
|
|
|
if split_threshold > 0 {
|
|
// Size-based splits: fetch tenants where the logical size of the largest timeline
|
|
// divided by shard count exceeds the split threshold.
|
|
//
|
|
// max_logical_size is only tracked on shard 0, and contains the total logical size
|
|
// across all shards. We have to order and filter by MaxLogicalSizePerShard, i.e.
|
|
// max_logical_size / shard_count, such that we only receive tenants that are actually
|
|
// eligible for splits. But we still use max_logical_size for later split calculations.
|
|
let size_candidates = self
|
|
.get_top_tenant_shards(&TopTenantShardsRequest {
|
|
order_by: TenantSorting::MaxLogicalSizePerShard,
|
|
limit: 10,
|
|
where_shards_lt: Some(ShardCount(max_split_shards)),
|
|
where_gt: Some(split_threshold),
|
|
})
|
|
.await;
|
|
#[cfg(feature = "testing")]
|
|
assert!(
|
|
size_candidates.iter().all(|c| c.id.is_shard_zero()),
|
|
"MaxLogicalSizePerShard returned non-zero shard: {size_candidates:?}",
|
|
);
|
|
candidates.extend(size_candidates);
|
|
}
|
|
|
|
// Filter out tenants in a prohibiting scheduling modes
|
|
// and tenants with an ongoing import.
|
|
//
|
|
// Note that the import check here is oportunistic. An import might start
|
|
// after the check before we actually update [`TenantShard::splitting`].
|
|
// [`Self::tenant_shard_split`] checks the database whilst holding the exclusive
|
|
// tenant lock. Imports might take a long time, so the check here allows us
|
|
// to split something else instead of trying the same shard over and over.
|
|
{
|
|
let state = self.inner.read().unwrap();
|
|
candidates.retain(|i| {
|
|
let shard = state.tenants.get(&i.id);
|
|
match shard {
|
|
Some(t) => {
|
|
t.get_scheduling_policy() == ShardSchedulingPolicy::Active
|
|
&& t.importing == TimelineImportState::Idle
|
|
}
|
|
None => false,
|
|
}
|
|
});
|
|
}
|
|
|
|
// Pick the first candidate to split. This will generally always be the first one in
|
|
// candidates, but we defensively skip candidates that end up not actually splitting.
|
|
let Some((candidate, new_shard_count)) = candidates
|
|
.into_iter()
|
|
.filter_map(|candidate| {
|
|
let new_shard_count = Self::compute_split_shards(ShardSplitInputs {
|
|
shard_count: candidate.id.shard_count,
|
|
max_logical_size: candidate.max_logical_size,
|
|
split_threshold,
|
|
max_split_shards,
|
|
initial_split_threshold,
|
|
initial_split_shards,
|
|
});
|
|
new_shard_count.map(|shards| (candidate, shards.count()))
|
|
})
|
|
.next()
|
|
else {
|
|
debug!("no split-eligible tenants found");
|
|
return;
|
|
};
|
|
|
|
// Retain the stripe size of sharded tenants, as splits don't allow changing it. Otherwise,
|
|
// use DEFAULT_STRIPE_SIZE for unsharded tenants -- their stripe size doesn't really matter,
|
|
// and if we change the default stripe size we want to use the new default rather than an
|
|
// old, persisted stripe size.
|
|
let new_stripe_size = match candidate.id.shard_count.count() {
|
|
0 => panic!("invalid shard count 0"),
|
|
1 => Some(DEFAULT_STRIPE_SIZE),
|
|
2.. => None,
|
|
};
|
|
|
|
// We spawn a task to run this, so it's exactly like some external API client requesting
|
|
// it. We don't want to block the background reconcile loop on this.
|
|
let old_shard_count = candidate.id.shard_count.count();
|
|
info!(
|
|
"auto-splitting tenant {old_shard_count} → {new_shard_count} shards, \
|
|
current size {candidate:?} (split_threshold={split_threshold} \
|
|
initial_split_threshold={initial_split_threshold})"
|
|
);
|
|
|
|
let this = self.clone();
|
|
tokio::spawn(
|
|
async move {
|
|
match this
|
|
.tenant_shard_split(
|
|
candidate.id.tenant_id,
|
|
TenantShardSplitRequest {
|
|
new_shard_count,
|
|
new_stripe_size,
|
|
},
|
|
)
|
|
.await
|
|
{
|
|
Ok(_) => {
|
|
info!("successful auto-split {old_shard_count} → {new_shard_count} shards")
|
|
}
|
|
Err(err) => error!("auto-split failed: {err}"),
|
|
}
|
|
}
|
|
.instrument(info_span!("auto_split", tenant_id=%candidate.id.tenant_id)),
|
|
);
|
|
}
|
|
|
|
/// Returns the number of shards to split a tenant into, or None if the tenant shouldn't split,
|
|
/// based on the total logical size of the largest timeline summed across all shards. Uses the
|
|
/// larger of size-based and initial splits, clamped to max_split_shards.
|
|
///
|
|
/// NB: the thresholds are exclusive, since TopTenantShardsRequest uses where_gt.
|
|
fn compute_split_shards(inputs: ShardSplitInputs) -> Option<ShardCount> {
|
|
let ShardSplitInputs {
|
|
shard_count,
|
|
max_logical_size,
|
|
split_threshold,
|
|
max_split_shards,
|
|
initial_split_threshold,
|
|
initial_split_shards,
|
|
} = inputs;
|
|
|
|
let mut new_shard_count: u8 = shard_count.count();
|
|
|
|
// Size-based splits. Ensures max_logical_size / new_shard_count <= split_threshold, using
|
|
// power-of-two shard counts.
|
|
//
|
|
// If the current shard count is not a power of two, and does not exceed split_threshold,
|
|
// then we leave it alone rather than forcing a power-of-two split.
|
|
if split_threshold > 0
|
|
&& max_logical_size.div_ceil(split_threshold) > shard_count.count() as u64
|
|
{
|
|
new_shard_count = max_logical_size
|
|
.div_ceil(split_threshold)
|
|
.checked_next_power_of_two()
|
|
.unwrap_or(u8::MAX as u64)
|
|
.try_into()
|
|
.unwrap_or(u8::MAX);
|
|
}
|
|
|
|
// Initial splits. Use the larger of size-based and initial split shard counts. This only
|
|
// applies to unsharded tenants, i.e. changes to initial_split_threshold or
|
|
// initial_split_shards are not retroactive for sharded tenants.
|
|
if initial_split_threshold > 0
|
|
&& shard_count.count() <= 1
|
|
&& max_logical_size > initial_split_threshold
|
|
{
|
|
new_shard_count = new_shard_count.max(initial_split_shards);
|
|
}
|
|
|
|
// Clamp to max shards.
|
|
new_shard_count = new_shard_count.min(max_split_shards);
|
|
|
|
// Don't split if we're not increasing the shard count.
|
|
if new_shard_count <= shard_count.count() {
|
|
return None;
|
|
}
|
|
|
|
Some(ShardCount(new_shard_count))
|
|
}
|
|
|
|
/// Fetches the top tenant shards from every available node, in descending order of
|
|
/// max logical size. Offline nodes are skipped, and any errors from available nodes
|
|
/// will be logged and ignored.
|
|
async fn get_top_tenant_shards(
|
|
&self,
|
|
request: &TopTenantShardsRequest,
|
|
) -> Vec<TopTenantShardItem> {
|
|
let nodes = self
|
|
.inner
|
|
.read()
|
|
.unwrap()
|
|
.nodes
|
|
.values()
|
|
.filter(|node| node.is_available())
|
|
.cloned()
|
|
.collect_vec();
|
|
|
|
let mut futures = FuturesUnordered::new();
|
|
for node in nodes {
|
|
futures.push(async move {
|
|
node.with_client_retries(
|
|
|client| async move { client.top_tenant_shards(request.clone()).await },
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
3,
|
|
3,
|
|
Duration::from_secs(5),
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
});
|
|
}
|
|
|
|
let mut top = Vec::new();
|
|
while let Some(output) = futures.next().await {
|
|
match output {
|
|
Some(Ok(response)) => top.extend(response.shards),
|
|
Some(Err(mgmt_api::Error::Cancelled)) => {}
|
|
Some(Err(err)) => warn!("failed to fetch top tenants: {err}"),
|
|
None => {} // node is shutting down
|
|
}
|
|
}
|
|
|
|
top.sort_by_key(|i| i.max_logical_size);
|
|
top.reverse();
|
|
top
|
|
}
|
|
|
|
/// Useful for tests: run whatever work a background [`Self::reconcile_all`] would have done, but
|
|
/// also wait for any generated Reconcilers to complete. Calling this until it returns zero should
|
|
/// put the system into a quiescent state where future background reconciliations won't do anything.
|
|
pub(crate) async fn reconcile_all_now(&self) -> Result<usize, ReconcileWaitError> {
|
|
let reconciles_spawned = self.reconcile_all();
|
|
let reconciles_spawned = if reconciles_spawned == 0 {
|
|
// Only optimize when we are otherwise idle
|
|
self.optimize_all().await
|
|
} else {
|
|
reconciles_spawned
|
|
};
|
|
|
|
let waiters = {
|
|
let mut waiters = Vec::new();
|
|
let locked = self.inner.read().unwrap();
|
|
for (_tenant_shard_id, shard) in locked.tenants.iter() {
|
|
if let Some(waiter) = shard.get_waiter() {
|
|
waiters.push(waiter);
|
|
}
|
|
}
|
|
waiters
|
|
};
|
|
|
|
let waiter_count = waiters.len();
|
|
match self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
|
|
Ok(()) => {}
|
|
Err(e) => {
|
|
if let ReconcileWaitError::Failed(_, reconcile_error) = &e {
|
|
match **reconcile_error {
|
|
ReconcileError::Cancel
|
|
| ReconcileError::Remote(mgmt_api::Error::Cancelled) => {
|
|
// Ignore reconciler cancel errors: this reconciler might have shut down
|
|
// because some other change superceded it. We will return a nonzero number,
|
|
// so the caller knows they might have to call again to quiesce the system.
|
|
}
|
|
_ => {
|
|
return Err(e);
|
|
}
|
|
}
|
|
} else {
|
|
return Err(e);
|
|
}
|
|
}
|
|
};
|
|
|
|
tracing::info!(
|
|
"{} reconciles in reconcile_all, {} waiters",
|
|
reconciles_spawned,
|
|
waiter_count
|
|
);
|
|
|
|
Ok(std::cmp::max(waiter_count, reconciles_spawned))
|
|
}
|
|
|
|
async fn stop_reconciliations(&self, reason: StopReconciliationsReason) {
|
|
// Cancel all on-going reconciles and wait for them to exit the gate.
|
|
tracing::info!("{reason}: cancelling and waiting for in-flight reconciles");
|
|
self.reconcilers_cancel.cancel();
|
|
self.reconcilers_gate.close().await;
|
|
|
|
// Signal the background loop in [`Service::process_results`] to exit once
|
|
// it has proccessed the results from all the reconciles we cancelled earlier.
|
|
tracing::info!("{reason}: processing results from previously in-flight reconciles");
|
|
self.result_tx.send(ReconcileResultRequest::Stop).ok();
|
|
self.result_tx.closed().await;
|
|
}
|
|
|
|
pub async fn shutdown(&self) {
|
|
self.stop_reconciliations(StopReconciliationsReason::ShuttingDown)
|
|
.await;
|
|
|
|
// Background tasks hold gate guards: this notifies them of the cancellation and
|
|
// waits for them all to complete.
|
|
tracing::info!("Shutting down: cancelling and waiting for background tasks to exit");
|
|
self.cancel.cancel();
|
|
self.gate.close().await;
|
|
}
|
|
|
|
/// Spot check the download lag for a secondary location of a shard.
|
|
/// Should be used as a heuristic, since it's not always precise: the
|
|
/// secondary might have not downloaded the new heat map yet and, hence,
|
|
/// is not aware of the lag.
|
|
///
|
|
/// Returns:
|
|
/// * Ok(None) if the lag could not be determined from the status,
|
|
/// * Ok(Some(_)) if the lag could be determind
|
|
/// * Err on failures to query the pageserver.
|
|
async fn secondary_lag(
|
|
&self,
|
|
secondary: &NodeId,
|
|
tenant_shard_id: TenantShardId,
|
|
) -> Result<Option<u64>, mgmt_api::Error> {
|
|
let nodes = self.inner.read().unwrap().nodes.clone();
|
|
let node = nodes.get(secondary).ok_or(mgmt_api::Error::ApiError(
|
|
StatusCode::NOT_FOUND,
|
|
format!("Node with id {secondary} not found"),
|
|
))?;
|
|
|
|
match node
|
|
.with_client_retries(
|
|
|client| async move { client.tenant_secondary_status(tenant_shard_id).await },
|
|
&self.http_client,
|
|
&self.config.pageserver_jwt_token,
|
|
1,
|
|
3,
|
|
Duration::from_millis(250),
|
|
&self.cancel,
|
|
)
|
|
.await
|
|
{
|
|
Some(Ok(status)) => match status.heatmap_mtime {
|
|
Some(_) => Ok(Some(status.bytes_total - status.bytes_downloaded)),
|
|
None => Ok(None),
|
|
},
|
|
Some(Err(e)) => Err(e),
|
|
None => Err(mgmt_api::Error::Cancelled),
|
|
}
|
|
}
|
|
|
|
/// Drain a node by moving the shards attached to it as primaries.
|
|
/// This is a long running operation and it should run as a separate Tokio task.
|
|
pub(crate) async fn drain_node(
|
|
self: &Arc<Self>,
|
|
node_id: NodeId,
|
|
cancel: CancellationToken,
|
|
) -> Result<(), OperationError> {
|
|
const MAX_SECONDARY_LAG_BYTES_DEFAULT: u64 = 256 * 1024 * 1024;
|
|
let max_secondary_lag_bytes = self
|
|
.config
|
|
.max_secondary_lag_bytes
|
|
.unwrap_or(MAX_SECONDARY_LAG_BYTES_DEFAULT);
|
|
|
|
// By default, live migrations are generous about the wait time for getting
|
|
// the secondary location up to speed. When draining, give up earlier in order
|
|
// to not stall the operation when a cold secondary is encountered.
|
|
const SECONDARY_WARMUP_TIMEOUT: Duration = Duration::from_secs(30);
|
|
const SECONDARY_DOWNLOAD_REQUEST_TIMEOUT: Duration = Duration::from_secs(5);
|
|
let reconciler_config = ReconcilerConfigBuilder::new(ReconcilerPriority::Normal)
|
|
.secondary_warmup_timeout(SECONDARY_WARMUP_TIMEOUT)
|
|
.secondary_download_request_timeout(SECONDARY_DOWNLOAD_REQUEST_TIMEOUT)
|
|
.build();
|
|
|
|
let mut waiters = Vec::new();
|
|
|
|
let mut tid_iter = TenantShardIterator::new({
|
|
let service = self.clone();
|
|
move |last_inspected_shard: Option<TenantShardId>| {
|
|
let locked = &service.inner.read().unwrap();
|
|
let tenants = &locked.tenants;
|
|
let entry = match last_inspected_shard {
|
|
Some(skip_past) => {
|
|
// Skip to the last seen tenant shard id
|
|
let mut cursor = tenants.iter().skip_while(|(tid, _)| **tid != skip_past);
|
|
|
|
// Skip past the last seen
|
|
cursor.nth(1)
|
|
}
|
|
None => tenants.first_key_value(),
|
|
};
|
|
|
|
entry.map(|(tid, _)| tid).copied()
|
|
}
|
|
});
|
|
|
|
while !tid_iter.finished() {
|
|
if cancel.is_cancelled() {
|
|
match self
|
|
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
|
|
.await
|
|
{
|
|
Ok(()) => return Err(OperationError::Cancelled),
|
|
Err(err) => {
|
|
return Err(OperationError::FinalizeError(
|
|
format!(
|
|
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
drain_utils::validate_node_state(&node_id, self.inner.read().unwrap().nodes.clone())?;
|
|
|
|
while waiters.len() < MAX_RECONCILES_PER_OPERATION {
|
|
let tid = match tid_iter.next() {
|
|
Some(tid) => tid,
|
|
None => {
|
|
break;
|
|
}
|
|
};
|
|
|
|
let tid_drain = TenantShardDrain {
|
|
drained_node: node_id,
|
|
tenant_shard_id: tid,
|
|
};
|
|
|
|
let dest_node_id = {
|
|
let locked = self.inner.read().unwrap();
|
|
|
|
match tid_drain
|
|
.tenant_shard_eligible_for_drain(&locked.tenants, &locked.scheduler)
|
|
{
|
|
Some(node_id) => node_id,
|
|
None => {
|
|
continue;
|
|
}
|
|
}
|
|
};
|
|
|
|
match self.secondary_lag(&dest_node_id, tid).await {
|
|
Ok(Some(lag)) if lag <= max_secondary_lag_bytes => {
|
|
// The secondary is reasonably up to date.
|
|
// Migrate to it
|
|
}
|
|
Ok(Some(lag)) => {
|
|
tracing::info!(
|
|
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
|
|
"Secondary on node {dest_node_id} is lagging by {lag}. Skipping reconcile."
|
|
);
|
|
continue;
|
|
}
|
|
Ok(None) => {
|
|
tracing::info!(
|
|
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
|
|
"Could not determine lag for secondary on node {dest_node_id}. Skipping reconcile."
|
|
);
|
|
continue;
|
|
}
|
|
Err(err) => {
|
|
tracing::warn!(
|
|
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
|
|
"Failed to get secondary lag from node {dest_node_id}. Skipping reconcile: {err}"
|
|
);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
let rescheduled = tid_drain.reschedule_to_secondary(
|
|
dest_node_id,
|
|
tenants,
|
|
scheduler,
|
|
nodes,
|
|
)?;
|
|
|
|
if let Some(tenant_shard) = rescheduled {
|
|
let waiter = self.maybe_configured_reconcile_shard(
|
|
tenant_shard,
|
|
nodes,
|
|
reconciler_config,
|
|
);
|
|
if let Some(some) = waiter {
|
|
waiters.push(some);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
waiters = self
|
|
.await_waiters_remainder(waiters, WAITER_FILL_DRAIN_POLL_TIMEOUT)
|
|
.await;
|
|
|
|
failpoint_support::sleep_millis_async!("sleepy-drain-loop", &cancel);
|
|
}
|
|
|
|
while !waiters.is_empty() {
|
|
if cancel.is_cancelled() {
|
|
match self
|
|
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
|
|
.await
|
|
{
|
|
Ok(()) => return Err(OperationError::Cancelled),
|
|
Err(err) => {
|
|
return Err(OperationError::FinalizeError(
|
|
format!(
|
|
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
tracing::info!("Awaiting {} pending drain reconciliations", waiters.len());
|
|
|
|
waiters = self
|
|
.await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
|
|
.await;
|
|
}
|
|
|
|
// At this point we have done the best we could to drain shards from this node.
|
|
// Set the node scheduling policy to `[NodeSchedulingPolicy::PauseForRestart]`
|
|
// to complete the drain.
|
|
if let Err(err) = self
|
|
.node_configure(node_id, None, Some(NodeSchedulingPolicy::PauseForRestart))
|
|
.await
|
|
{
|
|
// This is not fatal. Anything that is polling the node scheduling policy to detect
|
|
// the end of the drain operations will hang, but all such places should enforce an
|
|
// overall timeout. The scheduling policy will be updated upon node re-attach and/or
|
|
// by the counterpart fill operation.
|
|
return Err(OperationError::FinalizeError(
|
|
format!(
|
|
"Failed to finalise drain of {node_id} by setting scheduling policy to PauseForRestart: {err}"
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Create a node fill plan (pick secondaries to promote), based on:
|
|
/// 1. Shards which have a secondary on this node, and this node is in their home AZ, and are currently attached to a node
|
|
/// outside their home AZ, should be migrated back here.
|
|
/// 2. If after step 1 we have not migrated enough shards for this node to have its fair share of
|
|
/// attached shards, we will promote more shards from the nodes with the most attached shards, unless
|
|
/// those shards have a home AZ that doesn't match the node we're filling.
|
|
fn fill_node_plan(&self, node_id: NodeId) -> Vec<TenantShardId> {
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, _scheduler) = locked.parts_mut();
|
|
|
|
let node_az = nodes
|
|
.get(&node_id)
|
|
.expect("Node must exist")
|
|
.get_availability_zone_id()
|
|
.clone();
|
|
|
|
// The tenant shard IDs that we plan to promote from secondary to attached on this node
|
|
let mut plan = Vec::new();
|
|
|
|
// Collect shards which do not have a preferred AZ & are elegible for moving in stage 2
|
|
let mut free_tids_by_node: HashMap<NodeId, Vec<TenantShardId>> = HashMap::new();
|
|
|
|
// Don't respect AZ preferences if there is only one AZ. This comes up in tests, but it could
|
|
// conceivably come up in real life if deploying a single-AZ region intentionally.
|
|
let respect_azs = nodes
|
|
.values()
|
|
.map(|n| n.get_availability_zone_id())
|
|
.unique()
|
|
.count()
|
|
> 1;
|
|
|
|
// Step 1: collect all shards that we are required to migrate back to this node because their AZ preference
|
|
// requires it.
|
|
for (tsid, tenant_shard) in tenants {
|
|
if !tenant_shard.intent.get_secondary().contains(&node_id) {
|
|
// Shard doesn't have a secondary on this node, ignore it.
|
|
continue;
|
|
}
|
|
|
|
// AZ check: when filling nodes after a restart, our intent is to move _back_ the
|
|
// shards which belong on this node, not to promote shards whose scheduling preference
|
|
// would be on their currently attached node. So will avoid promoting shards whose
|
|
// home AZ doesn't match the AZ of the node we're filling.
|
|
match tenant_shard.preferred_az() {
|
|
_ if !respect_azs => {
|
|
if let Some(primary) = tenant_shard.intent.get_attached() {
|
|
free_tids_by_node.entry(*primary).or_default().push(*tsid);
|
|
}
|
|
}
|
|
None => {
|
|
// Shard doesn't have an AZ preference: it is elegible to be moved, but we
|
|
// will only do so if our target shard count requires it.
|
|
if let Some(primary) = tenant_shard.intent.get_attached() {
|
|
free_tids_by_node.entry(*primary).or_default().push(*tsid);
|
|
}
|
|
}
|
|
Some(az) if az == &node_az => {
|
|
// This shard's home AZ is equal to the node we're filling: it should
|
|
// be moved back to this node as part of filling, unless its currently
|
|
// attached location is also in its home AZ.
|
|
if let Some(primary) = tenant_shard.intent.get_attached() {
|
|
if nodes
|
|
.get(primary)
|
|
.expect("referenced node must exist")
|
|
.get_availability_zone_id()
|
|
!= tenant_shard
|
|
.preferred_az()
|
|
.expect("tenant must have an AZ preference")
|
|
{
|
|
plan.push(*tsid)
|
|
}
|
|
} else {
|
|
plan.push(*tsid)
|
|
}
|
|
}
|
|
Some(_) => {
|
|
// This shard's home AZ is somewhere other than the node we're filling,
|
|
// it may not be moved back to this node as part of filling. Ignore it
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 2: also promote any AZ-agnostic shards as required to achieve the target number of attachments
|
|
let fill_requirement = locked.scheduler.compute_fill_requirement(node_id);
|
|
|
|
let expected_attached = locked.scheduler.expected_attached_shard_count();
|
|
let nodes_by_load = locked.scheduler.nodes_by_attached_shard_count();
|
|
|
|
let mut promoted_per_tenant: HashMap<TenantId, usize> = HashMap::new();
|
|
|
|
for (node_id, attached) in nodes_by_load {
|
|
let available = locked.nodes.get(&node_id).is_some_and(|n| n.is_available());
|
|
if !available {
|
|
continue;
|
|
}
|
|
|
|
if plan.len() >= fill_requirement
|
|
|| free_tids_by_node.is_empty()
|
|
|| attached <= expected_attached
|
|
{
|
|
break;
|
|
}
|
|
|
|
let can_take = attached - expected_attached;
|
|
let needed = fill_requirement - plan.len();
|
|
let mut take = std::cmp::min(can_take, needed);
|
|
|
|
let mut remove_node = false;
|
|
while take > 0 {
|
|
match free_tids_by_node.get_mut(&node_id) {
|
|
Some(tids) => match tids.pop() {
|
|
Some(tid) => {
|
|
let max_promote_for_tenant = std::cmp::max(
|
|
tid.shard_count.count() as usize / locked.nodes.len(),
|
|
1,
|
|
);
|
|
let promoted = promoted_per_tenant.entry(tid.tenant_id).or_default();
|
|
if *promoted < max_promote_for_tenant {
|
|
plan.push(tid);
|
|
*promoted += 1;
|
|
take -= 1;
|
|
}
|
|
}
|
|
None => {
|
|
remove_node = true;
|
|
break;
|
|
}
|
|
},
|
|
None => {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if remove_node {
|
|
free_tids_by_node.remove(&node_id);
|
|
}
|
|
}
|
|
|
|
plan
|
|
}
|
|
|
|
/// Fill a node by promoting its secondaries until the cluster is balanced
|
|
/// with regards to attached shard counts. Note that this operation only
|
|
/// makes sense as a counterpart to the drain implemented in [`Service::drain_node`].
|
|
/// This is a long running operation and it should run as a separate Tokio task.
|
|
pub(crate) async fn fill_node(
|
|
&self,
|
|
node_id: NodeId,
|
|
cancel: CancellationToken,
|
|
) -> Result<(), OperationError> {
|
|
const SECONDARY_WARMUP_TIMEOUT: Duration = Duration::from_secs(30);
|
|
const SECONDARY_DOWNLOAD_REQUEST_TIMEOUT: Duration = Duration::from_secs(5);
|
|
let reconciler_config = ReconcilerConfigBuilder::new(ReconcilerPriority::Normal)
|
|
.secondary_warmup_timeout(SECONDARY_WARMUP_TIMEOUT)
|
|
.secondary_download_request_timeout(SECONDARY_DOWNLOAD_REQUEST_TIMEOUT)
|
|
.build();
|
|
|
|
let mut tids_to_promote = self.fill_node_plan(node_id);
|
|
let mut waiters = Vec::new();
|
|
|
|
// Execute the plan we've composed above. Before aplying each move from the plan,
|
|
// we validate to ensure that it has not gone stale in the meantime.
|
|
while !tids_to_promote.is_empty() {
|
|
if cancel.is_cancelled() {
|
|
match self
|
|
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
|
|
.await
|
|
{
|
|
Ok(()) => return Err(OperationError::Cancelled),
|
|
Err(err) => {
|
|
return Err(OperationError::FinalizeError(
|
|
format!(
|
|
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
let mut locked = self.inner.write().unwrap();
|
|
let (nodes, tenants, scheduler) = locked.parts_mut();
|
|
|
|
let node = nodes.get(&node_id).ok_or(OperationError::NodeStateChanged(
|
|
format!("node {node_id} was removed").into(),
|
|
))?;
|
|
|
|
let current_policy = node.get_scheduling();
|
|
if !matches!(current_policy, NodeSchedulingPolicy::Filling) {
|
|
// TODO(vlad): maybe cancel pending reconciles before erroring out. need to think
|
|
// about it
|
|
return Err(OperationError::NodeStateChanged(
|
|
format!("node {node_id} changed state to {current_policy:?}").into(),
|
|
));
|
|
}
|
|
|
|
while waiters.len() < MAX_RECONCILES_PER_OPERATION {
|
|
if let Some(tid) = tids_to_promote.pop() {
|
|
if let Some(tenant_shard) = tenants.get_mut(&tid) {
|
|
// If the node being filled is not a secondary anymore,
|
|
// skip the promotion.
|
|
if !tenant_shard.intent.get_secondary().contains(&node_id) {
|
|
continue;
|
|
}
|
|
|
|
let previously_attached_to = *tenant_shard.intent.get_attached();
|
|
match tenant_shard.reschedule_to_secondary(Some(node_id), scheduler) {
|
|
Err(e) => {
|
|
tracing::warn!(
|
|
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
|
|
"Scheduling error when filling pageserver {} : {e}", node_id
|
|
);
|
|
}
|
|
Ok(()) => {
|
|
tracing::info!(
|
|
tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
|
|
"Rescheduled shard while filling node {}: {:?} -> {}",
|
|
node_id,
|
|
previously_attached_to,
|
|
node_id
|
|
);
|
|
|
|
if let Some(waiter) = self.maybe_configured_reconcile_shard(
|
|
tenant_shard,
|
|
nodes,
|
|
reconciler_config,
|
|
) {
|
|
waiters.push(waiter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
waiters = self
|
|
.await_waiters_remainder(waiters, WAITER_FILL_DRAIN_POLL_TIMEOUT)
|
|
.await;
|
|
}
|
|
|
|
while !waiters.is_empty() {
|
|
if cancel.is_cancelled() {
|
|
match self
|
|
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
|
|
.await
|
|
{
|
|
Ok(()) => return Err(OperationError::Cancelled),
|
|
Err(err) => {
|
|
return Err(OperationError::FinalizeError(
|
|
format!(
|
|
"Failed to finalise drain cancel of {node_id} by setting scheduling policy to Active: {err}"
|
|
)
|
|
.into(),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
tracing::info!("Awaiting {} pending fill reconciliations", waiters.len());
|
|
|
|
waiters = self
|
|
.await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
|
|
.await;
|
|
}
|
|
|
|
if let Err(err) = self
|
|
.node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
|
|
.await
|
|
{
|
|
// This isn't a huge issue since the filling process starts upon request. However, it
|
|
// will prevent the next drain from starting. The only case in which this can fail
|
|
// is database unavailability. Such a case will require manual intervention.
|
|
return Err(OperationError::FinalizeError(
|
|
format!("Failed to finalise fill of {node_id} by setting scheduling policy to Active: {err}")
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Updates scrubber metadata health check results.
|
|
pub(crate) async fn metadata_health_update(
|
|
&self,
|
|
update_req: MetadataHealthUpdateRequest,
|
|
) -> Result<(), ApiError> {
|
|
let now = chrono::offset::Utc::now();
|
|
let (healthy_records, unhealthy_records) = {
|
|
let locked = self.inner.read().unwrap();
|
|
let healthy_records = update_req
|
|
.healthy_tenant_shards
|
|
.into_iter()
|
|
// Retain only health records associated with tenant shards managed by storage controller.
|
|
.filter(|tenant_shard_id| locked.tenants.contains_key(tenant_shard_id))
|
|
.map(|tenant_shard_id| MetadataHealthPersistence::new(tenant_shard_id, true, now))
|
|
.collect();
|
|
let unhealthy_records = update_req
|
|
.unhealthy_tenant_shards
|
|
.into_iter()
|
|
.filter(|tenant_shard_id| locked.tenants.contains_key(tenant_shard_id))
|
|
.map(|tenant_shard_id| MetadataHealthPersistence::new(tenant_shard_id, false, now))
|
|
.collect();
|
|
|
|
(healthy_records, unhealthy_records)
|
|
};
|
|
|
|
self.persistence
|
|
.update_metadata_health_records(healthy_records, unhealthy_records, now)
|
|
.await?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Lists the tenant shards that has unhealthy metadata status.
|
|
pub(crate) async fn metadata_health_list_unhealthy(
|
|
&self,
|
|
) -> Result<Vec<TenantShardId>, ApiError> {
|
|
let result = self
|
|
.persistence
|
|
.list_unhealthy_metadata_health_records()
|
|
.await?
|
|
.iter()
|
|
.map(|p| p.get_tenant_shard_id().unwrap())
|
|
.collect();
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
/// Lists the tenant shards that have not been scrubbed for some duration.
|
|
pub(crate) async fn metadata_health_list_outdated(
|
|
&self,
|
|
not_scrubbed_for: Duration,
|
|
) -> Result<Vec<MetadataHealthRecord>, ApiError> {
|
|
let earlier = chrono::offset::Utc::now() - not_scrubbed_for;
|
|
let result = self
|
|
.persistence
|
|
.list_outdated_metadata_health_records(earlier)
|
|
.await?
|
|
.into_iter()
|
|
.map(|record| record.into())
|
|
.collect();
|
|
Ok(result)
|
|
}
|
|
|
|
pub(crate) fn get_leadership_status(&self) -> LeadershipStatus {
|
|
self.inner.read().unwrap().get_leadership_status()
|
|
}
|
|
|
|
/// Handler for step down requests
|
|
///
|
|
/// Step down runs in separate task since once it's called it should
|
|
/// be driven to completion. Subsequent requests will wait on the same
|
|
/// step down task.
|
|
pub(crate) async fn step_down(self: &Arc<Self>) -> GlobalObservedState {
|
|
let handle = self.step_down_barrier.get_or_init(|| {
|
|
let step_down_self = self.clone();
|
|
let (tx, rx) = tokio::sync::watch::channel::<Option<GlobalObservedState>>(None);
|
|
tokio::spawn(async move {
|
|
let state = step_down_self.step_down_task().await;
|
|
tx.send(Some(state))
|
|
.expect("Task Arc<Service> keeps receiver alive");
|
|
});
|
|
|
|
rx
|
|
});
|
|
|
|
handle
|
|
.clone()
|
|
.wait_for(|observed_state| observed_state.is_some())
|
|
.await
|
|
.expect("Task Arc<Service> keeps sender alive")
|
|
.deref()
|
|
.clone()
|
|
.expect("Checked above")
|
|
}
|
|
|
|
async fn step_down_task(&self) -> GlobalObservedState {
|
|
tracing::info!("Received step down request from peer");
|
|
failpoint_support::sleep_millis_async!("sleep-on-step-down-handling");
|
|
|
|
self.inner.write().unwrap().step_down();
|
|
|
|
let stop_reconciliations =
|
|
self.stop_reconciliations(StopReconciliationsReason::SteppingDown);
|
|
let mut stop_reconciliations = std::pin::pin!(stop_reconciliations);
|
|
|
|
let started_at = Instant::now();
|
|
|
|
// Wait for reconciliations to stop and warn if that's taking a long time
|
|
loop {
|
|
tokio::select! {
|
|
_ = &mut stop_reconciliations => {
|
|
tracing::info!("Reconciliations stopped, proceeding with step down");
|
|
break;
|
|
}
|
|
_ = tokio::time::sleep(Duration::from_secs(10)) => {
|
|
tracing::warn!(
|
|
elapsed_sec=%started_at.elapsed().as_secs(),
|
|
"Stopping reconciliations during step down is taking too long"
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut global_observed = GlobalObservedState::default();
|
|
let locked = self.inner.read().unwrap();
|
|
for (tid, tenant_shard) in locked.tenants.iter() {
|
|
global_observed
|
|
.0
|
|
.insert(*tid, tenant_shard.observed.clone());
|
|
}
|
|
|
|
global_observed
|
|
}
|
|
|
|
pub(crate) async fn update_shards_preferred_azs(
|
|
&self,
|
|
req: ShardsPreferredAzsRequest,
|
|
) -> Result<ShardsPreferredAzsResponse, ApiError> {
|
|
let preferred_azs = req.preferred_az_ids.into_iter().collect::<Vec<_>>();
|
|
let updated = self
|
|
.persistence
|
|
.set_tenant_shard_preferred_azs(preferred_azs)
|
|
.await
|
|
.map_err(|err| {
|
|
ApiError::InternalServerError(anyhow::anyhow!(
|
|
"Failed to persist preferred AZs: {err}"
|
|
))
|
|
})?;
|
|
|
|
let mut updated_in_mem_and_db = Vec::default();
|
|
|
|
let mut locked = self.inner.write().unwrap();
|
|
let state = locked.deref_mut();
|
|
for (tid, az_id) in updated {
|
|
let shard = state.tenants.get_mut(&tid);
|
|
if let Some(shard) = shard {
|
|
shard.set_preferred_az(&mut state.scheduler, az_id);
|
|
updated_in_mem_and_db.push(tid);
|
|
}
|
|
}
|
|
|
|
Ok(ShardsPreferredAzsResponse {
|
|
updated: updated_in_mem_and_db,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
/// Tests Service::compute_split_shards. For readability, this specifies sizes in GBs rather
|
|
/// than bytes. Note that max_logical_size is the total logical size of the largest timeline
|
|
/// summed across all shards.
|
|
#[test]
|
|
fn compute_split_shards() {
|
|
// Size-based split: two shards have a 500 GB timeline, which need to split into 8 shards
|
|
// that are <= 64 GB,
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 500,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
Some(ShardCount(8))
|
|
);
|
|
|
|
// Size-based split: noop at or below threshold, fires above.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 127,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
None,
|
|
);
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 128,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
None,
|
|
);
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 129,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
Some(ShardCount(4)),
|
|
);
|
|
|
|
// Size-based split: clamped to max_split_shards.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 10000,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
Some(ShardCount(16))
|
|
);
|
|
|
|
// Size-based split: tenant already at or beyond max_split_shards is not split.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(16),
|
|
max_logical_size: 10000,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
None
|
|
);
|
|
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(32),
|
|
max_logical_size: 10000,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
None
|
|
);
|
|
|
|
// Size-based split: a non-power-of-2 shard count is normalized to power-of-2 if it
|
|
// exceeds split_threshold (i.e. a 3-shard tenant splits into 8, not 6).
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(3),
|
|
max_logical_size: 320,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
Some(ShardCount(8))
|
|
);
|
|
|
|
// Size-based split: a non-power-of-2 shard count is not normalized to power-of-2 if the
|
|
// existing shards are below or at split_threshold, but splits into 4 if it exceeds it.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(3),
|
|
max_logical_size: 191,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
None
|
|
);
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(3),
|
|
max_logical_size: 192,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
None
|
|
);
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(3),
|
|
max_logical_size: 193,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 0,
|
|
initial_split_shards: 0,
|
|
}),
|
|
Some(ShardCount(4))
|
|
);
|
|
|
|
// Initial split: tenant has a 10 GB timeline, split into 4 shards.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 10,
|
|
split_threshold: 0,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
Some(ShardCount(4))
|
|
);
|
|
|
|
// Initial split: 0 ShardCount is equivalent to 1.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(0),
|
|
max_logical_size: 10,
|
|
split_threshold: 0,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
Some(ShardCount(4))
|
|
);
|
|
|
|
// Initial split: at or below threshold is noop.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 7,
|
|
split_threshold: 0,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
None,
|
|
);
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 8,
|
|
split_threshold: 0,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
None,
|
|
);
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 9,
|
|
split_threshold: 0,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
Some(ShardCount(4))
|
|
);
|
|
|
|
// Initial split: already sharded tenant is not affected, even if above threshold and below
|
|
// shard count.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 20,
|
|
split_threshold: 0,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
None,
|
|
);
|
|
|
|
// Initial split: clamped to max_shards.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 10,
|
|
split_threshold: 0,
|
|
max_split_shards: 3,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
Some(ShardCount(3)),
|
|
);
|
|
|
|
// Initial+size split: tenant eligible for both will use the larger shard count.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 10,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
Some(ShardCount(4)),
|
|
);
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 500,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 4,
|
|
}),
|
|
Some(ShardCount(8)),
|
|
);
|
|
|
|
// Initial+size split: sharded tenant is only eligible for size-based split.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 200,
|
|
split_threshold: 64,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 8,
|
|
}),
|
|
Some(ShardCount(4)),
|
|
);
|
|
|
|
// Initial+size split: uses the larger shard count even with initial_split_threshold above
|
|
// split_threshold.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 10,
|
|
split_threshold: 4,
|
|
max_split_shards: 16,
|
|
initial_split_threshold: 8,
|
|
initial_split_shards: 8,
|
|
}),
|
|
Some(ShardCount(8)),
|
|
);
|
|
|
|
// Test backwards compatibility with production settings when initial/size-based splits were
|
|
// rolled out: a single split into 8 shards at 64 GB. Any already sharded tenants with <8
|
|
// shards will split according to split_threshold.
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 65,
|
|
split_threshold: 64,
|
|
max_split_shards: 8,
|
|
initial_split_threshold: 64,
|
|
initial_split_shards: 8,
|
|
}),
|
|
Some(ShardCount(8)),
|
|
);
|
|
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(1),
|
|
max_logical_size: 64,
|
|
split_threshold: 64,
|
|
max_split_shards: 8,
|
|
initial_split_threshold: 64,
|
|
initial_split_shards: 8,
|
|
}),
|
|
None,
|
|
);
|
|
|
|
assert_eq!(
|
|
Service::compute_split_shards(ShardSplitInputs {
|
|
shard_count: ShardCount(2),
|
|
max_logical_size: 129,
|
|
split_threshold: 64,
|
|
max_split_shards: 8,
|
|
initial_split_threshold: 64,
|
|
initial_split_shards: 8,
|
|
}),
|
|
Some(ShardCount(4)),
|
|
);
|
|
}
|
|
}
|