Files
neon/libs/utils/src/vec_map.rs
Arpad Müller a22be5af72 Migrate the last crates to edition 2024 (#10998)
Migrates the remaining crates to edition 2024. We like to stay on the
latest edition if possible. There is no functional changes, however some
code changes had to be done to accommodate the edition's breaking
changes.

Like the previous migration PRs, this is comprised of three commits:

* the first does the edition update and makes `cargo check`/`cargo
clippy` pass. we had to update bindgen to make its output [satisfy the
requirements of edition
2024](https://doc.rust-lang.org/edition-guide/rust-2024/unsafe-extern.html)
* the second commit does a `cargo fmt` for the new style edition.
* the third commit reorders imports as a one-off change. As before, it
is entirely optional.

Part of #10918
2025-02-27 09:40:40 +00:00

433 lines
14 KiB
Rust

use std::alloc::Layout;
use std::cmp::Ordering;
use std::ops::RangeBounds;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum VecMapOrdering {
Greater,
GreaterOrEqual,
}
/// Ordered map datastructure implemented in a Vec.
///
/// Append only - can only add keys that are larger than the
/// current max key.
/// Ordering can be adjusted using [`VecMapOrdering`]
/// during `VecMap` construction.
#[derive(Clone, Debug)]
pub struct VecMap<K, V> {
data: Vec<(K, V)>,
ordering: VecMapOrdering,
}
impl<K, V> Default for VecMap<K, V> {
fn default() -> Self {
VecMap {
data: Default::default(),
ordering: VecMapOrdering::Greater,
}
}
}
#[derive(thiserror::Error, Debug)]
pub enum VecMapError {
#[error("Key violates ordering constraint")]
InvalidKey,
#[error("Mismatched ordering constraints")]
ExtendOrderingError,
}
impl<K: Ord, V> VecMap<K, V> {
pub fn new(ordering: VecMapOrdering) -> Self {
Self {
data: Vec::new(),
ordering,
}
}
pub fn with_capacity(capacity: usize, ordering: VecMapOrdering) -> Self {
Self {
data: Vec::with_capacity(capacity),
ordering,
}
}
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
pub fn as_slice(&self) -> &[(K, V)] {
self.data.as_slice()
}
/// This function may panic if given a range where the lower bound is
/// greater than the upper bound.
pub fn slice_range<R: RangeBounds<K>>(&self, range: R) -> &[(K, V)] {
use std::ops::Bound::*;
let binary_search = |k: &K| self.data.binary_search_by_key(&k, extract_key);
let start_idx = match range.start_bound() {
Unbounded => 0,
Included(k) => binary_search(k).unwrap_or_else(std::convert::identity),
Excluded(k) => match binary_search(k) {
Ok(idx) => idx + 1,
Err(idx) => idx,
},
};
let end_idx = match range.end_bound() {
Unbounded => self.data.len(),
Included(k) => match binary_search(k) {
Ok(idx) => idx + 1,
Err(idx) => idx,
},
Excluded(k) => binary_search(k).unwrap_or_else(std::convert::identity),
};
&self.data[start_idx..end_idx]
}
/// Add a key value pair to the map.
/// If `key` is not respective of the `self` ordering the
/// pair will not be added and `InvalidKey` error will be returned.
pub fn append(&mut self, key: K, value: V) -> Result<usize, VecMapError> {
self.validate_key_order(&key)?;
let delta_size = self.instrument_vec_op(|vec| vec.push((key, value)));
Ok(delta_size)
}
/// Update the maximum key value pair or add a new key value pair to the map.
/// If `key` is not respective of the `self` ordering no updates or additions
/// will occur and `InvalidKey` error will be returned.
pub fn append_or_update_last(
&mut self,
key: K,
mut value: V,
) -> Result<(Option<V>, usize), VecMapError> {
if let Some((last_key, last_value)) = self.data.last_mut() {
match key.cmp(last_key) {
Ordering::Less => return Err(VecMapError::InvalidKey),
Ordering::Equal => {
std::mem::swap(last_value, &mut value);
const DELTA_SIZE: usize = 0;
return Ok((Some(value), DELTA_SIZE));
}
Ordering::Greater => {}
}
}
let delta_size = self.instrument_vec_op(|vec| vec.push((key, value)));
Ok((None, delta_size))
}
/// Move items from `other` to the end of `self`, leaving `other` empty.
/// If the `other` ordering is different from `self` ordering
/// `ExtendOrderingError` error will be returned.
/// If any keys in `other` is not respective of the ordering defined in
/// `self`, `InvalidKey` error will be returned and no mutation will occur.
pub fn extend(&mut self, other: &mut Self) -> Result<usize, VecMapError> {
if self.ordering != other.ordering {
return Err(VecMapError::ExtendOrderingError);
}
let other_first_opt = other.data.last().map(extract_key);
if let Some(other_first) = other_first_opt {
self.validate_key_order(other_first)?;
}
let delta_size = self.instrument_vec_op(|vec| vec.append(&mut other.data));
Ok(delta_size)
}
/// Validate the current last key in `self` and key being
/// inserted against the order defined in `self`.
fn validate_key_order(&self, key: &K) -> Result<(), VecMapError> {
if let Some(last_key) = self.data.last().map(extract_key) {
match (&self.ordering, &key.cmp(last_key)) {
(VecMapOrdering::Greater, Ordering::Less | Ordering::Equal) => {
return Err(VecMapError::InvalidKey);
}
(VecMapOrdering::Greater, Ordering::Greater) => {}
(VecMapOrdering::GreaterOrEqual, Ordering::Less) => {
return Err(VecMapError::InvalidKey);
}
(VecMapOrdering::GreaterOrEqual, Ordering::Equal | Ordering::Greater) => {}
}
}
Ok(())
}
/// Instrument an operation on the underlying [`Vec`].
/// Will panic if the operation decreases capacity.
/// Returns the increase in memory usage caused by the op.
fn instrument_vec_op(&mut self, op: impl FnOnce(&mut Vec<(K, V)>)) -> usize {
let old_cap = self.data.capacity();
op(&mut self.data);
let new_cap = self.data.capacity();
match old_cap.cmp(&new_cap) {
Ordering::Less => {
let old_size = Layout::array::<(K, V)>(old_cap).unwrap().size();
let new_size = Layout::array::<(K, V)>(new_cap).unwrap().size();
new_size - old_size
}
Ordering::Equal => 0,
Ordering::Greater => panic!("VecMap capacity shouldn't ever decrease"),
}
}
/// Similar to `from_iter` defined in `FromIter` trait except
/// that it accepts an [`VecMapOrdering`]
pub fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I, ordering: VecMapOrdering) -> Self {
let iter = iter.into_iter();
let initial_capacity = {
match iter.size_hint() {
(lower_bound, None) => lower_bound,
(_, Some(upper_bound)) => upper_bound,
}
};
let mut vec_map = VecMap::with_capacity(initial_capacity, ordering);
for (key, value) in iter {
vec_map
.append(key, value)
.expect("The passed collection needs to be sorted!");
}
vec_map
}
}
impl<K: Ord, V> IntoIterator for VecMap<K, V> {
type Item = (K, V);
type IntoIter = std::vec::IntoIter<(K, V)>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
fn extract_key<K, V>(entry: &(K, V)) -> &K {
&entry.0
}
#[cfg(test)]
mod tests {
use std::collections::BTreeMap;
use std::ops::Bound;
use super::{VecMap, VecMapOrdering};
#[test]
fn unbounded_range() {
let mut vec = VecMap::default();
vec.append(0, ()).unwrap();
assert_eq!(vec.slice_range(0..0), &[]);
}
#[test]
#[should_panic]
fn invalid_ordering_range() {
let mut vec = VecMap::default();
vec.append(0, ()).unwrap();
#[allow(clippy::reversed_empty_ranges)]
vec.slice_range(1..0);
}
#[test]
fn range_tests() {
let mut vec = VecMap::default();
vec.append(0, ()).unwrap();
vec.append(2, ()).unwrap();
vec.append(4, ()).unwrap();
assert_eq!(vec.slice_range(0..0), &[]);
assert_eq!(vec.slice_range(0..1), &[(0, ())]);
assert_eq!(vec.slice_range(0..2), &[(0, ())]);
assert_eq!(vec.slice_range(0..3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..0), &[]);
assert_eq!(vec.slice_range(..1), &[(0, ())]);
assert_eq!(vec.slice_range(..3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(0..=0), &[(0, ())]);
assert_eq!(vec.slice_range(0..=1), &[(0, ())]);
assert_eq!(vec.slice_range(0..=2), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(0..=3), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..=0), &[(0, ())]);
assert_eq!(vec.slice_range(..=1), &[(0, ())]);
assert_eq!(vec.slice_range(..=2), &[(0, ()), (2, ())]);
assert_eq!(vec.slice_range(..=3), &[(0, ()), (2, ())]);
}
struct BoundIter {
min: i32,
max: i32,
next: Option<Bound<i32>>,
}
impl BoundIter {
fn new(min: i32, max: i32) -> Self {
Self {
min,
max,
next: Some(Bound::Unbounded),
}
}
}
impl Iterator for BoundIter {
type Item = Bound<i32>;
fn next(&mut self) -> Option<Self::Item> {
let cur = self.next?;
self.next = match &cur {
Bound::Unbounded => Some(Bound::Included(self.min)),
Bound::Included(x) => {
if *x >= self.max {
Some(Bound::Excluded(self.min))
} else {
Some(Bound::Included(x + 1))
}
}
Bound::Excluded(x) => {
if *x >= self.max {
None
} else {
Some(Bound::Excluded(x + 1))
}
}
};
Some(cur)
}
}
#[test]
fn range_exhaustive() {
let map: BTreeMap<i32, ()> = (1..=7).step_by(2).map(|x| (x, ())).collect();
let mut vec = VecMap::default();
for &key in map.keys() {
vec.append(key, ()).unwrap();
}
const RANGE_MIN: i32 = 0;
const RANGE_MAX: i32 = 8;
for lower_bound in BoundIter::new(RANGE_MIN, RANGE_MAX) {
let ub_min = match lower_bound {
Bound::Unbounded => RANGE_MIN,
Bound::Included(x) => x,
Bound::Excluded(x) => x + 1,
};
for upper_bound in BoundIter::new(ub_min, RANGE_MAX) {
let map_range: Vec<(i32, ())> = map
.range((lower_bound, upper_bound))
.map(|(&x, _)| (x, ()))
.collect();
let vec_slice = vec.slice_range((lower_bound, upper_bound));
assert_eq!(map_range, vec_slice);
}
}
}
#[test]
fn extend() {
let mut left = VecMap::default();
left.append(0, ()).unwrap();
assert_eq!(left.as_slice(), &[(0, ())]);
let mut empty = VecMap::default();
left.extend(&mut empty).unwrap();
assert_eq!(left.as_slice(), &[(0, ())]);
assert_eq!(empty.as_slice(), &[]);
let mut right = VecMap::default();
right.append(1, ()).unwrap();
left.extend(&mut right).unwrap();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(right.as_slice(), &[]);
let mut zero_map = VecMap::default();
zero_map.append(0, ()).unwrap();
left.extend(&mut zero_map).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(zero_map.as_slice(), &[(0, ())]);
let mut one_map = VecMap::default();
one_map.append(1, ()).unwrap();
left.extend(&mut one_map).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(one_map.as_slice(), &[(1, ())]);
let mut map_greater_or_equal = VecMap::new(VecMapOrdering::GreaterOrEqual);
map_greater_or_equal.append(2, ()).unwrap();
map_greater_or_equal.append(2, ()).unwrap();
left.extend(&mut map_greater_or_equal).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ()), (1, ())]);
assert_eq!(map_greater_or_equal.as_slice(), &[(2, ()), (2, ())]);
}
#[test]
fn extend_with_ordering() {
let mut left = VecMap::new(VecMapOrdering::GreaterOrEqual);
left.append(0, ()).unwrap();
assert_eq!(left.as_slice(), &[(0, ())]);
let mut greater_right = VecMap::new(VecMapOrdering::Greater);
greater_right.append(0, ()).unwrap();
left.extend(&mut greater_right).unwrap_err();
assert_eq!(left.as_slice(), &[(0, ())]);
let mut greater_or_equal_right = VecMap::new(VecMapOrdering::GreaterOrEqual);
greater_or_equal_right.append(2, ()).unwrap();
greater_or_equal_right.append(2, ()).unwrap();
left.extend(&mut greater_or_equal_right).unwrap();
assert_eq!(left.as_slice(), &[(0, ()), (2, ()), (2, ())]);
}
#[test]
fn vec_map_from_sorted() {
let vec = vec![(1, ()), (2, ()), (3, ()), (6, ())];
let vec_map = VecMap::from_iter(vec, VecMapOrdering::Greater);
assert_eq!(vec_map.as_slice(), &[(1, ()), (2, ()), (3, ()), (6, ())]);
let vec = vec![(1, ()), (2, ()), (3, ()), (3, ()), (6, ()), (6, ())];
let vec_map = VecMap::from_iter(vec, VecMapOrdering::GreaterOrEqual);
assert_eq!(
vec_map.as_slice(),
&[(1, ()), (2, ()), (3, ()), (3, ()), (6, ()), (6, ())]
);
}
#[test]
#[should_panic]
fn vec_map_from_unsorted_greater() {
let vec = vec![(1, ()), (2, ()), (2, ()), (3, ()), (6, ())];
let _ = VecMap::from_iter(vec, VecMapOrdering::Greater);
}
#[test]
#[should_panic]
fn vec_map_from_unsorted_greater_or_equal() {
let vec = vec![(1, ()), (2, ()), (3, ()), (6, ()), (5, ())];
let _ = VecMap::from_iter(vec, VecMapOrdering::GreaterOrEqual);
}
}