Files
neon/libs/utils/src/failpoint_support.rs
Arseny Sher 3797566c36 safekeeper: test pull_timeline with WAL gc.
Do pull_timeline while WAL is being removed. To this end
- extract pausable_failpoint to utils, sprinkle pull_timeline with it
- add 'checkpoint' sk http endpoint to force WAL removal.

After fixing checking for pull file status code test fails so far which is
expected.
2024-05-25 06:06:32 +03:00

205 lines
7.0 KiB
Rust

//! Failpoint support code shared between pageserver and safekeepers.
use crate::http::{
error::ApiError,
json::{json_request, json_response},
};
use hyper::{Body, Request, Response, StatusCode};
use serde::{Deserialize, Serialize};
use tokio_util::sync::CancellationToken;
use tracing::*;
/// Declare a failpoint that can use the `pause` failpoint action.
/// We don't want to block the executor thread, hence, spawn_blocking + await.
#[macro_export]
macro_rules! pausable_failpoint {
($name:literal) => {
if cfg!(feature = "testing") {
tokio::task::spawn_blocking({
let current = tracing::Span::current();
move || {
let _entered = current.entered();
tracing::info!("at failpoint {}", $name);
fail::fail_point!($name);
}
})
.await
.expect("spawn_blocking");
}
};
($name:literal, $cond:expr) => {
if cfg!(feature = "testing") {
if $cond {
pausable_failpoint!($name)
}
}
};
}
/// use with fail::cfg("$name", "return(2000)")
///
/// The effect is similar to a "sleep(2000)" action, i.e. we sleep for the
/// specified time (in milliseconds). The main difference is that we use async
/// tokio sleep function. Another difference is that we print lines to the log,
/// which can be useful in tests to check that the failpoint was hit.
///
/// Optionally pass a cancellation token, and this failpoint will drop out of
/// its sleep when the cancellation token fires. This is useful for testing
/// cases where we would like to block something, but test its clean shutdown behavior.
#[macro_export]
macro_rules! __failpoint_sleep_millis_async {
($name:literal) => {{
// If the failpoint is used with a "return" action, set should_sleep to the
// returned value (as string). Otherwise it's set to None.
let should_sleep = (|| {
::fail::fail_point!($name, |x| x);
::std::option::Option::None
})();
// Sleep if the action was a returned value
if let ::std::option::Option::Some(duration_str) = should_sleep {
$crate::failpoint_support::failpoint_sleep_helper($name, duration_str).await
}
}};
($name:literal, $cancel:expr) => {{
// If the failpoint is used with a "return" action, set should_sleep to the
// returned value (as string). Otherwise it's set to None.
let should_sleep = (|| {
::fail::fail_point!($name, |x| x);
::std::option::Option::None
})();
// Sleep if the action was a returned value
if let ::std::option::Option::Some(duration_str) = should_sleep {
$crate::failpoint_support::failpoint_sleep_cancellable_helper(
$name,
duration_str,
$cancel,
)
.await
}
}};
}
pub use __failpoint_sleep_millis_async as sleep_millis_async;
// Helper function used by the macro. (A function has nicer scoping so we
// don't need to decorate everything with "::")
#[doc(hidden)]
pub async fn failpoint_sleep_helper(name: &'static str, duration_str: String) {
let millis = duration_str.parse::<u64>().unwrap();
let d = std::time::Duration::from_millis(millis);
tracing::info!("failpoint {:?}: sleeping for {:?}", name, d);
tokio::time::sleep(d).await;
tracing::info!("failpoint {:?}: sleep done", name);
}
// Helper function used by the macro. (A function has nicer scoping so we
// don't need to decorate everything with "::")
#[doc(hidden)]
pub async fn failpoint_sleep_cancellable_helper(
name: &'static str,
duration_str: String,
cancel: &CancellationToken,
) {
let millis = duration_str.parse::<u64>().unwrap();
let d = std::time::Duration::from_millis(millis);
tracing::info!("failpoint {:?}: sleeping for {:?}", name, d);
tokio::time::timeout(d, cancel.cancelled()).await.ok();
tracing::info!("failpoint {:?}: sleep done", name);
}
pub fn init() -> fail::FailScenario<'static> {
// The failpoints lib provides support for parsing the `FAILPOINTS` env var.
// We want non-default behavior for `exit`, though, so, we handle it separately.
//
// Format for FAILPOINTS is "name=actions" separated by ";".
let actions = std::env::var("FAILPOINTS");
if actions.is_ok() {
std::env::remove_var("FAILPOINTS");
} else {
// let the library handle non-utf8, or nothing for not present
}
let scenario = fail::FailScenario::setup();
if let Ok(val) = actions {
val.split(';')
.enumerate()
.map(|(i, s)| s.split_once('=').ok_or((i, s)))
.for_each(|res| {
let (name, actions) = match res {
Ok(t) => t,
Err((i, s)) => {
panic!(
"startup failpoints: missing action on the {}th failpoint; try `{s}=return`",
i + 1,
);
}
};
if let Err(e) = apply_failpoint(name, actions) {
panic!("startup failpoints: failed to apply failpoint {name}={actions}: {e}");
}
});
}
scenario
}
pub fn apply_failpoint(name: &str, actions: &str) -> Result<(), String> {
if actions == "exit" {
fail::cfg_callback(name, exit_failpoint)
} else {
fail::cfg(name, actions)
}
}
#[inline(never)]
fn exit_failpoint() {
tracing::info!("Exit requested by failpoint");
std::process::exit(1);
}
pub type ConfigureFailpointsRequest = Vec<FailpointConfig>;
/// Information for configuring a single fail point
#[derive(Debug, Serialize, Deserialize)]
pub struct FailpointConfig {
/// Name of the fail point
pub name: String,
/// List of actions to take, using the format described in `fail::cfg`
///
/// We also support `actions = "exit"` to cause the fail point to immediately exit.
pub actions: String,
}
/// Configure failpoints through http.
pub async fn failpoints_handler(
mut request: Request<Body>,
_cancel: CancellationToken,
) -> Result<Response<Body>, ApiError> {
if !fail::has_failpoints() {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Cannot manage failpoints because storage was compiled without failpoints support"
)));
}
let failpoints: ConfigureFailpointsRequest = json_request(&mut request).await?;
for fp in failpoints {
info!("cfg failpoint: {} {}", fp.name, fp.actions);
// We recognize one extra "action" that's not natively recognized
// by the failpoints crate: exit, to immediately kill the process
let cfg_result = apply_failpoint(&fp.name, &fp.actions);
if let Err(err_msg) = cfg_result {
return Err(ApiError::BadRequest(anyhow::anyhow!(
"Failed to configure failpoints: {err_msg}"
)));
}
}
json_response(StatusCode::OK, ())
}