Files
neon/proxy/src/auth/backend.rs
Folke Behrens f246aa3ca7 proxy: Fix some warnings by extended clippy checks (#8748)
* Missing blank lifetimes which is now deprecated.
* Matching off unqualified enum variants that could act like variable.
* Missing semicolons.
2024-08-19 10:33:46 +02:00

834 lines
27 KiB
Rust

mod classic;
mod hacks;
pub mod jwt;
mod link;
use std::net::IpAddr;
use std::sync::Arc;
use std::time::Duration;
use ipnet::{Ipv4Net, Ipv6Net};
pub use link::LinkAuthError;
use tokio::io::{AsyncRead, AsyncWrite};
use tokio_postgres::config::AuthKeys;
use tracing::{info, warn};
use crate::auth::credentials::check_peer_addr_is_in_list;
use crate::auth::{validate_password_and_exchange, AuthError};
use crate::cache::Cached;
use crate::console::errors::GetAuthInfoError;
use crate::console::provider::{CachedRoleSecret, ConsoleBackend};
use crate::console::{AuthSecret, NodeInfo};
use crate::context::RequestMonitoring;
use crate::intern::EndpointIdInt;
use crate::metrics::Metrics;
use crate::proxy::connect_compute::ComputeConnectBackend;
use crate::proxy::NeonOptions;
use crate::rate_limiter::{BucketRateLimiter, EndpointRateLimiter, RateBucketInfo};
use crate::stream::Stream;
use crate::{
auth::{self, ComputeUserInfoMaybeEndpoint},
config::AuthenticationConfig,
console::{
self,
provider::{CachedAllowedIps, CachedNodeInfo},
Api,
},
stream, url,
};
use crate::{scram, EndpointCacheKey, EndpointId, RoleName};
/// Alternative to [`std::borrow::Cow`] but doesn't need `T: ToOwned` as we don't need that functionality
pub enum MaybeOwned<'a, T> {
Owned(T),
Borrowed(&'a T),
}
impl<T> std::ops::Deref for MaybeOwned<'_, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
match self {
MaybeOwned::Owned(t) => t,
MaybeOwned::Borrowed(t) => t,
}
}
}
/// This type serves two purposes:
///
/// * When `T` is `()`, it's just a regular auth backend selector
/// which we use in [`crate::config::ProxyConfig`].
///
/// * However, when we substitute `T` with [`ComputeUserInfoMaybeEndpoint`],
/// this helps us provide the credentials only to those auth
/// backends which require them for the authentication process.
pub enum BackendType<'a, T, D> {
/// Cloud API (V2).
Console(MaybeOwned<'a, ConsoleBackend>, T),
/// Authentication via a web browser.
Link(MaybeOwned<'a, url::ApiUrl>, D),
}
pub trait TestBackend: Send + Sync + 'static {
fn wake_compute(&self) -> Result<CachedNodeInfo, console::errors::WakeComputeError>;
fn get_allowed_ips_and_secret(
&self,
) -> Result<(CachedAllowedIps, Option<CachedRoleSecret>), console::errors::GetAuthInfoError>;
fn get_role_secret(&self) -> Result<CachedRoleSecret, console::errors::GetAuthInfoError>;
}
impl std::fmt::Display for BackendType<'_, (), ()> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Console(api, _) => match &**api {
ConsoleBackend::Console(endpoint) => {
fmt.debug_tuple("Console").field(&endpoint.url()).finish()
}
#[cfg(any(test, feature = "testing"))]
ConsoleBackend::Postgres(endpoint) => {
fmt.debug_tuple("Postgres").field(&endpoint.url()).finish()
}
#[cfg(test)]
ConsoleBackend::Test(_) => fmt.debug_tuple("Test").finish(),
},
Self::Link(url, _) => fmt.debug_tuple("Link").field(&url.as_str()).finish(),
}
}
}
impl<T, D> BackendType<'_, T, D> {
/// Very similar to [`std::option::Option::as_ref`].
/// This helps us pass structured config to async tasks.
pub fn as_ref(&self) -> BackendType<'_, &T, &D> {
match self {
Self::Console(c, x) => BackendType::Console(MaybeOwned::Borrowed(c), x),
Self::Link(c, x) => BackendType::Link(MaybeOwned::Borrowed(c), x),
}
}
}
impl<'a, T, D> BackendType<'a, T, D> {
/// Very similar to [`std::option::Option::map`].
/// Maps [`BackendType<T>`] to [`BackendType<R>`] by applying
/// a function to a contained value.
pub fn map<R>(self, f: impl FnOnce(T) -> R) -> BackendType<'a, R, D> {
match self {
Self::Console(c, x) => BackendType::Console(c, f(x)),
Self::Link(c, x) => BackendType::Link(c, x),
}
}
}
impl<'a, T, D, E> BackendType<'a, Result<T, E>, D> {
/// Very similar to [`std::option::Option::transpose`].
/// This is most useful for error handling.
pub fn transpose(self) -> Result<BackendType<'a, T, D>, E> {
match self {
Self::Console(c, x) => x.map(|x| BackendType::Console(c, x)),
Self::Link(c, x) => Ok(BackendType::Link(c, x)),
}
}
}
pub struct ComputeCredentials {
pub info: ComputeUserInfo,
pub keys: ComputeCredentialKeys,
}
#[derive(Debug, Clone)]
pub struct ComputeUserInfoNoEndpoint {
pub user: RoleName,
pub options: NeonOptions,
}
#[derive(Debug, Clone)]
pub struct ComputeUserInfo {
pub endpoint: EndpointId,
pub user: RoleName,
pub options: NeonOptions,
}
impl ComputeUserInfo {
pub fn endpoint_cache_key(&self) -> EndpointCacheKey {
self.options.get_cache_key(&self.endpoint)
}
}
pub enum ComputeCredentialKeys {
Password(Vec<u8>),
AuthKeys(AuthKeys),
}
impl TryFrom<ComputeUserInfoMaybeEndpoint> for ComputeUserInfo {
// user name
type Error = ComputeUserInfoNoEndpoint;
fn try_from(user_info: ComputeUserInfoMaybeEndpoint) -> Result<Self, Self::Error> {
match user_info.endpoint_id {
None => Err(ComputeUserInfoNoEndpoint {
user: user_info.user,
options: user_info.options,
}),
Some(endpoint) => Ok(ComputeUserInfo {
endpoint,
user: user_info.user,
options: user_info.options,
}),
}
}
}
#[derive(PartialEq, PartialOrd, Hash, Eq, Ord, Debug, Copy, Clone)]
pub struct MaskedIp(IpAddr);
impl MaskedIp {
fn new(value: IpAddr, prefix: u8) -> Self {
match value {
IpAddr::V4(v4) => Self(IpAddr::V4(
Ipv4Net::new(v4, prefix).map_or(v4, |x| x.trunc().addr()),
)),
IpAddr::V6(v6) => Self(IpAddr::V6(
Ipv6Net::new(v6, prefix).map_or(v6, |x| x.trunc().addr()),
)),
}
}
}
// This can't be just per IP because that would limit some PaaS that share IP addresses
pub type AuthRateLimiter = BucketRateLimiter<(EndpointIdInt, MaskedIp)>;
impl RateBucketInfo {
/// All of these are per endpoint-maskedip pair.
/// Context: 4096 rounds of pbkdf2 take about 1ms of cpu time to execute (1 milli-cpu-second or 1mcpus).
///
/// First bucket: 1000mcpus total per endpoint-ip pair
/// * 4096000 requests per second with 1 hash rounds.
/// * 1000 requests per second with 4096 hash rounds.
/// * 6.8 requests per second with 600000 hash rounds.
pub const DEFAULT_AUTH_SET: [Self; 3] = [
Self::new(1000 * 4096, Duration::from_secs(1)),
Self::new(600 * 4096, Duration::from_secs(60)),
Self::new(300 * 4096, Duration::from_secs(600)),
];
}
impl AuthenticationConfig {
pub fn check_rate_limit(
&self,
ctx: &RequestMonitoring,
config: &AuthenticationConfig,
secret: AuthSecret,
endpoint: &EndpointId,
is_cleartext: bool,
) -> auth::Result<AuthSecret> {
// we have validated the endpoint exists, so let's intern it.
let endpoint_int = EndpointIdInt::from(endpoint.normalize());
// only count the full hash count if password hack or websocket flow.
// in other words, if proxy needs to run the hashing
let password_weight = if is_cleartext {
match &secret {
#[cfg(any(test, feature = "testing"))]
AuthSecret::Md5(_) => 1,
AuthSecret::Scram(s) => s.iterations + 1,
}
} else {
// validating scram takes just 1 hmac_sha_256 operation.
1
};
let limit_not_exceeded = self.rate_limiter.check(
(
endpoint_int,
MaskedIp::new(ctx.peer_addr(), config.rate_limit_ip_subnet),
),
password_weight,
);
if !limit_not_exceeded {
warn!(
enabled = self.rate_limiter_enabled,
"rate limiting authentication"
);
Metrics::get().proxy.requests_auth_rate_limits_total.inc();
Metrics::get()
.proxy
.endpoints_auth_rate_limits
.get_metric()
.measure(endpoint);
if self.rate_limiter_enabled {
return Err(auth::AuthError::too_many_connections());
}
}
Ok(secret)
}
}
/// True to its name, this function encapsulates our current auth trade-offs.
/// Here, we choose the appropriate auth flow based on circumstances.
///
/// All authentication flows will emit an AuthenticationOk message if successful.
async fn auth_quirks(
ctx: &RequestMonitoring,
api: &impl console::Api,
user_info: ComputeUserInfoMaybeEndpoint,
client: &mut stream::PqStream<Stream<impl AsyncRead + AsyncWrite + Unpin>>,
allow_cleartext: bool,
config: &'static AuthenticationConfig,
endpoint_rate_limiter: Arc<EndpointRateLimiter>,
) -> auth::Result<ComputeCredentials> {
// If there's no project so far, that entails that client doesn't
// support SNI or other means of passing the endpoint (project) name.
// We now expect to see a very specific payload in the place of password.
let (info, unauthenticated_password) = match user_info.try_into() {
Err(info) => {
let res = hacks::password_hack_no_authentication(ctx, info, client).await?;
ctx.set_endpoint_id(res.info.endpoint.clone());
let password = match res.keys {
ComputeCredentialKeys::Password(p) => p,
ComputeCredentialKeys::AuthKeys(_) => {
unreachable!("password hack should return a password")
}
};
(res.info, Some(password))
}
Ok(info) => (info, None),
};
info!("fetching user's authentication info");
let (allowed_ips, maybe_secret) = api.get_allowed_ips_and_secret(ctx, &info).await?;
// check allowed list
if !check_peer_addr_is_in_list(&ctx.peer_addr(), &allowed_ips) {
return Err(auth::AuthError::ip_address_not_allowed(ctx.peer_addr()));
}
if !endpoint_rate_limiter.check(info.endpoint.clone().into(), 1) {
return Err(AuthError::too_many_connections());
}
let cached_secret = match maybe_secret {
Some(secret) => secret,
None => api.get_role_secret(ctx, &info).await?,
};
let (cached_entry, secret) = cached_secret.take_value();
let secret = match secret {
Some(secret) => config.check_rate_limit(
ctx,
config,
secret,
&info.endpoint,
unauthenticated_password.is_some() || allow_cleartext,
)?,
None => {
// If we don't have an authentication secret, we mock one to
// prevent malicious probing (possible due to missing protocol steps).
// This mocked secret will never lead to successful authentication.
info!("authentication info not found, mocking it");
AuthSecret::Scram(scram::ServerSecret::mock(rand::random()))
}
};
match authenticate_with_secret(
ctx,
secret,
info,
client,
unauthenticated_password,
allow_cleartext,
config,
)
.await
{
Ok(keys) => Ok(keys),
Err(e) => {
if e.is_auth_failed() {
// The password could have been changed, so we invalidate the cache.
cached_entry.invalidate();
}
Err(e)
}
}
}
async fn authenticate_with_secret(
ctx: &RequestMonitoring,
secret: AuthSecret,
info: ComputeUserInfo,
client: &mut stream::PqStream<Stream<impl AsyncRead + AsyncWrite + Unpin>>,
unauthenticated_password: Option<Vec<u8>>,
allow_cleartext: bool,
config: &'static AuthenticationConfig,
) -> auth::Result<ComputeCredentials> {
if let Some(password) = unauthenticated_password {
let ep = EndpointIdInt::from(&info.endpoint);
let auth_outcome =
validate_password_and_exchange(&config.thread_pool, ep, &password, secret).await?;
let keys = match auth_outcome {
crate::sasl::Outcome::Success(key) => key,
crate::sasl::Outcome::Failure(reason) => {
info!("auth backend failed with an error: {reason}");
return Err(auth::AuthError::auth_failed(&*info.user));
}
};
// we have authenticated the password
client.write_message_noflush(&pq_proto::BeMessage::AuthenticationOk)?;
return Ok(ComputeCredentials { info, keys });
}
// -- the remaining flows are self-authenticating --
// Perform cleartext auth if we're allowed to do that.
// Currently, we use it for websocket connections (latency).
if allow_cleartext {
ctx.set_auth_method(crate::context::AuthMethod::Cleartext);
return hacks::authenticate_cleartext(ctx, info, client, secret, config).await;
}
// Finally, proceed with the main auth flow (SCRAM-based).
classic::authenticate(ctx, info, client, config, secret).await
}
impl<'a> BackendType<'a, ComputeUserInfoMaybeEndpoint, &()> {
/// Get compute endpoint name from the credentials.
pub fn get_endpoint(&self) -> Option<EndpointId> {
match self {
Self::Console(_, user_info) => user_info.endpoint_id.clone(),
Self::Link(_, _) => Some("link".into()),
}
}
/// Get username from the credentials.
pub fn get_user(&self) -> &str {
match self {
Self::Console(_, user_info) => &user_info.user,
Self::Link(_, _) => "link",
}
}
/// Authenticate the client via the requested backend, possibly using credentials.
#[tracing::instrument(fields(allow_cleartext = allow_cleartext), skip_all)]
pub async fn authenticate(
self,
ctx: &RequestMonitoring,
client: &mut stream::PqStream<Stream<impl AsyncRead + AsyncWrite + Unpin>>,
allow_cleartext: bool,
config: &'static AuthenticationConfig,
endpoint_rate_limiter: Arc<EndpointRateLimiter>,
) -> auth::Result<BackendType<'a, ComputeCredentials, NodeInfo>> {
let res = match self {
Self::Console(api, user_info) => {
info!(
user = &*user_info.user,
project = user_info.endpoint(),
"performing authentication using the console"
);
let credentials = auth_quirks(
ctx,
&*api,
user_info,
client,
allow_cleartext,
config,
endpoint_rate_limiter,
)
.await?;
BackendType::Console(api, credentials)
}
// NOTE: this auth backend doesn't use client credentials.
Self::Link(url, _) => {
info!("performing link authentication");
let info = link::authenticate(ctx, &url, client).await?;
BackendType::Link(url, info)
}
};
info!("user successfully authenticated");
Ok(res)
}
}
impl BackendType<'_, ComputeUserInfo, &()> {
pub async fn get_role_secret(
&self,
ctx: &RequestMonitoring,
) -> Result<CachedRoleSecret, GetAuthInfoError> {
match self {
Self::Console(api, user_info) => api.get_role_secret(ctx, user_info).await,
Self::Link(_, _) => Ok(Cached::new_uncached(None)),
}
}
pub async fn get_allowed_ips_and_secret(
&self,
ctx: &RequestMonitoring,
) -> Result<(CachedAllowedIps, Option<CachedRoleSecret>), GetAuthInfoError> {
match self {
Self::Console(api, user_info) => api.get_allowed_ips_and_secret(ctx, user_info).await,
Self::Link(_, _) => Ok((Cached::new_uncached(Arc::new(vec![])), None)),
}
}
}
#[async_trait::async_trait]
impl ComputeConnectBackend for BackendType<'_, ComputeCredentials, NodeInfo> {
async fn wake_compute(
&self,
ctx: &RequestMonitoring,
) -> Result<CachedNodeInfo, console::errors::WakeComputeError> {
match self {
Self::Console(api, creds) => api.wake_compute(ctx, &creds.info).await,
Self::Link(_, info) => Ok(Cached::new_uncached(info.clone())),
}
}
fn get_keys(&self) -> Option<&ComputeCredentialKeys> {
match self {
Self::Console(_, creds) => Some(&creds.keys),
Self::Link(_, _) => None,
}
}
}
#[async_trait::async_trait]
impl ComputeConnectBackend for BackendType<'_, ComputeCredentials, &()> {
async fn wake_compute(
&self,
ctx: &RequestMonitoring,
) -> Result<CachedNodeInfo, console::errors::WakeComputeError> {
match self {
Self::Console(api, creds) => api.wake_compute(ctx, &creds.info).await,
Self::Link(_, _) => unreachable!("link auth flow doesn't support waking the compute"),
}
}
fn get_keys(&self) -> Option<&ComputeCredentialKeys> {
match self {
Self::Console(_, creds) => Some(&creds.keys),
Self::Link(_, _) => None,
}
}
}
#[cfg(test)]
mod tests {
use std::{net::IpAddr, sync::Arc, time::Duration};
use bytes::BytesMut;
use fallible_iterator::FallibleIterator;
use once_cell::sync::Lazy;
use postgres_protocol::{
authentication::sasl::{ChannelBinding, ScramSha256},
message::{backend::Message as PgMessage, frontend},
};
use provider::AuthSecret;
use tokio::io::{AsyncRead, AsyncReadExt, AsyncWriteExt};
use crate::{
auth::{backend::MaskedIp, ComputeUserInfoMaybeEndpoint, IpPattern},
config::AuthenticationConfig,
console::{
self,
provider::{self, CachedAllowedIps, CachedRoleSecret},
CachedNodeInfo,
},
context::RequestMonitoring,
proxy::NeonOptions,
rate_limiter::{EndpointRateLimiter, RateBucketInfo},
scram::{threadpool::ThreadPool, ServerSecret},
stream::{PqStream, Stream},
};
use super::{auth_quirks, AuthRateLimiter};
struct Auth {
ips: Vec<IpPattern>,
secret: AuthSecret,
}
impl console::Api for Auth {
async fn get_role_secret(
&self,
_ctx: &RequestMonitoring,
_user_info: &super::ComputeUserInfo,
) -> Result<CachedRoleSecret, console::errors::GetAuthInfoError> {
Ok(CachedRoleSecret::new_uncached(Some(self.secret.clone())))
}
async fn get_allowed_ips_and_secret(
&self,
_ctx: &RequestMonitoring,
_user_info: &super::ComputeUserInfo,
) -> Result<(CachedAllowedIps, Option<CachedRoleSecret>), console::errors::GetAuthInfoError>
{
Ok((
CachedAllowedIps::new_uncached(Arc::new(self.ips.clone())),
Some(CachedRoleSecret::new_uncached(Some(self.secret.clone()))),
))
}
async fn wake_compute(
&self,
_ctx: &RequestMonitoring,
_user_info: &super::ComputeUserInfo,
) -> Result<CachedNodeInfo, console::errors::WakeComputeError> {
unimplemented!()
}
}
static CONFIG: Lazy<AuthenticationConfig> = Lazy::new(|| AuthenticationConfig {
thread_pool: ThreadPool::new(1),
scram_protocol_timeout: std::time::Duration::from_secs(5),
rate_limiter_enabled: true,
rate_limiter: AuthRateLimiter::new(&RateBucketInfo::DEFAULT_AUTH_SET),
rate_limit_ip_subnet: 64,
});
async fn read_message(r: &mut (impl AsyncRead + Unpin), b: &mut BytesMut) -> PgMessage {
loop {
r.read_buf(&mut *b).await.unwrap();
if let Some(m) = PgMessage::parse(&mut *b).unwrap() {
break m;
}
}
}
#[test]
fn masked_ip() {
let ip_a = IpAddr::V4([127, 0, 0, 1].into());
let ip_b = IpAddr::V4([127, 0, 0, 2].into());
let ip_c = IpAddr::V4([192, 168, 1, 101].into());
let ip_d = IpAddr::V4([192, 168, 1, 102].into());
let ip_e = IpAddr::V6("abcd:abcd:abcd:abcd:abcd:abcd:abcd:abcd".parse().unwrap());
let ip_f = IpAddr::V6("abcd:abcd:abcd:abcd:1234:abcd:abcd:abcd".parse().unwrap());
assert_ne!(MaskedIp::new(ip_a, 64), MaskedIp::new(ip_b, 64));
assert_ne!(MaskedIp::new(ip_a, 32), MaskedIp::new(ip_b, 32));
assert_eq!(MaskedIp::new(ip_a, 30), MaskedIp::new(ip_b, 30));
assert_eq!(MaskedIp::new(ip_c, 30), MaskedIp::new(ip_d, 30));
assert_ne!(MaskedIp::new(ip_e, 128), MaskedIp::new(ip_f, 128));
assert_eq!(MaskedIp::new(ip_e, 64), MaskedIp::new(ip_f, 64));
}
#[test]
fn test_default_auth_rate_limit_set() {
// these values used to exceed u32::MAX
assert_eq!(
RateBucketInfo::DEFAULT_AUTH_SET,
[
RateBucketInfo {
interval: Duration::from_secs(1),
max_rpi: 1000 * 4096,
},
RateBucketInfo {
interval: Duration::from_secs(60),
max_rpi: 600 * 4096 * 60,
},
RateBucketInfo {
interval: Duration::from_secs(600),
max_rpi: 300 * 4096 * 600,
}
]
);
for x in RateBucketInfo::DEFAULT_AUTH_SET {
let y = x.to_string().parse().unwrap();
assert_eq!(x, y);
}
}
#[tokio::test]
async fn auth_quirks_scram() {
let (mut client, server) = tokio::io::duplex(1024);
let mut stream = PqStream::new(Stream::from_raw(server));
let ctx = RequestMonitoring::test();
let api = Auth {
ips: vec![],
secret: AuthSecret::Scram(ServerSecret::build("my-secret-password").await.unwrap()),
};
let user_info = ComputeUserInfoMaybeEndpoint {
user: "conrad".into(),
endpoint_id: Some("endpoint".into()),
options: NeonOptions::default(),
};
let handle = tokio::spawn(async move {
let mut scram = ScramSha256::new(b"my-secret-password", ChannelBinding::unsupported());
let mut read = BytesMut::new();
// server should offer scram
match read_message(&mut client, &mut read).await {
PgMessage::AuthenticationSasl(a) => {
let options: Vec<&str> = a.mechanisms().collect().unwrap();
assert_eq!(options, ["SCRAM-SHA-256"]);
}
_ => panic!("wrong message"),
}
// client sends client-first-message
let mut write = BytesMut::new();
frontend::sasl_initial_response("SCRAM-SHA-256", scram.message(), &mut write).unwrap();
client.write_all(&write).await.unwrap();
// server response with server-first-message
match read_message(&mut client, &mut read).await {
PgMessage::AuthenticationSaslContinue(a) => {
scram.update(a.data()).await.unwrap();
}
_ => panic!("wrong message"),
}
// client response with client-final-message
write.clear();
frontend::sasl_response(scram.message(), &mut write).unwrap();
client.write_all(&write).await.unwrap();
// server response with server-final-message
match read_message(&mut client, &mut read).await {
PgMessage::AuthenticationSaslFinal(a) => {
scram.finish(a.data()).unwrap();
}
_ => panic!("wrong message"),
}
});
let endpoint_rate_limiter = Arc::new(EndpointRateLimiter::new_with_shards(
EndpointRateLimiter::DEFAULT,
64,
));
let _creds = auth_quirks(
&ctx,
&api,
user_info,
&mut stream,
false,
&CONFIG,
endpoint_rate_limiter,
)
.await
.unwrap();
handle.await.unwrap();
}
#[tokio::test]
async fn auth_quirks_cleartext() {
let (mut client, server) = tokio::io::duplex(1024);
let mut stream = PqStream::new(Stream::from_raw(server));
let ctx = RequestMonitoring::test();
let api = Auth {
ips: vec![],
secret: AuthSecret::Scram(ServerSecret::build("my-secret-password").await.unwrap()),
};
let user_info = ComputeUserInfoMaybeEndpoint {
user: "conrad".into(),
endpoint_id: Some("endpoint".into()),
options: NeonOptions::default(),
};
let handle = tokio::spawn(async move {
let mut read = BytesMut::new();
let mut write = BytesMut::new();
// server should offer cleartext
match read_message(&mut client, &mut read).await {
PgMessage::AuthenticationCleartextPassword => {}
_ => panic!("wrong message"),
}
// client responds with password
write.clear();
frontend::password_message(b"my-secret-password", &mut write).unwrap();
client.write_all(&write).await.unwrap();
});
let endpoint_rate_limiter = Arc::new(EndpointRateLimiter::new_with_shards(
EndpointRateLimiter::DEFAULT,
64,
));
let _creds = auth_quirks(
&ctx,
&api,
user_info,
&mut stream,
true,
&CONFIG,
endpoint_rate_limiter,
)
.await
.unwrap();
handle.await.unwrap();
}
#[tokio::test]
async fn auth_quirks_password_hack() {
let (mut client, server) = tokio::io::duplex(1024);
let mut stream = PqStream::new(Stream::from_raw(server));
let ctx = RequestMonitoring::test();
let api = Auth {
ips: vec![],
secret: AuthSecret::Scram(ServerSecret::build("my-secret-password").await.unwrap()),
};
let user_info = ComputeUserInfoMaybeEndpoint {
user: "conrad".into(),
endpoint_id: None,
options: NeonOptions::default(),
};
let handle = tokio::spawn(async move {
let mut read = BytesMut::new();
// server should offer cleartext
match read_message(&mut client, &mut read).await {
PgMessage::AuthenticationCleartextPassword => {}
_ => panic!("wrong message"),
}
// client responds with password
let mut write = BytesMut::new();
frontend::password_message(b"endpoint=my-endpoint;my-secret-password", &mut write)
.unwrap();
client.write_all(&write).await.unwrap();
});
let endpoint_rate_limiter = Arc::new(EndpointRateLimiter::new_with_shards(
EndpointRateLimiter::DEFAULT,
64,
));
let creds = auth_quirks(
&ctx,
&api,
user_info,
&mut stream,
true,
&CONFIG,
endpoint_rate_limiter,
)
.await
.unwrap();
assert_eq!(creds.info.endpoint, "my-endpoint");
handle.await.unwrap();
}
}