We read the pageserver connection string from the spec file, so let's read the auth token from the same place. We've been talking about pre-launching compute nodes that are not associated with any particular tenant at startup, so that the spec file is delivered to the compute node later. We cannot change the env variables after the process has been launched. We still pass the token to 'postgres' binary in the NEON_AUTH_TOKEN env variable, but compute_ctl is now responsible for setting it.
Compute node tools
Postgres wrapper (compute_ctl) is intended to be run as a Docker entrypoint or as a systemd
ExecStart option. It will handle all the Neon specifics during compute node
initialization:
compute_ctlaccepts cluster (compute node) specification as a JSON file.- Every start is a fresh start, so the data directory is removed and initialized again on each run.
- Next it will put configuration files into the
PGDATAdirectory. - Sync safekeepers and get commit LSN.
- Get
basebackupfrom pageserver using the returned on the previous step LSN. - Try to start
postgresand wait until it is ready to accept connections. - Check and alter/drop/create roles and databases.
- Hang waiting on the
postmasterprocess to exit.
Also compute_ctl spawns two separate service threads:
compute-monitorchecks the last Postgres activity timestamp and saves it into the sharedComputeNode;http-endpointruns a Hyper HTTP API server, which serves readiness and the last activity requests.
If the vm-informant binary is present at /bin/vm-informant, it will also be started. For VM
compute nodes, vm-informant communicates with the VM autoscaling system. It coordinates
downscaling and (eventually) will request immediate upscaling under resource pressure.
Usage example:
compute_ctl -D /var/db/postgres/compute \
-C 'postgresql://cloud_admin@localhost/postgres' \
-S /var/db/postgres/specs/current.json \
-b /usr/local/bin/postgres
Tests
Cargo formatter:
cargo fmt
Run tests:
cargo test
Clippy linter:
cargo clippy --all --all-targets -- -Dwarnings -Drust-2018-idioms
Cross-platform compilation
Imaging that you are on macOS (x86) and you want a Linux GNU (x86_64-unknown-linux-gnu platform in rust terminology) executable.
Using docker
You can use a throw-away Docker container (rustlang/rust image) for doing that:
docker run --rm \
-v $(pwd):/compute_tools \
-w /compute_tools \
-t rustlang/rust:nightly cargo build --release --target=x86_64-unknown-linux-gnu
or one-line:
docker run --rm -v $(pwd):/compute_tools -w /compute_tools -t rust:latest cargo build --release --target=x86_64-unknown-linux-gnu
Using rust native cross-compilation
Another way is to add x86_64-unknown-linux-gnu target on your host system:
rustup target add x86_64-unknown-linux-gnu
Install macOS cross-compiler toolchain:
brew tap SergioBenitez/osxct
brew install x86_64-unknown-linux-gnu
And finally run cargo build:
CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_LINKER=x86_64-unknown-linux-gnu-gcc cargo build --target=x86_64-unknown-linux-gnu --release