Files
neon/compute_tools
Heikki Linnakangas 9a2456bea5 Reduce noise from get_installed_extensions during e.g shut down (#12479)
All Errors that can occur during get_installed_extensions() come from
tokio-postgres functions, e.g. if the database is being shut down
("FATAL: terminating connection due to administrator command"). I'm
seeing a lot of such errors in the logs with the regression tests, with
very verbose stack traces. The compute_ctl stack trace is pretty useless
for errors originating from the Postgres connection, the error message
has all the information, so stop printing the stack trace.

I changed the result type of the functions to return the originating
tokio_postgres Error rather than anyhow::Error, so that if we introduce
other error sources to the functions where the stack trace might be
useful, we'll be forced to revisit this, probably by introducing a new
Error type that separates postgres errors from other errors. But this
will do for now.
2025-07-14 18:42:36 +00:00
..

Compute node tools

Postgres wrapper (compute_ctl) is intended to be run as a Docker entrypoint or as a systemd ExecStart option. It will handle all the Neon specifics during compute node initialization:

  • compute_ctl accepts cluster (compute node) specification as a JSON file.
  • Every start is a fresh start, so the data directory is removed and initialized again on each run.
  • Next it will put configuration files into the PGDATA directory.
  • Sync safekeepers and get commit LSN.
  • Get basebackup from pageserver using the returned on the previous step LSN.
  • Try to start postgres and wait until it is ready to accept connections.
  • Check and alter/drop/create roles and databases.
  • Hang waiting on the postmaster process to exit.

Also compute_ctl spawns two separate service threads:

  • compute-monitor checks the last Postgres activity timestamp and saves it into the shared ComputeNode;
  • http-endpoint runs a Hyper HTTP API server, which serves readiness and the last activity requests.

If AUTOSCALING environment variable is set, compute_ctl will start the vm-monitor located in [neon/libs/vm_monitor]. For VM compute nodes, vm-monitor communicates with the VM autoscaling system. It coordinates downscaling and requests immediate upscaling under resource pressure.

Usage example:

compute_ctl -D /var/db/postgres/compute \
            -C 'postgresql://cloud_admin@localhost/postgres' \
            -S /var/db/postgres/specs/current.json \
            -b /usr/local/bin/postgres

State Diagram

Computes can be in various states. Below is a diagram that details how a compute moves between states.

%% https://mermaid.js.org/syntax/stateDiagram.html
stateDiagram-v2
  [*] --> Empty : Compute spawned
  Empty --> ConfigurationPending : Waiting for compute spec
  ConfigurationPending --> Configuration : Received compute spec
  Configuration --> Failed : Failed to configure the compute
  Configuration --> Running : Compute has been configured
  Empty --> Init : Compute spec is immediately available
  Empty --> TerminationPendingFast : Requested termination
  Empty --> TerminationPendingImmediate : Requested termination
  Init --> Failed : Failed to start Postgres
  Init --> Running : Started Postgres
  Running --> TerminationPendingFast : Requested termination
  Running --> TerminationPendingImmediate : Requested termination
  TerminationPendingFast --> Terminated compute with 30s delay for cplane to inspect status
  TerminationPendingImmediate --> Terminated : Terminated compute immediately
  Failed --> [*] : Compute exited
  Terminated --> [*] : Compute exited

Tests

Cargo formatter:

cargo fmt

Run tests:

cargo test

Clippy linter:

cargo clippy --all --all-targets -- -Dwarnings -Drust-2018-idioms

Cross-platform compilation

Imaging that you are on macOS (x86) and you want a Linux GNU (x86_64-unknown-linux-gnu platform in rust terminology) executable.

Using docker

You can use a throw-away Docker container (rustlang/rust image) for doing that:

docker run --rm \
    -v $(pwd):/compute_tools \
    -w /compute_tools \
    -t rustlang/rust:nightly cargo build --release --target=x86_64-unknown-linux-gnu

or one-line:

docker run --rm -v $(pwd):/compute_tools -w /compute_tools -t rust:latest cargo build --release --target=x86_64-unknown-linux-gnu

Using rust native cross-compilation

Another way is to add x86_64-unknown-linux-gnu target on your host system:

rustup target add x86_64-unknown-linux-gnu

Install macOS cross-compiler toolchain:

brew tap SergioBenitez/osxct
brew install x86_64-unknown-linux-gnu

And finally run cargo build:

CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_LINKER=x86_64-unknown-linux-gnu-gcc cargo build --target=x86_64-unknown-linux-gnu --release