Files
neon/libs/postgres_ffi/src/xlog_utils.rs
Matthias van de Meent 6c6de6382a Use enum-typed PG versions (#12317)
This makes it possible for the compiler to validate that a match block
matched all PostgreSQL versions we support.

## Problem
We did not have a complete picture about which places we had to test
against PG versions, and what format these versions were: The full PG
version ID format (Major/minor/bugfix `MMmmbb`) as transfered in
protocol messages, or only the Major release version (`MM`). This meant
type confusion was rampant.

With this change, it becomes easier to develop new version-dependent
features, by making type and niche confusion impossible.

## Summary of changes
Every use of `pg_version` is now typed as either `PgVersionId` (u32,
valued in decimal `MMmmbb`) or PgMajorVersion (an enum, with a value for
every major version we support, serialized and stored like a u32 with
the value of that major version)

---------

Co-authored-by: Arpad Müller <arpad-m@users.noreply.github.com>
2025-06-24 17:25:31 +00:00

559 lines
20 KiB
Rust

//
// This file contains common utilities for dealing with PostgreSQL WAL files and
// LSNs.
//
// Many of these functions have been copied from PostgreSQL, and rewritten in
// Rust. That's why they don't follow the usual Rust naming conventions, they
// have been named the same as the corresponding PostgreSQL functions instead.
//
use super::super::waldecoder::WalStreamDecoder;
use super::bindings::{
CheckPoint, ControlFileData, DBState_DB_SHUTDOWNED, FullTransactionId, TimeLineID, TimestampTz,
XLogLongPageHeaderData, XLogPageHeaderData, XLogRecPtr, XLogRecord, XLogSegNo, XLOG_PAGE_MAGIC,
MY_PGVERSION
};
use super::wal_generator::LogicalMessageGenerator;
use crate::pg_constants;
use crate::PG_TLI;
use crate::{uint32, uint64, Oid};
use crate::{WAL_SEGMENT_SIZE, XLOG_BLCKSZ};
use bytes::BytesMut;
use bytes::{Buf, Bytes};
use log::*;
use serde::Serialize;
use std::ffi::{CString, OsStr};
use std::fs::File;
use std::io::prelude::*;
use std::io::ErrorKind;
use std::io::SeekFrom;
use std::path::Path;
use std::time::SystemTime;
use utils::bin_ser::DeserializeError;
use utils::bin_ser::SerializeError;
use utils::lsn::Lsn;
pub const XLOG_FNAME_LEN: usize = 24;
pub const XLP_BKP_REMOVABLE: u16 = 0x0004;
pub const XLP_FIRST_IS_CONTRECORD: u16 = 0x0001;
pub const XLP_REM_LEN_OFFS: usize = 2 + 2 + 4 + 8;
pub const XLOG_RECORD_CRC_OFFS: usize = 4 + 4 + 8 + 1 + 1 + 2;
pub const XLOG_SIZE_OF_XLOG_SHORT_PHD: usize = size_of::<XLogPageHeaderData>();
pub const XLOG_SIZE_OF_XLOG_LONG_PHD: usize = size_of::<XLogLongPageHeaderData>();
pub const XLOG_SIZE_OF_XLOG_RECORD: usize = size_of::<XLogRecord>();
#[allow(clippy::identity_op)]
pub const SIZE_OF_XLOG_RECORD_DATA_HEADER_SHORT: usize = 1 * 2;
/// Interval of checkpointing metadata file. We should store metadata file to enforce
/// predicate that checkpoint.nextXid is larger than any XID in WAL.
/// But flushing checkpoint file for each transaction seems to be too expensive,
/// so XID_CHECKPOINT_INTERVAL is used to forward align nextXid and so perform
/// metadata checkpoint only once per XID_CHECKPOINT_INTERVAL transactions.
/// XID_CHECKPOINT_INTERVAL should not be larger than BLCKSZ*CLOG_XACTS_PER_BYTE
/// in order to let CLOG_TRUNCATE mechanism correctly extend CLOG.
const XID_CHECKPOINT_INTERVAL: u32 = 1024;
pub fn XLogSegmentsPerXLogId(wal_segsz_bytes: usize) -> XLogSegNo {
(0x100000000u64 / wal_segsz_bytes as u64) as XLogSegNo
}
pub fn XLogSegNoOffsetToRecPtr(
segno: XLogSegNo,
offset: u32,
wal_segsz_bytes: usize,
) -> XLogRecPtr {
segno * (wal_segsz_bytes as u64) + (offset as u64)
}
pub fn XLogFileName(tli: TimeLineID, logSegNo: XLogSegNo, wal_segsz_bytes: usize) -> String {
format!(
"{:>08X}{:>08X}{:>08X}",
tli,
logSegNo / XLogSegmentsPerXLogId(wal_segsz_bytes),
logSegNo % XLogSegmentsPerXLogId(wal_segsz_bytes)
)
}
pub fn XLogFromFileName(
fname: &OsStr,
wal_seg_size: usize,
) -> anyhow::Result<(XLogSegNo, TimeLineID)> {
if let Some(fname_str) = fname.to_str() {
let tli = u32::from_str_radix(&fname_str[0..8], 16)?;
let log = u32::from_str_radix(&fname_str[8..16], 16)? as XLogSegNo;
let seg = u32::from_str_radix(&fname_str[16..24], 16)? as XLogSegNo;
Ok((log * XLogSegmentsPerXLogId(wal_seg_size) + seg, tli))
} else {
anyhow::bail!("non-ut8 filename: {:?}", fname);
}
}
pub fn IsXLogFileName(fname: &OsStr) -> bool {
if let Some(fname) = fname.to_str() {
fname.len() == XLOG_FNAME_LEN && fname.chars().all(|c| c.is_ascii_hexdigit())
} else {
false
}
}
pub fn IsPartialXLogFileName(fname: &OsStr) -> bool {
if let Some(fname) = fname.to_str() {
fname.ends_with(".partial") && IsXLogFileName(OsStr::new(&fname[0..fname.len() - 8]))
} else {
false
}
}
/// If LSN points to the beginning of the page, then shift it to first record,
/// otherwise align on 8-bytes boundary (required for WAL records)
pub fn normalize_lsn(lsn: Lsn, seg_sz: usize) -> Lsn {
if lsn.0 % XLOG_BLCKSZ as u64 == 0 {
let hdr_size = if lsn.0 % seg_sz as u64 == 0 {
XLOG_SIZE_OF_XLOG_LONG_PHD
} else {
XLOG_SIZE_OF_XLOG_SHORT_PHD
};
lsn + hdr_size as u64
} else {
lsn.align()
}
}
/// Generate a pg_control file, for a basebackup for starting up Postgres at the given LSN
///
/// 'pg_control_bytes' and 'checkpoint_bytes' are the contents of those keys persisted in
/// the pageserver. They use the same format as the PostgreSQL control file and the
/// checkpoint record, but see walingest.rs for how exactly they are kept up to date.
/// 'lsn' is the LSN at which we're starting up.
///
/// Returns:
/// - pg_control file contents
/// - system_identifier, extracted from the persisted information
/// - true, if we're starting up from a "clean shutdown", i.e. if there was a shutdown
/// checkpoint at the given LSN
pub fn generate_pg_control(
pg_control_bytes: &[u8],
checkpoint_bytes: &[u8],
lsn: Lsn,
) -> anyhow::Result<(Bytes, u64, bool)> {
let mut pg_control = ControlFileData::decode(pg_control_bytes)?;
let mut checkpoint = CheckPoint::decode(checkpoint_bytes)?;
// Generate new pg_control needed for bootstrap
//
// NB: In the checkpoint struct that we persist in the pageserver, we have a different
// convention for the 'redo' field than in PostgreSQL: On a shutdown checkpoint,
// 'redo' points the *end* of the checkpoint WAL record. On PostgreSQL, it points to
// the beginning. Furthermore, on an online checkpoint, 'redo' is set to 0.
//
// We didn't always have this convention however, and old persisted records will have
// old REDO values that point to some old LSN.
//
// The upshot is that if 'redo' is equal to the "current" LSN, there was a shutdown
// checkpoint record at that point in WAL, with no new WAL records after it. That case
// can be treated as starting from a clean shutdown. All other cases are treated as
// non-clean shutdown. In Neon, we don't do WAL replay at startup in either case, so
// that distinction doesn't matter very much. As of this writing, it only affects
// whether the persisted pg_stats information can be used or not.
//
// In the Checkpoint struct in the returned pg_control file, the redo pointer is
// always set to the LSN we're starting at, to hint that no WAL replay is required.
// (There's some neon-specific code in Postgres startup to make that work, though.
// Just setting the redo pointer is not sufficient.)
let was_shutdown = Lsn(checkpoint.redo) == lsn;
checkpoint.redo = normalize_lsn(lsn, WAL_SEGMENT_SIZE).0;
// We use DBState_DB_SHUTDOWNED even if it was not a clean shutdown. The
// neon-specific code at postgres startup ignores the state stored in the control
// file, similar to archive recovery in standalone PostgreSQL. Similarly, the
// checkPoint pointer is ignored, so just set it to 0.
pg_control.checkPoint = 0;
pg_control.checkPointCopy = checkpoint;
pg_control.state = DBState_DB_SHUTDOWNED;
Ok((pg_control.encode(), pg_control.system_identifier, was_shutdown))
}
pub fn get_current_timestamp() -> TimestampTz {
to_pg_timestamp(SystemTime::now())
}
// Module to reduce the scope of the constants
mod timestamp_conversions {
use std::time::Duration;
use anyhow::Context;
use super::*;
const UNIX_EPOCH_JDATE: u64 = 2440588; // == date2j(1970, 1, 1)
const POSTGRES_EPOCH_JDATE: u64 = 2451545; // == date2j(2000, 1, 1)
const SECS_PER_DAY: u64 = 86400;
const USECS_PER_SEC: u64 = 1000000;
const SECS_DIFF_UNIX_TO_POSTGRES_EPOCH: u64 =
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
pub fn to_pg_timestamp(time: SystemTime) -> TimestampTz {
match time.duration_since(SystemTime::UNIX_EPOCH) {
Ok(n) => {
((n.as_secs() - SECS_DIFF_UNIX_TO_POSTGRES_EPOCH) * USECS_PER_SEC
+ n.subsec_micros() as u64) as i64
}
Err(_) => panic!("SystemTime before UNIX EPOCH!"),
}
}
pub fn try_from_pg_timestamp(time: TimestampTz) -> anyhow::Result<SystemTime> {
let time: u64 = time
.try_into()
.context("timestamp before millenium (postgres epoch)")?;
let since_unix_epoch = time + SECS_DIFF_UNIX_TO_POSTGRES_EPOCH * USECS_PER_SEC;
SystemTime::UNIX_EPOCH
.checked_add(Duration::from_micros(since_unix_epoch))
.context("SystemTime overflow")
}
}
pub use timestamp_conversions::{to_pg_timestamp, try_from_pg_timestamp};
// Returns (aligned) end_lsn of the last record in data_dir with WAL segments.
// start_lsn must point to some previously known record boundary (beginning of
// the next record). If no valid record after is found, start_lsn is returned
// back.
pub fn find_end_of_wal(
data_dir: &Path,
wal_seg_size: usize,
start_lsn: Lsn, // start reading WAL at this point; must point at record start_lsn.
) -> anyhow::Result<Lsn> {
let mut result = start_lsn;
let mut curr_lsn = start_lsn;
let mut buf = [0u8; XLOG_BLCKSZ];
let pg_version = MY_PGVERSION;
debug!("find_end_of_wal PG_VERSION: {}", pg_version);
let mut decoder = WalStreamDecoder::new(start_lsn, pg_version);
// loop over segments
loop {
let segno = curr_lsn.segment_number(wal_seg_size);
let seg_file_name = XLogFileName(PG_TLI, segno, wal_seg_size);
let seg_file_path = data_dir.join(seg_file_name);
match open_wal_segment(&seg_file_path)? {
None => {
// no more segments
debug!(
"find_end_of_wal reached end at {:?}, segment {:?} doesn't exist",
result, seg_file_path
);
return Ok(result);
}
Some(mut segment) => {
let seg_offs = curr_lsn.segment_offset(wal_seg_size);
segment.seek(SeekFrom::Start(seg_offs as u64))?;
// loop inside segment
while curr_lsn.segment_number(wal_seg_size) == segno {
let bytes_read = segment.read(&mut buf)?;
if bytes_read == 0 {
debug!(
"find_end_of_wal reached end at {:?}, EOF in segment {:?} at offset {}",
result,
seg_file_path,
curr_lsn.segment_offset(wal_seg_size)
);
return Ok(result);
}
curr_lsn += bytes_read as u64;
decoder.feed_bytes(&buf[0..bytes_read]);
// advance result past all completely read records
loop {
match decoder.poll_decode() {
Ok(Some(record)) => result = record.0,
Err(e) => {
debug!(
"find_end_of_wal reached end at {:?}, decode error: {:?}",
result, e
);
return Ok(result);
}
Ok(None) => break, // need more data
}
}
}
}
}
}
}
// Open .partial or full WAL segment file, if present.
fn open_wal_segment(seg_file_path: &Path) -> anyhow::Result<Option<File>> {
let mut partial_path = seg_file_path.to_owned();
partial_path.set_extension("partial");
match File::open(partial_path) {
Ok(file) => Ok(Some(file)),
Err(e) => match e.kind() {
ErrorKind::NotFound => {
// .partial not found, try full
match File::open(seg_file_path) {
Ok(file) => Ok(Some(file)),
Err(e) => match e.kind() {
ErrorKind::NotFound => Ok(None),
_ => Err(e.into()),
},
}
}
_ => Err(e.into()),
},
}
}
impl XLogRecord {
pub fn from_slice(buf: &[u8]) -> Result<XLogRecord, DeserializeError> {
use utils::bin_ser::LeSer;
XLogRecord::des(buf)
}
pub fn from_bytes<B: Buf>(buf: &mut B) -> Result<XLogRecord, DeserializeError> {
use utils::bin_ser::LeSer;
XLogRecord::des_from(&mut buf.reader())
}
pub fn encode(&self) -> Result<Bytes, SerializeError> {
use utils::bin_ser::LeSer;
Ok(self.ser()?.into())
}
// Is this record an XLOG_SWITCH record? They need some special processing,
pub fn is_xlog_switch_record(&self) -> bool {
self.xl_info == pg_constants::XLOG_SWITCH && self.xl_rmid == pg_constants::RM_XLOG_ID
}
}
impl XLogPageHeaderData {
pub fn from_bytes<B: Buf>(buf: &mut B) -> Result<XLogPageHeaderData, DeserializeError> {
use utils::bin_ser::LeSer;
XLogPageHeaderData::des_from(&mut buf.reader())
}
pub fn encode(&self) -> Result<Bytes, SerializeError> {
use utils::bin_ser::LeSer;
self.ser().map(|b| b.into())
}
}
impl XLogLongPageHeaderData {
pub fn from_bytes<B: Buf>(buf: &mut B) -> Result<XLogLongPageHeaderData, DeserializeError> {
use utils::bin_ser::LeSer;
XLogLongPageHeaderData::des_from(&mut buf.reader())
}
pub fn encode(&self) -> Result<Bytes, SerializeError> {
use utils::bin_ser::LeSer;
self.ser().map(|b| b.into())
}
}
pub const SIZEOF_CHECKPOINT: usize = size_of::<CheckPoint>();
impl CheckPoint {
pub fn encode(&self) -> Result<Bytes, SerializeError> {
use utils::bin_ser::LeSer;
Ok(self.ser()?.into())
}
pub fn decode(buf: &[u8]) -> Result<CheckPoint, DeserializeError> {
use utils::bin_ser::LeSer;
CheckPoint::des(buf)
}
/// Update next XID based on provided new_xid and stored epoch.
/// Next XID should be greater than new_xid. This handles 32-bit
/// XID wraparound correctly.
///
/// Returns 'true' if the XID was updated.
pub fn update_next_xid(&mut self, xid: u32) -> bool {
// nextXid should be greater than any XID in WAL, so increment provided XID and check for wraparround.
let mut new_xid = std::cmp::max(
xid.wrapping_add(1),
pg_constants::FIRST_NORMAL_TRANSACTION_ID,
);
// To reduce number of metadata checkpoints, we forward align XID on XID_CHECKPOINT_INTERVAL.
// XID_CHECKPOINT_INTERVAL should not be larger than BLCKSZ*CLOG_XACTS_PER_BYTE
new_xid =
new_xid.wrapping_add(XID_CHECKPOINT_INTERVAL - 1) & !(XID_CHECKPOINT_INTERVAL - 1);
let full_xid = self.nextXid.value;
let old_xid = full_xid as u32;
if new_xid.wrapping_sub(old_xid) as i32 > 0 {
let mut epoch = full_xid >> 32;
if new_xid < old_xid {
// wrap-around
epoch += 1;
}
let nextXid = (epoch << 32) | new_xid as u64;
if nextXid != self.nextXid.value {
self.nextXid = FullTransactionId { value: nextXid };
return true;
}
}
false
}
/// Advance next multi-XID/offset to those given in arguments.
///
/// It's important that this handles wraparound correctly. This should match the
/// MultiXactAdvanceNextMXact() logic in PostgreSQL's xlog_redo() function.
///
/// Returns 'true' if the Checkpoint was updated.
pub fn update_next_multixid(&mut self, multi_xid: u32, multi_offset: u32) -> bool {
let mut modified = false;
if multi_xid.wrapping_sub(self.nextMulti) as i32 > 0 {
self.nextMulti = multi_xid;
modified = true;
}
if multi_offset.wrapping_sub(self.nextMultiOffset) as i32 > 0 {
self.nextMultiOffset = multi_offset;
modified = true;
}
modified
}
}
/// Generate new, empty WAL segment, with correct block headers at the first
/// page of the segment and the page that contains the given LSN.
/// We need this segment to start compute node.
pub fn generate_wal_segment(segno: u64, system_id: u64, lsn: Lsn) -> Result<Bytes, SerializeError> {
let mut seg_buf = BytesMut::with_capacity(WAL_SEGMENT_SIZE);
let pageaddr = XLogSegNoOffsetToRecPtr(segno, 0, WAL_SEGMENT_SIZE);
let page_off = lsn.block_offset();
let seg_off = lsn.segment_offset(WAL_SEGMENT_SIZE);
let first_page_only = seg_off < XLOG_BLCKSZ;
// If first records starts in the middle of the page, pretend in page header
// there is a fake record which ends where first real record starts. This
// makes pg_waldump etc happy.
let (shdr_rem_len, infoflags) = if first_page_only && seg_off > 0 {
assert!(seg_off >= XLOG_SIZE_OF_XLOG_LONG_PHD);
// xlp_rem_len doesn't include page header, hence the subtraction.
(
seg_off - XLOG_SIZE_OF_XLOG_LONG_PHD,
pg_constants::XLP_FIRST_IS_CONTRECORD,
)
} else {
(0, 0)
};
let hdr = XLogLongPageHeaderData {
std: {
XLogPageHeaderData {
xlp_magic: XLOG_PAGE_MAGIC as u16,
xlp_info: pg_constants::XLP_LONG_HEADER | infoflags,
xlp_tli: PG_TLI,
xlp_pageaddr: pageaddr,
xlp_rem_len: shdr_rem_len as u32,
..Default::default() // Put 0 in padding fields.
}
},
xlp_sysid: system_id,
xlp_seg_size: WAL_SEGMENT_SIZE as u32,
xlp_xlog_blcksz: XLOG_BLCKSZ as u32,
};
let hdr_bytes = hdr.encode()?;
seg_buf.extend_from_slice(&hdr_bytes);
//zero out the rest of the file
seg_buf.resize(WAL_SEGMENT_SIZE, 0);
if !first_page_only {
let block_offset = lsn.page_offset_in_segment(WAL_SEGMENT_SIZE) as usize;
// see comments above about XLP_FIRST_IS_CONTRECORD and xlp_rem_len.
let (xlp_rem_len, xlp_info) = if page_off > 0 {
assert!(page_off >= XLOG_SIZE_OF_XLOG_SHORT_PHD as u64);
(
(page_off - XLOG_SIZE_OF_XLOG_SHORT_PHD as u64) as u32,
pg_constants::XLP_FIRST_IS_CONTRECORD,
)
} else {
(0, 0)
};
let header = XLogPageHeaderData {
xlp_magic: XLOG_PAGE_MAGIC as u16,
xlp_info,
xlp_tli: PG_TLI,
xlp_pageaddr: lsn.page_lsn().0,
xlp_rem_len,
..Default::default() // Put 0 in padding fields.
};
let hdr_bytes = header.encode()?;
debug_assert!(seg_buf.len() > block_offset + hdr_bytes.len());
debug_assert_ne!(block_offset, 0);
seg_buf[block_offset..block_offset + hdr_bytes.len()].copy_from_slice(&hdr_bytes[..]);
}
Ok(seg_buf.freeze())
}
#[repr(C)]
#[derive(Serialize)]
pub struct XlLogicalMessage {
pub db_id: Oid,
pub transactional: uint32, // bool, takes 4 bytes due to alignment in C structures
pub prefix_size: uint64,
pub message_size: uint64,
}
impl XlLogicalMessage {
pub fn encode(&self) -> Bytes {
use utils::bin_ser::LeSer;
self.ser().unwrap().into()
}
}
/// Create new WAL record for non-transactional logical message.
/// Used for creating artificial WAL for tests, as LogicalMessage
/// record is basically no-op.
pub fn encode_logical_message(prefix: &str, message: &str) -> Bytes {
// This function can take untrusted input, so discard any NUL bytes in the prefix string.
let prefix = CString::new(prefix.replace('\0', "")).expect("no NULs");
let message = message.as_bytes();
LogicalMessageGenerator::new(&prefix, message)
.next()
.unwrap()
.encode(Lsn(0))
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_ts_conversion() {
let now = SystemTime::now();
let round_trip = try_from_pg_timestamp(to_pg_timestamp(now)).unwrap();
let now_since = now.duration_since(SystemTime::UNIX_EPOCH).unwrap();
let round_trip_since = round_trip.duration_since(SystemTime::UNIX_EPOCH).unwrap();
assert_eq!(now_since.as_micros(), round_trip_since.as_micros());
let now_pg = get_current_timestamp();
let round_trip_pg = to_pg_timestamp(try_from_pg_timestamp(now_pg).unwrap());
assert_eq!(now_pg, round_trip_pg);
}
// If you need to craft WAL and write tests for this module, put it at wal_craft crate.
}