Files
neon/libs/postgres_ffi/src/xlog_utils.rs
Anastasia Lubennikova 86bf491981 Support pg 15
- Split postgres_ffi into two version specific files.
- Preserve pg_version in timeline metadata.
- Use pg_version in safekeeper code. Check for postgres major version mismatch.
- Clean up the code to use DEFAULT_PG_VERSION constant everywhere, instead of hardcoding.

-  Parameterize python tests: use DEFAULT_PG_VERSION env and pg_version fixture.
   To run tests using a specific PostgreSQL version, pass the DEFAULT_PG_VERSION environment variable:
   'DEFAULT_PG_VERSION='15' ./scripts/pytest test_runner/regress'
 Currently don't all tests pass, because rust code relies on the default version of PostgreSQL in a few places.
2022-09-22 14:15:13 +03:00

662 lines
23 KiB
Rust

//
// This file contains common utilities for dealing with PostgreSQL WAL files and
// LSNs.
//
// Many of these functions have been copied from PostgreSQL, and rewritten in
// Rust. That's why they don't follow the usual Rust naming conventions, they
// have been named the same as the corresponding PostgreSQL functions instead.
//
use crc32c::crc32c_append;
use super::super::waldecoder::WalStreamDecoder;
use super::bindings::{
CheckPoint, ControlFileData, DBState_DB_SHUTDOWNED, FullTransactionId, TimeLineID, TimestampTz,
XLogLongPageHeaderData, XLogPageHeaderData, XLogRecPtr, XLogRecord, XLogSegNo, XLOG_PAGE_MAGIC,
};
use super::PG_MAJORVERSION;
use crate::pg_constants;
use crate::PG_TLI;
use crate::{uint32, uint64, Oid};
use crate::{WAL_SEGMENT_SIZE, XLOG_BLCKSZ};
use bytes::BytesMut;
use bytes::{Buf, Bytes};
use log::*;
use serde::Serialize;
use std::fs::File;
use std::io::prelude::*;
use std::io::ErrorKind;
use std::io::SeekFrom;
use std::path::{Path, PathBuf};
use std::time::SystemTime;
use utils::bin_ser::DeserializeError;
use utils::bin_ser::SerializeError;
use utils::lsn::Lsn;
pub const XLOG_FNAME_LEN: usize = 24;
pub const XLP_FIRST_IS_CONTRECORD: u16 = 0x0001;
pub const XLP_REM_LEN_OFFS: usize = 2 + 2 + 4 + 8;
pub const XLOG_RECORD_CRC_OFFS: usize = 4 + 4 + 8 + 1 + 1 + 2;
pub const XLOG_SIZE_OF_XLOG_SHORT_PHD: usize = std::mem::size_of::<XLogPageHeaderData>();
pub const XLOG_SIZE_OF_XLOG_LONG_PHD: usize = std::mem::size_of::<XLogLongPageHeaderData>();
pub const XLOG_SIZE_OF_XLOG_RECORD: usize = std::mem::size_of::<XLogRecord>();
#[allow(clippy::identity_op)]
pub const SIZE_OF_XLOG_RECORD_DATA_HEADER_SHORT: usize = 1 * 2;
/// Interval of checkpointing metadata file. We should store metadata file to enforce
/// predicate that checkpoint.nextXid is larger than any XID in WAL.
/// But flushing checkpoint file for each transaction seems to be too expensive,
/// so XID_CHECKPOINT_INTERVAL is used to forward align nextXid and so perform
/// metadata checkpoint only once per XID_CHECKPOINT_INTERVAL transactions.
/// XID_CHECKPOINT_INTERVAL should not be larger than BLCKSZ*CLOG_XACTS_PER_BYTE
/// in order to let CLOG_TRUNCATE mechanism correctly extend CLOG.
const XID_CHECKPOINT_INTERVAL: u32 = 1024;
#[allow(non_snake_case)]
pub fn XLogSegmentsPerXLogId(wal_segsz_bytes: usize) -> XLogSegNo {
(0x100000000u64 / wal_segsz_bytes as u64) as XLogSegNo
}
#[allow(non_snake_case)]
pub fn XLogSegNoOffsetToRecPtr(
segno: XLogSegNo,
offset: u32,
wal_segsz_bytes: usize,
) -> XLogRecPtr {
segno * (wal_segsz_bytes as u64) + (offset as u64)
}
#[allow(non_snake_case)]
pub fn XLogFileName(tli: TimeLineID, logSegNo: XLogSegNo, wal_segsz_bytes: usize) -> String {
format!(
"{:>08X}{:>08X}{:>08X}",
tli,
logSegNo / XLogSegmentsPerXLogId(wal_segsz_bytes),
logSegNo % XLogSegmentsPerXLogId(wal_segsz_bytes)
)
}
#[allow(non_snake_case)]
pub fn XLogFromFileName(fname: &str, wal_seg_size: usize) -> (XLogSegNo, TimeLineID) {
let tli = u32::from_str_radix(&fname[0..8], 16).unwrap();
let log = u32::from_str_radix(&fname[8..16], 16).unwrap() as XLogSegNo;
let seg = u32::from_str_radix(&fname[16..24], 16).unwrap() as XLogSegNo;
(log * XLogSegmentsPerXLogId(wal_seg_size) + seg, tli)
}
#[allow(non_snake_case)]
pub fn IsXLogFileName(fname: &str) -> bool {
return fname.len() == XLOG_FNAME_LEN && fname.chars().all(|c| c.is_ascii_hexdigit());
}
#[allow(non_snake_case)]
pub fn IsPartialXLogFileName(fname: &str) -> bool {
fname.ends_with(".partial") && IsXLogFileName(&fname[0..fname.len() - 8])
}
/// If LSN points to the beginning of the page, then shift it to first record,
/// otherwise align on 8-bytes boundary (required for WAL records)
pub fn normalize_lsn(lsn: Lsn, seg_sz: usize) -> Lsn {
if lsn.0 % XLOG_BLCKSZ as u64 == 0 {
let hdr_size = if lsn.0 % seg_sz as u64 == 0 {
XLOG_SIZE_OF_XLOG_LONG_PHD
} else {
XLOG_SIZE_OF_XLOG_SHORT_PHD
};
lsn + hdr_size as u64
} else {
lsn.align()
}
}
pub fn generate_pg_control(
pg_control_bytes: &[u8],
checkpoint_bytes: &[u8],
lsn: Lsn,
) -> anyhow::Result<(Bytes, u64)> {
let mut pg_control = ControlFileData::decode(pg_control_bytes)?;
let mut checkpoint = CheckPoint::decode(checkpoint_bytes)?;
// Generate new pg_control needed for bootstrap
checkpoint.redo = normalize_lsn(lsn, WAL_SEGMENT_SIZE).0;
//reset some fields we don't want to preserve
//TODO Check this.
//We may need to determine the value from twophase data.
checkpoint.oldestActiveXid = 0;
//save new values in pg_control
pg_control.checkPoint = 0;
pg_control.checkPointCopy = checkpoint;
pg_control.state = DBState_DB_SHUTDOWNED;
Ok((pg_control.encode(), pg_control.system_identifier))
}
pub fn get_current_timestamp() -> TimestampTz {
to_pg_timestamp(SystemTime::now())
}
pub fn to_pg_timestamp(time: SystemTime) -> TimestampTz {
const UNIX_EPOCH_JDATE: u64 = 2440588; /* == date2j(1970, 1, 1) */
const POSTGRES_EPOCH_JDATE: u64 = 2451545; /* == date2j(2000, 1, 1) */
const SECS_PER_DAY: u64 = 86400;
const USECS_PER_SEC: u64 = 1000000;
match time.duration_since(SystemTime::UNIX_EPOCH) {
Ok(n) => {
((n.as_secs() - ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY))
* USECS_PER_SEC
+ n.subsec_micros() as u64) as i64
}
Err(_) => panic!("SystemTime before UNIX EPOCH!"),
}
}
// Returns (aligned) end_lsn of the last record in data_dir with WAL segments.
// start_lsn must point to some previously known record boundary (beginning of
// the next record). If no valid record after is found, start_lsn is returned
// back.
pub fn find_end_of_wal(
data_dir: &Path,
wal_seg_size: usize,
start_lsn: Lsn, // start reading WAL at this point; must point at record start_lsn.
) -> anyhow::Result<Lsn> {
let mut result = start_lsn;
let mut curr_lsn = start_lsn;
let mut buf = [0u8; XLOG_BLCKSZ];
let pg_version = PG_MAJORVERSION[1..3].parse::<u32>().unwrap();
info!("find_end_of_wal PG_VERSION: {}", pg_version);
let mut decoder = WalStreamDecoder::new(start_lsn, pg_version);
// loop over segments
loop {
let segno = curr_lsn.segment_number(wal_seg_size);
let seg_file_name = XLogFileName(PG_TLI, segno, wal_seg_size);
let seg_file_path = data_dir.join(seg_file_name);
match open_wal_segment(&seg_file_path)? {
None => {
// no more segments
info!(
"find_end_of_wal reached end at {:?}, segment {:?} doesn't exist",
result, seg_file_path
);
return Ok(result);
}
Some(mut segment) => {
let seg_offs = curr_lsn.segment_offset(wal_seg_size);
segment.seek(SeekFrom::Start(seg_offs as u64))?;
// loop inside segment
loop {
let bytes_read = segment.read(&mut buf)?;
if bytes_read == 0 {
break; // EOF
}
curr_lsn += bytes_read as u64;
decoder.feed_bytes(&buf[0..bytes_read]);
// advance result past all completely read records
loop {
match decoder.poll_decode() {
Ok(Some(record)) => result = record.0,
Err(e) => {
info!(
"find_end_of_wal reached end at {:?}, decode error: {:?}",
result, e
);
return Ok(result);
}
Ok(None) => break, // need more data
}
}
}
}
}
}
}
// Open .partial or full WAL segment file, if present.
fn open_wal_segment(seg_file_path: &Path) -> anyhow::Result<Option<File>> {
let mut partial_path = seg_file_path.to_owned();
partial_path.set_extension("partial");
match File::open(partial_path) {
Ok(file) => Ok(Some(file)),
Err(e) => match e.kind() {
ErrorKind::NotFound => {
// .partial not found, try full
match File::open(seg_file_path) {
Ok(file) => Ok(Some(file)),
Err(e) => match e.kind() {
ErrorKind::NotFound => Ok(None),
_ => Err(e.into()),
},
}
}
_ => Err(e.into()),
},
}
}
pub fn main() {
let mut data_dir = PathBuf::new();
data_dir.push(".");
let wal_end = find_end_of_wal(&data_dir, WAL_SEGMENT_SIZE, Lsn(0)).unwrap();
println!("wal_end={:?}", wal_end);
}
impl XLogRecord {
pub fn from_slice(buf: &[u8]) -> Result<XLogRecord, DeserializeError> {
use utils::bin_ser::LeSer;
XLogRecord::des(buf)
}
pub fn from_bytes<B: Buf>(buf: &mut B) -> Result<XLogRecord, DeserializeError> {
use utils::bin_ser::LeSer;
XLogRecord::des_from(&mut buf.reader())
}
pub fn encode(&self) -> Result<Bytes, SerializeError> {
use utils::bin_ser::LeSer;
Ok(self.ser()?.into())
}
// Is this record an XLOG_SWITCH record? They need some special processing,
pub fn is_xlog_switch_record(&self) -> bool {
self.xl_info == pg_constants::XLOG_SWITCH && self.xl_rmid == pg_constants::RM_XLOG_ID
}
}
impl XLogPageHeaderData {
pub fn from_bytes<B: Buf>(buf: &mut B) -> Result<XLogPageHeaderData, DeserializeError> {
use utils::bin_ser::LeSer;
XLogPageHeaderData::des_from(&mut buf.reader())
}
}
impl XLogLongPageHeaderData {
pub fn from_bytes<B: Buf>(buf: &mut B) -> Result<XLogLongPageHeaderData, DeserializeError> {
use utils::bin_ser::LeSer;
XLogLongPageHeaderData::des_from(&mut buf.reader())
}
pub fn encode(&self) -> Result<Bytes, SerializeError> {
use utils::bin_ser::LeSer;
self.ser().map(|b| b.into())
}
}
pub const SIZEOF_CHECKPOINT: usize = std::mem::size_of::<CheckPoint>();
impl CheckPoint {
pub fn encode(&self) -> Result<Bytes, SerializeError> {
use utils::bin_ser::LeSer;
Ok(self.ser()?.into())
}
pub fn decode(buf: &[u8]) -> Result<CheckPoint, DeserializeError> {
use utils::bin_ser::LeSer;
CheckPoint::des(buf)
}
/// Update next XID based on provided new_xid and stored epoch.
/// Next XID should be greater than new_xid. This handles 32-bit
/// XID wraparound correctly.
///
/// Returns 'true' if the XID was updated.
pub fn update_next_xid(&mut self, xid: u32) -> bool {
// nextXid should nw greater than any XID in WAL, so increment provided XID and check for wraparround.
let mut new_xid = std::cmp::max(xid + 1, pg_constants::FIRST_NORMAL_TRANSACTION_ID);
// To reduce number of metadata checkpoints, we forward align XID on XID_CHECKPOINT_INTERVAL.
// XID_CHECKPOINT_INTERVAL should not be larger than BLCKSZ*CLOG_XACTS_PER_BYTE
new_xid =
new_xid.wrapping_add(XID_CHECKPOINT_INTERVAL - 1) & !(XID_CHECKPOINT_INTERVAL - 1);
let full_xid = self.nextXid.value;
let old_xid = full_xid as u32;
if new_xid.wrapping_sub(old_xid) as i32 > 0 {
let mut epoch = full_xid >> 32;
if new_xid < old_xid {
// wrap-around
epoch += 1;
}
let nextXid = (epoch << 32) | new_xid as u64;
if nextXid != self.nextXid.value {
self.nextXid = FullTransactionId { value: nextXid };
return true;
}
}
false
}
}
//
// Generate new, empty WAL segment.
// We need this segment to start compute node.
//
pub fn generate_wal_segment(segno: u64, system_id: u64) -> Result<Bytes, SerializeError> {
let mut seg_buf = BytesMut::with_capacity(WAL_SEGMENT_SIZE as usize);
let pageaddr = XLogSegNoOffsetToRecPtr(segno, 0, WAL_SEGMENT_SIZE);
let hdr = XLogLongPageHeaderData {
std: {
XLogPageHeaderData {
xlp_magic: XLOG_PAGE_MAGIC as u16,
xlp_info: pg_constants::XLP_LONG_HEADER,
xlp_tli: PG_TLI,
xlp_pageaddr: pageaddr,
xlp_rem_len: 0,
..Default::default() // Put 0 in padding fields.
}
},
xlp_sysid: system_id,
xlp_seg_size: WAL_SEGMENT_SIZE as u32,
xlp_xlog_blcksz: XLOG_BLCKSZ as u32,
};
let hdr_bytes = hdr.encode()?;
seg_buf.extend_from_slice(&hdr_bytes);
//zero out the rest of the file
seg_buf.resize(WAL_SEGMENT_SIZE, 0);
Ok(seg_buf.freeze())
}
#[repr(C)]
#[derive(Serialize)]
struct XlLogicalMessage {
db_id: Oid,
transactional: uint32, // bool, takes 4 bytes due to alignment in C structures
prefix_size: uint64,
message_size: uint64,
}
impl XlLogicalMessage {
pub fn encode(&self) -> Bytes {
use utils::bin_ser::LeSer;
self.ser().unwrap().into()
}
}
/// Create new WAL record for non-transactional logical message.
/// Used for creating artificial WAL for tests, as LogicalMessage
/// record is basically no-op.
///
/// NOTE: This leaves the xl_prev field zero. The safekeeper and
/// pageserver tolerate that, but PostgreSQL does not.
pub fn encode_logical_message(prefix: &str, message: &str) -> Vec<u8> {
let mut prefix_bytes: Vec<u8> = Vec::with_capacity(prefix.len() + 1);
prefix_bytes.write_all(prefix.as_bytes()).unwrap();
prefix_bytes.push(0);
let message_bytes = message.as_bytes();
let logical_message = XlLogicalMessage {
db_id: 0,
transactional: 0,
prefix_size: prefix_bytes.len() as u64,
message_size: message_bytes.len() as u64,
};
let mainrdata = logical_message.encode();
let mainrdata_len: usize = mainrdata.len() + prefix_bytes.len() + message_bytes.len();
// only short mainrdata is supported for now
assert!(mainrdata_len <= 255);
let mainrdata_len = mainrdata_len as u8;
let mut data: Vec<u8> = vec![pg_constants::XLR_BLOCK_ID_DATA_SHORT, mainrdata_len];
data.extend_from_slice(&mainrdata);
data.extend_from_slice(&prefix_bytes);
data.extend_from_slice(message_bytes);
let total_len = XLOG_SIZE_OF_XLOG_RECORD + data.len();
let mut header = XLogRecord {
xl_tot_len: total_len as u32,
xl_xid: 0,
xl_prev: 0,
xl_info: 0,
xl_rmid: 21,
__bindgen_padding_0: [0u8; 2usize],
xl_crc: 0, // crc will be calculated later
};
let header_bytes = header.encode().expect("failed to encode header");
let crc = crc32c_append(0, &data);
let crc = crc32c_append(crc, &header_bytes[0..XLOG_RECORD_CRC_OFFS]);
header.xl_crc = crc;
let mut wal: Vec<u8> = Vec::new();
wal.extend_from_slice(&header.encode().expect("failed to encode header"));
wal.extend_from_slice(&data);
// WAL start position must be aligned at 8 bytes,
// this will add padding for the next WAL record.
const PADDING: usize = 8;
let padding_rem = wal.len() % PADDING;
if padding_rem != 0 {
wal.resize(wal.len() + PADDING - padding_rem, 0);
}
wal
}
#[cfg(test)]
mod tests {
use super::super::PG_MAJORVERSION;
use super::*;
use regex::Regex;
use std::cmp::min;
use std::fs;
use std::{env, str::FromStr};
use utils::const_assert;
fn init_logging() {
let _ = env_logger::Builder::from_env(env_logger::Env::default().default_filter_or(
format!("wal_craft=info,postgres_ffi::{PG_MAJORVERSION}::xlog_utils=trace"),
))
.is_test(true)
.try_init();
}
fn test_end_of_wal<C: wal_craft::Crafter>(test_name: &str) {
use wal_craft::*;
// Craft some WAL
let top_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"))
.join("..")
.join("..");
let cfg = Conf {
pg_distrib_dir: top_path.join(format!("pg_install/{PG_MAJORVERSION}")),
datadir: top_path.join(format!("test_output/{}-{PG_MAJORVERSION}", test_name)),
};
if cfg.datadir.exists() {
fs::remove_dir_all(&cfg.datadir).unwrap();
}
cfg.initdb().unwrap();
let srv = cfg.start_server().unwrap();
let (intermediate_lsns, expected_end_of_wal_partial) =
C::craft(&mut srv.connect_with_timeout().unwrap()).unwrap();
let intermediate_lsns: Vec<Lsn> = intermediate_lsns
.iter()
.map(|&lsn| u64::from(lsn).into())
.collect();
let expected_end_of_wal: Lsn = u64::from(expected_end_of_wal_partial).into();
srv.kill();
// Check find_end_of_wal on the initial WAL
let last_segment = cfg
.wal_dir()
.read_dir()
.unwrap()
.map(|f| f.unwrap().file_name().into_string().unwrap())
.filter(|fname| IsXLogFileName(fname))
.max()
.unwrap();
check_pg_waldump_end_of_wal(&cfg, &last_segment, expected_end_of_wal);
for start_lsn in intermediate_lsns
.iter()
.chain(std::iter::once(&expected_end_of_wal))
{
// Erase all WAL before `start_lsn` to ensure it's not used by `find_end_of_wal`.
// We assume that `start_lsn` is non-decreasing.
info!(
"Checking with start_lsn={}, erasing WAL before it",
start_lsn
);
for file in fs::read_dir(cfg.wal_dir()).unwrap().flatten() {
let fname = file.file_name().into_string().unwrap();
if !IsXLogFileName(&fname) {
continue;
}
let (segno, _) = XLogFromFileName(&fname, WAL_SEGMENT_SIZE);
let seg_start_lsn = XLogSegNoOffsetToRecPtr(segno, 0, WAL_SEGMENT_SIZE);
if seg_start_lsn > u64::from(*start_lsn) {
continue;
}
let mut f = File::options().write(true).open(file.path()).unwrap();
const ZEROS: [u8; WAL_SEGMENT_SIZE] = [0u8; WAL_SEGMENT_SIZE];
f.write_all(
&ZEROS[0..min(
WAL_SEGMENT_SIZE,
(u64::from(*start_lsn) - seg_start_lsn) as usize,
)],
)
.unwrap();
}
check_end_of_wal(&cfg, &last_segment, *start_lsn, expected_end_of_wal);
}
}
fn check_pg_waldump_end_of_wal(
cfg: &wal_craft::Conf,
last_segment: &str,
expected_end_of_wal: Lsn,
) {
// Get the actual end of WAL by pg_waldump
let waldump_output = cfg
.pg_waldump("000000010000000000000001", last_segment)
.unwrap()
.stderr;
let waldump_output = std::str::from_utf8(&waldump_output).unwrap();
let caps = match Regex::new(r"invalid record length at (.+):")
.unwrap()
.captures(waldump_output)
{
Some(caps) => caps,
None => {
error!("Unable to parse pg_waldump's stderr:\n{}", waldump_output);
panic!();
}
};
let waldump_wal_end = Lsn::from_str(caps.get(1).unwrap().as_str()).unwrap();
info!(
"waldump erred on {}, expected wal end at {}",
waldump_wal_end, expected_end_of_wal
);
assert_eq!(waldump_wal_end, expected_end_of_wal);
}
fn check_end_of_wal(
cfg: &wal_craft::Conf,
last_segment: &str,
start_lsn: Lsn,
expected_end_of_wal: Lsn,
) {
// Check end_of_wal on non-partial WAL segment (we treat it as fully populated)
// let wal_end = find_end_of_wal(&cfg.wal_dir(), WAL_SEGMENT_SIZE, start_lsn).unwrap();
// info!(
// "find_end_of_wal returned wal_end={} with non-partial WAL segment",
// wal_end
// );
// assert_eq!(wal_end, expected_end_of_wal_non_partial);
// Rename file to partial to actually find last valid lsn, then rename it back.
fs::rename(
cfg.wal_dir().join(&last_segment),
cfg.wal_dir().join(format!("{}.partial", last_segment)),
)
.unwrap();
let wal_end = find_end_of_wal(&cfg.wal_dir(), WAL_SEGMENT_SIZE, start_lsn).unwrap();
info!(
"find_end_of_wal returned wal_end={} with partial WAL segment",
wal_end
);
assert_eq!(wal_end, expected_end_of_wal);
fs::rename(
cfg.wal_dir().join(format!("{}.partial", last_segment)),
cfg.wal_dir().join(last_segment),
)
.unwrap();
}
const_assert!(WAL_SEGMENT_SIZE == 16 * 1024 * 1024);
#[test]
pub fn test_find_end_of_wal_simple() {
init_logging();
test_end_of_wal::<wal_craft::Simple>("test_find_end_of_wal_simple");
}
#[test]
pub fn test_find_end_of_wal_crossing_segment_followed_by_small_one() {
init_logging();
test_end_of_wal::<wal_craft::WalRecordCrossingSegmentFollowedBySmallOne>(
"test_find_end_of_wal_crossing_segment_followed_by_small_one",
);
}
#[test]
pub fn test_find_end_of_wal_last_crossing_segment() {
init_logging();
test_end_of_wal::<wal_craft::LastWalRecordCrossingSegment>(
"test_find_end_of_wal_last_crossing_segment",
);
}
/// Check the math in update_next_xid
///
/// NOTE: These checks are sensitive to the value of XID_CHECKPOINT_INTERVAL,
/// currently 1024.
#[test]
pub fn test_update_next_xid() {
let checkpoint_buf = [0u8; std::mem::size_of::<CheckPoint>()];
let mut checkpoint = CheckPoint::decode(&checkpoint_buf).unwrap();
checkpoint.nextXid = FullTransactionId { value: 10 };
assert_eq!(checkpoint.nextXid.value, 10);
// The input XID gets rounded up to the next XID_CHECKPOINT_INTERVAL
// boundary
checkpoint.update_next_xid(100);
assert_eq!(checkpoint.nextXid.value, 1024);
// No change
checkpoint.update_next_xid(500);
assert_eq!(checkpoint.nextXid.value, 1024);
checkpoint.update_next_xid(1023);
assert_eq!(checkpoint.nextXid.value, 1024);
// The function returns the *next* XID, given the highest XID seen so
// far. So when we pass 1024, the nextXid gets bumped up to the next
// XID_CHECKPOINT_INTERVAL boundary.
checkpoint.update_next_xid(1024);
assert_eq!(checkpoint.nextXid.value, 2048);
}
#[test]
pub fn test_encode_logical_message() {
let expected = [
64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 170, 34, 166, 227, 255,
38, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 112, 114,
101, 102, 105, 120, 0, 109, 101, 115, 115, 97, 103, 101,
];
let actual = encode_logical_message("prefix", "message");
assert_eq!(expected, actual[..]);
}
}