Files
neon/pageserver/src/tenant.rs
Heikki Linnakangas 8d106708d7 Clean up timeline initialization code.
Clarify who's responsible for initializing the layer map. There were
previously two different ways to do it:

- create_empty_timeline and bootstrap_timeline let prepare_timeline()
  initialize an empty layer map.

- branch_timeline passed a flag to initialize_with_lock() to tell
  initialize_with_lock to call load_layer_map(). Because it was a
  newly created timeline, load_layer_map() never found any layer
  files, so it just initialized an empty layer map.

With this commit, prepare_new_timeline() always does it. The LSN to
initialize it with is passed as argument.

Other changes per function:

prepare_timeline:
- rename to 'prepare_new_timeline' to make it clear that it's only used
  when creating a new timeline, not when loading an existing timeline
- always initialize an empty layer map. The caller can pass the LSN to
  initialize it with. (Previously, prepare_timeline would optionally
  load the layer map at 'initdb_lsn'. Some caller used that, while others
  let initialize_with_lock do it

initialize_with_lock:
- As mentioned above, remove the option to load the layer map
- Acquire the 'timelines' lock in the function itself. None of the callers
  did any other work while holding the lock.
- Rename it to finish_creation() to make its intent more clear. It's only
  used when creating a new timeline now.

create_timeline_data:
- Rename to create_timeline_struct() for clarity. It just initializes
  the Timeline struct, not any other "data"

create_timeline_files:
- use create_dir rather than create_dir_all, to be a little more strict.
  We know that the parent directory should already exist, and the timeline
  directory should not exist.
- Move the call to create_timeline_struct() to the caller. It was just
  being "passed through"

Part of https://github.com/neondatabase/neon/pull/4364
2023-06-12 11:56:49 +01:00

4444 lines
168 KiB
Rust

//!
//! Timeline repository implementation that keeps old data in files on disk, and
//! the recent changes in memory. See tenant/*_layer.rs files.
//! The functions here are responsible for locating the correct layer for the
//! get/put call, walking back the timeline branching history as needed.
//!
//! The files are stored in the .neon/tenants/<tenant_id>/timelines/<timeline_id>
//! directory. See docs/pageserver-storage.md for how the files are managed.
//! In addition to the layer files, there is a metadata file in the same
//! directory that contains information about the timeline, in particular its
//! parent timeline, and the last LSN that has been written to disk.
//!
use anyhow::{bail, Context};
use futures::FutureExt;
use pageserver_api::models::TimelineState;
use remote_storage::DownloadError;
use remote_storage::GenericRemoteStorage;
use storage_broker::BrokerClientChannel;
use tokio::sync::watch;
use tokio::sync::OwnedMutexGuard;
use tokio::task::JoinSet;
use tracing::*;
use utils::completion;
use utils::crashsafe::path_with_suffix_extension;
use std::cmp::min;
use std::collections::hash_map::Entry;
use std::collections::BTreeSet;
use std::collections::HashMap;
use std::ffi::OsStr;
use std::fs;
use std::fs::File;
use std::fs::OpenOptions;
use std::io;
use std::io::Write;
use std::ops::Bound::Included;
use std::path::Path;
use std::path::PathBuf;
use std::process::Command;
use std::process::Stdio;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::sync::MutexGuard;
use std::sync::{Mutex, RwLock};
use std::time::{Duration, Instant};
use self::config::TenantConf;
use self::metadata::TimelineMetadata;
use self::remote_timeline_client::RemoteTimelineClient;
use self::timeline::EvictionTaskTenantState;
use crate::config::PageServerConf;
use crate::context::{DownloadBehavior, RequestContext};
use crate::import_datadir;
use crate::is_uninit_mark;
use crate::metrics::{remove_tenant_metrics, TENANT_STATE_METRIC, TENANT_SYNTHETIC_SIZE_METRIC};
use crate::repository::GcResult;
use crate::task_mgr;
use crate::task_mgr::TaskKind;
use crate::tenant::config::TenantConfOpt;
use crate::tenant::metadata::load_metadata;
use crate::tenant::remote_timeline_client::index::IndexPart;
use crate::tenant::remote_timeline_client::MaybeDeletedIndexPart;
use crate::tenant::remote_timeline_client::PersistIndexPartWithDeletedFlagError;
use crate::tenant::storage_layer::DeltaLayer;
use crate::tenant::storage_layer::ImageLayer;
use crate::tenant::storage_layer::Layer;
use crate::InitializationOrder;
use crate::virtual_file::VirtualFile;
use crate::walredo::PostgresRedoManager;
use crate::walredo::WalRedoManager;
use crate::TEMP_FILE_SUFFIX;
pub use pageserver_api::models::TenantState;
use toml_edit;
use utils::{
crashsafe,
id::{TenantId, TimelineId},
lsn::{Lsn, RecordLsn},
};
pub mod blob_io;
pub mod block_io;
pub mod disk_btree;
pub(crate) mod ephemeral_file;
pub mod layer_map;
pub mod manifest;
pub mod metadata;
mod par_fsync;
mod remote_timeline_client;
pub mod storage_layer;
pub mod config;
pub mod mgr;
pub mod tasks;
pub mod upload_queue;
mod timeline;
pub mod size;
pub(crate) use timeline::debug_assert_current_span_has_tenant_and_timeline_id;
pub use timeline::{
LocalLayerInfoForDiskUsageEviction, LogicalSizeCalculationCause, PageReconstructError, Timeline,
};
// re-export this function so that page_cache.rs can use it.
pub use crate::tenant::ephemeral_file::writeback as writeback_ephemeral_file;
// re-export for use in storage_sync.rs
pub use crate::tenant::metadata::save_metadata;
// re-export for use in walreceiver
pub use crate::tenant::timeline::WalReceiverInfo;
/// Parts of the `.neon/tenants/<tenant_id>/timelines/<timeline_id>` directory prefix.
pub const TIMELINES_SEGMENT_NAME: &str = "timelines";
pub const TENANT_ATTACHING_MARKER_FILENAME: &str = "attaching";
///
/// Tenant consists of multiple timelines. Keep them in a hash table.
///
pub struct Tenant {
// Global pageserver config parameters
pub conf: &'static PageServerConf,
/// The value creation timestamp, used to measure activation delay, see:
/// <https://github.com/neondatabase/neon/issues/4025>
loading_started_at: Instant,
state: watch::Sender<TenantState>,
// Overridden tenant-specific config parameters.
// We keep TenantConfOpt sturct here to preserve the information
// about parameters that are not set.
// This is necessary to allow global config updates.
tenant_conf: Arc<RwLock<TenantConfOpt>>,
tenant_id: TenantId,
timelines: Mutex<HashMap<TimelineId, Arc<Timeline>>>,
// This mutex prevents creation of new timelines during GC.
// Adding yet another mutex (in addition to `timelines`) is needed because holding
// `timelines` mutex during all GC iteration
// may block for a long time `get_timeline`, `get_timelines_state`,... and other operations
// with timelines, which in turn may cause dropping replication connection, expiration of wait_for_lsn
// timeout...
gc_cs: tokio::sync::Mutex<()>,
walredo_mgr: Arc<dyn WalRedoManager + Send + Sync>,
// provides access to timeline data sitting in the remote storage
remote_storage: Option<GenericRemoteStorage>,
/// Cached logical sizes updated updated on each [`Tenant::gather_size_inputs`].
cached_logical_sizes: tokio::sync::Mutex<HashMap<(TimelineId, Lsn), u64>>,
cached_synthetic_tenant_size: Arc<AtomicU64>,
eviction_task_tenant_state: tokio::sync::Mutex<EvictionTaskTenantState>,
}
/// A timeline with some of its files on disk, being initialized.
/// This struct ensures the atomicity of the timeline init: it's either properly created and inserted into pageserver's memory, or
/// its local files are removed. In the worst case of a crash, an uninit mark file is left behind, which causes the directory
/// to be removed on next restart.
///
/// The caller is responsible for proper timeline data filling before the final init.
#[must_use]
pub struct UninitializedTimeline<'t> {
owning_tenant: &'t Tenant,
timeline_id: TimelineId,
raw_timeline: Option<(Arc<Timeline>, TimelineUninitMark)>,
}
/// An uninit mark file, created along the timeline dir to ensure the timeline either gets fully initialized and loaded into pageserver's memory,
/// or gets removed eventually.
///
/// XXX: it's important to create it near the timeline dir, not inside it to ensure timeline dir gets removed first.
#[must_use]
struct TimelineUninitMark {
uninit_mark_deleted: bool,
uninit_mark_path: PathBuf,
timeline_path: PathBuf,
}
impl UninitializedTimeline<'_> {
/// Finish timeline creation: insert it into the Tenant's timelines map and remove the
/// uninit mark file.
///
/// This function launches the flush loop if not already done.
///
/// The caller is responsible for activating the timeline (function `.activate()`).
fn finish_creation(mut self) -> anyhow::Result<Arc<Timeline>> {
let timeline_id = self.timeline_id;
let tenant_id = self.owning_tenant.tenant_id;
let (new_timeline, uninit_mark) = self.raw_timeline.take().with_context(|| {
format!("No timeline for initalization found for {tenant_id}/{timeline_id}")
})?;
// Check that the caller initialized disk_consistent_lsn
//
// TODO: many our unit tests violate this.
//let new_disk_consistent_lsn = new_timeline.get_disk_consistent_lsn();
//anyhow::ensure!(new_disk_consistent_lsn.is_valid(),
// "new timeline {tenant_id}/{timeline_id} has invalid disk_consistent_lsn");
let mut timelines = self.owning_tenant.timelines.lock().unwrap();
match timelines.entry(timeline_id) {
Entry::Occupied(_) => anyhow::bail!(
"Found freshly initialized timeline {tenant_id}/{timeline_id} in the tenant map"
),
Entry::Vacant(v) => {
uninit_mark.remove_uninit_mark().with_context(|| {
format!(
"Failed to remove uninit mark file for timeline {tenant_id}/{timeline_id}"
)
})?;
v.insert(Arc::clone(&new_timeline));
new_timeline.maybe_spawn_flush_loop();
}
}
Ok(new_timeline)
}
/// Prepares timeline data by loading it from the basebackup archive.
pub async fn import_basebackup_from_tar(
self,
copyin_read: &mut (impl tokio::io::AsyncRead + Send + Sync + Unpin),
base_lsn: Lsn,
broker_client: storage_broker::BrokerClientChannel,
ctx: &RequestContext,
) -> anyhow::Result<Arc<Timeline>> {
let raw_timeline = self.raw_timeline()?;
import_datadir::import_basebackup_from_tar(raw_timeline, copyin_read, base_lsn, ctx)
.await
.context("Failed to import basebackup")?;
// Flush the new layer files to disk, before we make the timeline as available to
// the outside world.
//
// Flush loop needs to be spawned in order to be able to flush.
raw_timeline.maybe_spawn_flush_loop();
fail::fail_point!("before-checkpoint-new-timeline", |_| {
bail!("failpoint before-checkpoint-new-timeline");
});
raw_timeline
.freeze_and_flush()
.await
.context("Failed to flush after basebackup import")?;
// All the data has been imported. Insert the Timeline into the tenant's timelines
// map and remove the uninit mark file.
let tl = self.finish_creation()?;
tl.activate(broker_client, None, ctx);
Ok(tl)
}
fn raw_timeline(&self) -> anyhow::Result<&Arc<Timeline>> {
Ok(&self
.raw_timeline
.as_ref()
.with_context(|| {
format!(
"No raw timeline {}/{} found",
self.owning_tenant.tenant_id, self.timeline_id
)
})?
.0)
}
}
impl Drop for UninitializedTimeline<'_> {
fn drop(&mut self) {
if let Some((_, uninit_mark)) = self.raw_timeline.take() {
let _entered = info_span!("drop_uninitialized_timeline", tenant = %self.owning_tenant.tenant_id, timeline = %self.timeline_id).entered();
error!("Timeline got dropped without initializing, cleaning its files");
cleanup_timeline_directory(uninit_mark);
}
}
}
fn cleanup_timeline_directory(uninit_mark: TimelineUninitMark) {
let timeline_path = &uninit_mark.timeline_path;
match ignore_absent_files(|| fs::remove_dir_all(timeline_path)) {
Ok(()) => {
info!("Timeline dir {timeline_path:?} removed successfully, removing the uninit mark")
}
Err(e) => {
error!("Failed to clean up uninitialized timeline directory {timeline_path:?}: {e:?}")
}
}
drop(uninit_mark); // mark handles its deletion on drop, gets retained if timeline dir exists
}
impl TimelineUninitMark {
fn new(uninit_mark_path: PathBuf, timeline_path: PathBuf) -> Self {
Self {
uninit_mark_deleted: false,
uninit_mark_path,
timeline_path,
}
}
fn remove_uninit_mark(mut self) -> anyhow::Result<()> {
if !self.uninit_mark_deleted {
self.delete_mark_file_if_present()?;
}
Ok(())
}
fn delete_mark_file_if_present(&mut self) -> anyhow::Result<()> {
let uninit_mark_file = &self.uninit_mark_path;
let uninit_mark_parent = uninit_mark_file
.parent()
.with_context(|| format!("Uninit mark file {uninit_mark_file:?} has no parent"))?;
ignore_absent_files(|| fs::remove_file(uninit_mark_file)).with_context(|| {
format!("Failed to remove uninit mark file at path {uninit_mark_file:?}")
})?;
crashsafe::fsync(uninit_mark_parent).context("Failed to fsync uninit mark parent")?;
self.uninit_mark_deleted = true;
Ok(())
}
}
impl Drop for TimelineUninitMark {
fn drop(&mut self) {
if !self.uninit_mark_deleted {
if self.timeline_path.exists() {
error!(
"Uninit mark {} is not removed, timeline {} stays uninitialized",
self.uninit_mark_path.display(),
self.timeline_path.display()
)
} else {
// unblock later timeline creation attempts
warn!(
"Removing intermediate uninit mark file {}",
self.uninit_mark_path.display()
);
if let Err(e) = self.delete_mark_file_if_present() {
error!("Failed to remove the uninit mark file: {e}")
}
}
}
}
}
// We should not blindly overwrite local metadata with remote one.
// For example, consider the following case:
// Image layer is flushed to disk as a new delta layer, we update local metadata and start upload task but after that
// pageserver crashes. During startup we'll load new metadata, and then reset it
// to the state of remote one. But current layermap will have layers from the old
// metadata which is inconsistent.
// And with current logic it wont disgard them during load because during layermap
// load it sees local disk consistent lsn which is ahead of layer lsns.
// If we treat remote as source of truth we need to completely sync with it,
// i e delete local files which are missing on the remote. This will add extra work,
// wal for these layers needs to be reingested for example
//
// So the solution is to take remote metadata only when we're attaching.
pub fn merge_local_remote_metadata<'a>(
local: Option<&'a TimelineMetadata>,
remote: Option<&'a TimelineMetadata>,
) -> anyhow::Result<(&'a TimelineMetadata, bool)> {
match (local, remote) {
(None, None) => anyhow::bail!("we should have either local metadata or remote"),
(Some(local), None) => Ok((local, true)),
// happens if we crash during attach, before writing out the metadata file
(None, Some(remote)) => Ok((remote, false)),
// This is the regular case where we crash/exit before finishing queued uploads.
// Also, it happens if we crash during attach after writing the metadata file
// but before removing the attaching marker file.
(Some(local), Some(remote)) => {
let consistent_lsn_cmp = local
.disk_consistent_lsn()
.cmp(&remote.disk_consistent_lsn());
let gc_cutoff_lsn_cmp = local
.latest_gc_cutoff_lsn()
.cmp(&remote.latest_gc_cutoff_lsn());
use std::cmp::Ordering::*;
match (consistent_lsn_cmp, gc_cutoff_lsn_cmp) {
// It wouldn't matter, but pick the local one so that we don't rewrite the metadata file.
(Equal, Equal) => Ok((local, true)),
// Local state is clearly ahead of the remote.
(Greater, Greater) => Ok((local, true)),
// We have local layer files that aren't on the remote, but GC horizon is on par.
(Greater, Equal) => Ok((local, true)),
// Local GC started running but we couldn't sync it to the remote.
(Equal, Greater) => Ok((local, true)),
// We always update the local value first, so something else must have
// updated the remote value, probably a different pageserver.
// The control plane is supposed to prevent this from happening.
// Bail out.
(Less, Less)
| (Less, Equal)
| (Equal, Less)
| (Less, Greater)
| (Greater, Less) => {
anyhow::bail!(
r#"remote metadata appears to be ahead of local metadata:
local:
{local:#?}
remote:
{remote:#?}
"#
);
}
}
}
}
}
#[derive(Debug, thiserror::Error)]
pub enum DeleteTimelineError {
#[error("NotFound")]
NotFound,
#[error("HasChildren")]
HasChildren(Vec<TimelineId>),
#[error(transparent)]
Other(#[from] anyhow::Error),
}
pub enum SetStoppingError {
AlreadyStopping,
Broken,
}
struct RemoteStartupData {
index_part: IndexPart,
remote_metadata: TimelineMetadata,
}
#[derive(Debug, thiserror::Error)]
pub(crate) enum WaitToBecomeActiveError {
WillNotBecomeActive {
tenant_id: TenantId,
state: TenantState,
},
TenantDropped {
tenant_id: TenantId,
},
}
impl std::fmt::Display for WaitToBecomeActiveError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
WaitToBecomeActiveError::WillNotBecomeActive { tenant_id, state } => {
write!(
f,
"Tenant {} will not become active. Current state: {:?}",
tenant_id, state
)
}
WaitToBecomeActiveError::TenantDropped { tenant_id } => {
write!(f, "Tenant {tenant_id} will not become active (dropped)")
}
}
}
}
pub(crate) enum ShutdownError {
AlreadyStopping,
}
impl Tenant {
/// Yet another helper for timeline initialization.
/// Contains the common part of `load_local_timeline` and `load_remote_timeline`.
///
/// - Initializes the Timeline struct and inserts it into the tenant's hash map
/// - Scans the local timeline directory for layer files and builds the layer map
/// - Downloads remote index file and adds remote files to the layer map
/// - Schedules remote upload tasks for any files that are present locally but missing from remote storage.
///
/// If the operation fails, the timeline is left in the tenant's hash map in Broken state. On success,
/// it is marked as Active.
#[allow(clippy::too_many_arguments)]
async fn timeline_init_and_sync(
&self,
timeline_id: TimelineId,
remote_client: Option<RemoteTimelineClient>,
remote_startup_data: Option<RemoteStartupData>,
local_metadata: Option<TimelineMetadata>,
ancestor: Option<Arc<Timeline>>,
first_save: bool,
init_order: Option<&InitializationOrder>,
_ctx: &RequestContext,
) -> anyhow::Result<()> {
let tenant_id = self.tenant_id;
let (up_to_date_metadata, picked_local) = merge_local_remote_metadata(
local_metadata.as_ref(),
remote_startup_data.as_ref().map(|r| &r.remote_metadata),
)
.context("merge_local_remote_metadata")?
.to_owned();
let timeline = self.create_timeline_struct(
timeline_id,
up_to_date_metadata,
ancestor.clone(),
remote_client,
init_order,
)?;
let new_disk_consistent_lsn = timeline.get_disk_consistent_lsn();
anyhow::ensure!(
new_disk_consistent_lsn.is_valid(),
"Timeline {tenant_id}/{timeline_id} has invalid disk_consistent_lsn"
);
timeline
.load_layer_map(new_disk_consistent_lsn)
.with_context(|| {
format!("Failed to load layermap for timeline {tenant_id}/{timeline_id}")
})?;
{
// avoiding holding it across awaits
let mut timelines_accessor = self.timelines.lock().unwrap();
match timelines_accessor.entry(timeline_id) {
Entry::Occupied(_) => {
// The uninit mark file acts as a lock that prevents another task from
// initializing the timeline at the same time.
unreachable!(
"Timeline {tenant_id}/{timeline_id} already exists in the tenant map"
);
}
Entry::Vacant(v) => {
v.insert(Arc::clone(&timeline));
timeline.maybe_spawn_flush_loop();
}
}
};
if self.remote_storage.is_some() {
// Reconcile local state with remote storage, downloading anything that's
// missing locally, and scheduling uploads for anything that's missing
// in remote storage.
timeline
.reconcile_with_remote(
up_to_date_metadata,
remote_startup_data.as_ref().map(|r| &r.index_part),
)
.await
.context("failed to reconcile with remote")?
}
// Sanity check: a timeline should have some content.
anyhow::ensure!(
ancestor.is_some()
|| timeline
.layers
.read()
.unwrap()
.iter_historic_layers()
.next()
.is_some(),
"Timeline has no ancestor and no layer files"
);
// Save the metadata file to local disk.
if !picked_local {
save_metadata(
self.conf,
timeline_id,
tenant_id,
up_to_date_metadata,
first_save,
)
.context("save_metadata")?;
}
Ok(())
}
///
/// Attach a tenant that's available in cloud storage.
///
/// This returns quickly, after just creating the in-memory object
/// Tenant struct and launching a background task to download
/// the remote index files. On return, the tenant is most likely still in
/// Attaching state, and it will become Active once the background task
/// finishes. You can use wait_until_active() to wait for the task to
/// complete.
///
pub(crate) fn spawn_attach(
conf: &'static PageServerConf,
tenant_id: TenantId,
broker_client: storage_broker::BrokerClientChannel,
remote_storage: GenericRemoteStorage,
ctx: &RequestContext,
) -> anyhow::Result<Arc<Tenant>> {
// TODO dedup with spawn_load
let tenant_conf =
Self::load_tenant_config(conf, tenant_id).context("load tenant config")?;
let wal_redo_manager = Arc::new(PostgresRedoManager::new(conf, tenant_id));
let tenant = Arc::new(Tenant::new(
TenantState::Attaching,
conf,
tenant_conf,
wal_redo_manager,
tenant_id,
Some(remote_storage),
));
// Do all the hard work in the background
let tenant_clone = Arc::clone(&tenant);
let ctx = ctx.detached_child(TaskKind::Attach, DownloadBehavior::Warn);
task_mgr::spawn(
&tokio::runtime::Handle::current(),
TaskKind::Attach,
Some(tenant_id),
None,
"attach tenant",
false,
async move {
match tenant_clone.attach(&ctx).await {
Ok(()) => {
info!("attach finished, activating");
tenant_clone.activate(broker_client, None, &ctx);
}
Err(e) => {
error!("attach failed, setting tenant state to Broken: {:?}", e);
tenant_clone.state.send_modify(|state| {
assert_eq!(*state, TenantState::Attaching, "the attach task owns the tenant state until activation is complete");
*state = TenantState::broken_from_reason(e.to_string());
});
}
}
Ok(())
}
.instrument({
let span = tracing::info_span!(parent: None, "attach", tenant_id=%tenant_id);
span.follows_from(Span::current());
span
}),
);
Ok(tenant)
}
///
/// Background task that downloads all data for a tenant and brings it to Active state.
///
/// No background tasks are started as part of this routine.
///
async fn attach(self: &Arc<Tenant>, ctx: &RequestContext) -> anyhow::Result<()> {
debug_assert_current_span_has_tenant_id();
let marker_file = self.conf.tenant_attaching_mark_file_path(&self.tenant_id);
if !tokio::fs::try_exists(&marker_file)
.await
.context("check for existence of marker file")?
{
anyhow::bail!(
"implementation error: marker file should exist at beginning of this function"
);
}
// Get list of remote timelines
// download index files for every tenant timeline
info!("listing remote timelines");
let remote_storage = self
.remote_storage
.as_ref()
.ok_or_else(|| anyhow::anyhow!("cannot attach without remote storage"))?;
let remote_timeline_ids = remote_timeline_client::list_remote_timelines(
remote_storage,
self.conf,
self.tenant_id,
)
.await?;
info!("found {} timelines", remote_timeline_ids.len());
// Download & parse index parts
let mut part_downloads = JoinSet::new();
for timeline_id in remote_timeline_ids {
let client = RemoteTimelineClient::new(
remote_storage.clone(),
self.conf,
self.tenant_id,
timeline_id,
);
part_downloads.spawn(
async move {
debug!("starting index part download");
let index_part = client
.download_index_file()
.await
.context("download index file")?;
debug!("finished index part download");
Result::<_, anyhow::Error>::Ok((timeline_id, client, index_part))
}
.map(move |res| {
res.with_context(|| format!("download index part for timeline {timeline_id}"))
})
.instrument(info_span!("download_index_part", timeline=%timeline_id)),
);
}
// Wait for all the download tasks to complete & collect results.
let mut remote_index_and_client = HashMap::new();
let mut timeline_ancestors = HashMap::new();
while let Some(result) = part_downloads.join_next().await {
// NB: we already added timeline_id as context to the error
let result: Result<_, anyhow::Error> = result.context("joinset task join")?;
let (timeline_id, client, index_part) = result?;
debug!("successfully downloaded index part for timeline {timeline_id}");
match index_part {
MaybeDeletedIndexPart::IndexPart(index_part) => {
timeline_ancestors.insert(
timeline_id,
index_part.parse_metadata().context("parse_metadata")?,
);
remote_index_and_client.insert(timeline_id, (index_part, client));
}
MaybeDeletedIndexPart::Deleted(_) => {
info!("timeline {} is deleted, skipping", timeline_id);
continue;
}
}
}
// For every timeline, download the metadata file, scan the local directory,
// and build a layer map that contains an entry for each remote and local
// layer file.
let sorted_timelines = tree_sort_timelines(timeline_ancestors)?;
for (timeline_id, remote_metadata) in sorted_timelines {
let (index_part, remote_client) = remote_index_and_client
.remove(&timeline_id)
.expect("just put it in above");
// TODO again handle early failure
self.load_remote_timeline(timeline_id, index_part, remote_metadata, remote_client, ctx)
.await
.with_context(|| {
format!(
"failed to load remote timeline {} for tenant {}",
timeline_id, self.tenant_id
)
})?;
}
std::fs::remove_file(&marker_file)
.with_context(|| format!("unlink attach marker file {}", marker_file.display()))?;
crashsafe::fsync(marker_file.parent().expect("marker file has parent dir"))
.context("fsync tenant directory after unlinking attach marker file")?;
utils::failpoint_sleep_millis_async!("attach-before-activate");
info!("Done");
Ok(())
}
/// get size of all remote timelines
///
/// This function relies on the index_part instead of listing the remote storage
///
pub async fn get_remote_size(&self) -> anyhow::Result<u64> {
let mut size = 0;
for timeline in self.list_timelines().iter() {
if let Some(remote_client) = &timeline.remote_client {
size += remote_client.get_remote_physical_size();
}
}
Ok(size)
}
#[instrument(skip_all, fields(timeline_id=%timeline_id))]
async fn load_remote_timeline(
&self,
timeline_id: TimelineId,
index_part: IndexPart,
remote_metadata: TimelineMetadata,
remote_client: RemoteTimelineClient,
ctx: &RequestContext,
) -> anyhow::Result<()> {
debug_assert_current_span_has_tenant_id();
info!("downloading index file for timeline {}", timeline_id);
tokio::fs::create_dir_all(self.conf.timeline_path(&timeline_id, &self.tenant_id))
.await
.context("Failed to create new timeline directory")?;
let ancestor = if let Some(ancestor_id) = remote_metadata.ancestor_timeline() {
let timelines = self.timelines.lock().unwrap();
Some(Arc::clone(timelines.get(&ancestor_id).ok_or_else(
|| {
anyhow::anyhow!(
"cannot find ancestor timeline {ancestor_id} for timeline {timeline_id}"
)
},
)?))
} else {
None
};
// Even if there is local metadata it cannot be ahead of the remote one
// since we're attaching. Even if we resume interrupted attach remote one
// cannot be older than the local one
let local_metadata = None;
self.timeline_init_and_sync(
timeline_id,
Some(remote_client),
Some(RemoteStartupData {
index_part,
remote_metadata,
}),
local_metadata,
ancestor,
true,
None,
ctx,
)
.await
}
/// Create a placeholder Tenant object for a broken tenant
pub fn create_broken_tenant(
conf: &'static PageServerConf,
tenant_id: TenantId,
reason: String,
) -> Arc<Tenant> {
let wal_redo_manager = Arc::new(PostgresRedoManager::new(conf, tenant_id));
Arc::new(Tenant::new(
TenantState::Broken {
reason,
backtrace: String::new(),
},
conf,
TenantConfOpt::default(),
wal_redo_manager,
tenant_id,
None,
))
}
/// Load a tenant that's available on local disk
///
/// This is used at pageserver startup, to rebuild the in-memory
/// structures from on-disk state. This is similar to attaching a tenant,
/// but the index files already exist on local disk, as well as some layer
/// files.
///
/// If the loading fails for some reason, the Tenant will go into Broken
/// state.
#[instrument(skip_all, fields(tenant_id=%tenant_id))]
pub fn spawn_load(
conf: &'static PageServerConf,
tenant_id: TenantId,
broker_client: storage_broker::BrokerClientChannel,
remote_storage: Option<GenericRemoteStorage>,
init_order: Option<InitializationOrder>,
ctx: &RequestContext,
) -> Arc<Tenant> {
debug_assert_current_span_has_tenant_id();
let tenant_conf = match Self::load_tenant_config(conf, tenant_id) {
Ok(conf) => conf,
Err(e) => {
error!("load tenant config failed: {:?}", e);
return Tenant::create_broken_tenant(conf, tenant_id, format!("{e:#}"));
}
};
let wal_redo_manager = Arc::new(PostgresRedoManager::new(conf, tenant_id));
let tenant = Tenant::new(
TenantState::Loading,
conf,
tenant_conf,
wal_redo_manager,
tenant_id,
remote_storage,
);
let tenant = Arc::new(tenant);
// Do all the hard work in a background task
let tenant_clone = Arc::clone(&tenant);
let ctx = ctx.detached_child(TaskKind::InitialLoad, DownloadBehavior::Warn);
let _ = task_mgr::spawn(
&tokio::runtime::Handle::current(),
TaskKind::InitialLoad,
Some(tenant_id),
None,
"initial tenant load",
false,
async move {
let mut init_order = init_order;
// take the completion because initial tenant loading will complete when all of
// these tasks complete.
let _completion = init_order.as_mut().and_then(|x| x.initial_tenant_load.take());
match tenant_clone.load(init_order.as_ref(), &ctx).await {
Ok(()) => {
debug!("load finished, activating");
let background_jobs_can_start = init_order.as_ref().map(|x| &x.background_jobs_can_start);
tenant_clone.activate(broker_client, background_jobs_can_start, &ctx);
}
Err(err) => {
error!("load failed, setting tenant state to Broken: {err:?}");
tenant_clone.state.send_modify(|state| {
assert_eq!(*state, TenantState::Loading, "the loading task owns the tenant state until activation is complete");
*state = TenantState::broken_from_reason(err.to_string());
});
}
}
Ok(())
}
.instrument({
let span = tracing::info_span!(parent: None, "load", tenant_id=%tenant_id);
span.follows_from(Span::current());
span
}),
);
tenant
}
///
/// Background task to load in-memory data structures for this tenant, from
/// files on disk. Used at pageserver startup.
///
/// No background tasks are started as part of this routine.
async fn load(
self: &Arc<Tenant>,
init_order: Option<&InitializationOrder>,
ctx: &RequestContext,
) -> anyhow::Result<()> {
debug_assert_current_span_has_tenant_id();
debug!("loading tenant task");
utils::failpoint_sleep_millis_async!("before-loading-tenant");
// TODO split this into two functions, scan and actual load
// Load in-memory state to reflect the local files on disk
//
// Scan the directory, peek into the metadata file of each timeline, and
// collect a list of timelines and their ancestors.
let tenant_id = self.tenant_id;
let conf = self.conf;
let span = info_span!("blocking");
let sorted_timelines: Vec<(_, _)> = tokio::task::spawn_blocking(move || {
let _g = span.entered();
let mut timelines_to_load: HashMap<TimelineId, TimelineMetadata> = HashMap::new();
let timelines_dir = conf.timelines_path(&tenant_id);
for entry in
std::fs::read_dir(&timelines_dir).context("list timelines directory for tenant")?
{
let entry = entry.context("read timeline dir entry")?;
let timeline_dir = entry.path();
if crate::is_temporary(&timeline_dir) {
info!(
"Found temporary timeline directory, removing: {}",
timeline_dir.display()
);
if let Err(e) = std::fs::remove_dir_all(&timeline_dir) {
error!(
"Failed to remove temporary directory '{}': {:?}",
timeline_dir.display(),
e
);
}
} else if is_uninit_mark(&timeline_dir) {
let timeline_uninit_mark_file = &timeline_dir;
info!(
"Found an uninit mark file {}, removing the timeline and its uninit mark",
timeline_uninit_mark_file.display()
);
let timeline_id = timeline_uninit_mark_file
.file_stem()
.and_then(OsStr::to_str)
.unwrap_or_default()
.parse::<TimelineId>()
.with_context(|| {
format!(
"Could not parse timeline id out of the timeline uninit mark name {}",
timeline_uninit_mark_file.display()
)
})?;
let timeline_dir = conf.timeline_path(&timeline_id, &tenant_id);
if let Err(e) =
remove_timeline_and_uninit_mark(&timeline_dir, timeline_uninit_mark_file)
{
error!("Failed to clean up uninit marked timeline: {e:?}");
}
} else {
let timeline_id = timeline_dir
.file_name()
.and_then(OsStr::to_str)
.unwrap_or_default()
.parse::<TimelineId>()
.with_context(|| {
format!(
"Could not parse timeline id out of the timeline dir name {}",
timeline_dir.display()
)
})?;
let timeline_uninit_mark_file =
conf.timeline_uninit_mark_file_path(tenant_id, timeline_id);
if timeline_uninit_mark_file.exists() {
info!(
%timeline_id,
"Found an uninit mark file, removing the timeline and its uninit mark",
);
if let Err(e) = remove_timeline_and_uninit_mark(
&timeline_dir,
&timeline_uninit_mark_file,
) {
error!("Failed to clean up uninit marked timeline: {e:?}");
}
continue;
}
let file_name = entry.file_name();
if let Ok(timeline_id) =
file_name.to_str().unwrap_or_default().parse::<TimelineId>()
{
let metadata = load_metadata(conf, timeline_id, tenant_id)
.context("failed to load metadata")?;
timelines_to_load.insert(timeline_id, metadata);
} else {
// A file or directory that doesn't look like a timeline ID
warn!(
"unexpected file or directory in timelines directory: {}",
file_name.to_string_lossy()
);
}
}
}
// Sort the array of timeline IDs into tree-order, so that parent comes before
// all its children.
tree_sort_timelines(timelines_to_load)
})
.await
.context("load spawn_blocking")
.and_then(|res| res)?;
// FIXME original collect_timeline_files contained one more check:
// 1. "Timeline has no ancestor and no layer files"
for (timeline_id, local_metadata) in sorted_timelines {
self.load_local_timeline(timeline_id, local_metadata, init_order, ctx)
.await
.with_context(|| format!("load local timeline {timeline_id}"))?;
}
trace!("Done");
Ok(())
}
/// Subroutine of `load_tenant`, to load an individual timeline
///
/// NB: The parent is assumed to be already loaded!
#[instrument(skip(self, local_metadata, init_order, ctx))]
async fn load_local_timeline(
self: &Arc<Self>,
timeline_id: TimelineId,
local_metadata: TimelineMetadata,
init_order: Option<&InitializationOrder>,
ctx: &RequestContext,
) -> anyhow::Result<()> {
debug_assert_current_span_has_tenant_id();
let remote_client = self.remote_storage.as_ref().map(|remote_storage| {
RemoteTimelineClient::new(
remote_storage.clone(),
self.conf,
self.tenant_id,
timeline_id,
)
});
let ancestor = if let Some(ancestor_timeline_id) = local_metadata.ancestor_timeline() {
let ancestor_timeline = self.get_timeline(ancestor_timeline_id, false)
.with_context(|| anyhow::anyhow!("cannot find ancestor timeline {ancestor_timeline_id} for timeline {timeline_id}"))?;
Some(ancestor_timeline)
} else {
None
};
let (remote_startup_data, remote_client) = match remote_client {
Some(remote_client) => match remote_client.download_index_file().await {
Ok(index_part) => {
let index_part = match index_part {
MaybeDeletedIndexPart::IndexPart(index_part) => index_part,
MaybeDeletedIndexPart::Deleted(index_part) => {
// TODO: we won't reach here if remote storage gets de-configured after start of the deletion operation.
// Example:
// start deletion operation
// finishes upload of index part
// pageserver crashes
// remote storage gets de-configured
// pageserver starts
//
// We don't really anticipate remote storage to be de-configured, so, for now, this is fine.
// Also, maybe we'll remove that option entirely in the future, see https://github.com/neondatabase/neon/issues/4099.
info!("is_deleted is set on remote, resuming removal of timeline data originally done by timeline deletion handler");
remote_client
.init_upload_queue_stopped_to_continue_deletion(&index_part)?;
let timeline = self
.create_timeline_struct(
timeline_id,
&local_metadata,
ancestor,
Some(remote_client),
init_order,
)
.context("create_timeline_struct")?;
let guard = Arc::clone(&timeline.delete_lock).lock_owned().await;
// Note: here we even skip populating layer map. Timeline is essentially uninitialized.
// RemoteTimelineClient is the only functioning part.
timeline.set_state(TimelineState::Stopping);
// We meed to do this because when console retries delete request we shouldnt answer with 404
// because 404 means successful deletion.
// FIXME consider TimelineState::Deleting.
let mut locked = self.timelines.lock().unwrap();
locked.insert(timeline_id, Arc::clone(&timeline));
Tenant::schedule_delete_timeline(
Arc::clone(self),
timeline_id,
timeline,
guard,
);
return Ok(());
}
};
let remote_metadata = index_part.parse_metadata().context("parse_metadata")?;
(
Some(RemoteStartupData {
index_part,
remote_metadata,
}),
Some(remote_client),
)
}
Err(DownloadError::NotFound) => {
info!("no index file was found on the remote");
(None, Some(remote_client))
}
Err(e) => return Err(anyhow::anyhow!(e)),
},
None => (None, remote_client),
};
self.timeline_init_and_sync(
timeline_id,
remote_client,
remote_startup_data,
Some(local_metadata),
ancestor,
false,
init_order,
ctx,
)
.await
}
pub fn tenant_id(&self) -> TenantId {
self.tenant_id
}
/// Get Timeline handle for given Neon timeline ID.
/// This function is idempotent. It doesn't change internal state in any way.
pub fn get_timeline(
&self,
timeline_id: TimelineId,
active_only: bool,
) -> anyhow::Result<Arc<Timeline>> {
let timelines_accessor = self.timelines.lock().unwrap();
let timeline = timelines_accessor.get(&timeline_id).with_context(|| {
format!("Timeline {}/{} was not found", self.tenant_id, timeline_id)
})?;
if active_only && !timeline.is_active() {
anyhow::bail!(
"Timeline {}/{} is not active, state: {:?}",
self.tenant_id,
timeline_id,
timeline.current_state()
)
} else {
Ok(Arc::clone(timeline))
}
}
/// Lists timelines the tenant contains.
/// Up to tenant's implementation to omit certain timelines that ar not considered ready for use.
pub fn list_timelines(&self) -> Vec<Arc<Timeline>> {
self.timelines
.lock()
.unwrap()
.values()
.map(Arc::clone)
.collect()
}
/// This is used to create the initial 'main' timeline during bootstrapping,
/// or when importing a new base backup. The caller is expected to load an
/// initial image of the datadir to the new timeline after this.
///
/// Until that happens, the on-disk state is invalid (disk_consistent_lsn=Lsn(0))
/// and the timeline will fail to load at a restart.
///
/// That's why we add an uninit mark file, and wrap it together witht the Timeline
/// in-memory object into UninitializedTimeline.
/// Once the caller is done setting up the timeline, they should call
/// `UninitializedTimeline::initialize_with_lock` to remove the uninit mark.
///
/// For tests, use `DatadirModification::init_empty_test_timeline` + `commit` to setup the
/// minimum amount of keys required to get a writable timeline.
/// (Without it, `put` might fail due to `repartition` failing.)
pub fn create_empty_timeline(
&self,
new_timeline_id: TimelineId,
initdb_lsn: Lsn,
pg_version: u32,
_ctx: &RequestContext,
) -> anyhow::Result<UninitializedTimeline> {
anyhow::ensure!(
self.is_active(),
"Cannot create empty timelines on inactive tenant"
);
let timelines = self.timelines.lock().unwrap();
let timeline_uninit_mark = self.create_timeline_uninit_mark(new_timeline_id, &timelines)?;
drop(timelines);
let new_metadata = TimelineMetadata::new(
// Initialize disk_consistent LSN to 0, The caller must import some data to
// make it valid, before calling finish_creation()
Lsn(0),
None,
None,
Lsn(0),
initdb_lsn,
initdb_lsn,
pg_version,
);
self.prepare_new_timeline(
new_timeline_id,
&new_metadata,
timeline_uninit_mark,
initdb_lsn,
None,
)
}
/// Helper for unit tests to create an emtpy timeline.
///
/// The timeline is has state value `Active` but its background loops are not running.
// This makes the various functions which anyhow::ensure! for Active state work in tests.
// Our current tests don't need the background loops.
#[cfg(test)]
pub fn create_test_timeline(
&self,
new_timeline_id: TimelineId,
initdb_lsn: Lsn,
pg_version: u32,
ctx: &RequestContext,
) -> anyhow::Result<Arc<Timeline>> {
let uninit_tl = self.create_empty_timeline(new_timeline_id, initdb_lsn, pg_version, ctx)?;
let tline = uninit_tl.raw_timeline().expect("we just created it");
assert_eq!(tline.get_last_record_lsn(), Lsn(0));
// Setup minimum keys required for the timeline to be usable.
let mut modification = tline.begin_modification(initdb_lsn);
modification
.init_empty_test_timeline()
.context("init_empty_test_timeline")?;
modification
.commit()
.context("commit init_empty_test_timeline modification")?;
let tl = uninit_tl.finish_creation()?;
// The non-test code would call tl.activate() here.
tl.set_state(TimelineState::Active);
Ok(tl)
}
/// Create a new timeline.
///
/// Returns the new timeline ID and reference to its Timeline object.
///
/// If the caller specified the timeline ID to use (`new_timeline_id`), and timeline with
/// the same timeline ID already exists, returns None. If `new_timeline_id` is not given,
/// a new unique ID is generated.
pub async fn create_timeline(
&self,
new_timeline_id: TimelineId,
ancestor_timeline_id: Option<TimelineId>,
mut ancestor_start_lsn: Option<Lsn>,
pg_version: u32,
broker_client: storage_broker::BrokerClientChannel,
ctx: &RequestContext,
) -> anyhow::Result<Option<Arc<Timeline>>> {
anyhow::ensure!(
self.is_active(),
"Cannot create timelines on inactive tenant"
);
if let Ok(existing) = self.get_timeline(new_timeline_id, false) {
debug!("timeline {new_timeline_id} already exists");
if let Some(remote_client) = existing.remote_client.as_ref() {
// Wait for uploads to complete, so that when we return Ok, the timeline
// is known to be durable on remote storage. Just like we do at the end of
// this function, after we have created the timeline ourselves.
//
// We only really care that the initial version of `index_part.json` has
// been uploaded. That's enough to remember that the timeline
// exists. However, there is no function to wait specifically for that so
// we just wait for all in-progress uploads to finish.
remote_client
.wait_completion()
.await
.context("wait for timeline uploads to complete")?;
}
return Ok(None);
}
let loaded_timeline = match ancestor_timeline_id {
Some(ancestor_timeline_id) => {
let ancestor_timeline = self
.get_timeline(ancestor_timeline_id, false)
.context("Cannot branch off the timeline that's not present in pageserver")?;
if let Some(lsn) = ancestor_start_lsn.as_mut() {
*lsn = lsn.align();
let ancestor_ancestor_lsn = ancestor_timeline.get_ancestor_lsn();
if ancestor_ancestor_lsn > *lsn {
// can we safely just branch from the ancestor instead?
bail!(
"invalid start lsn {} for ancestor timeline {}: less than timeline ancestor lsn {}",
lsn,
ancestor_timeline_id,
ancestor_ancestor_lsn,
);
}
// Wait for the WAL to arrive and be processed on the parent branch up
// to the requested branch point. The repository code itself doesn't
// require it, but if we start to receive WAL on the new timeline,
// decoding the new WAL might need to look up previous pages, relation
// sizes etc. and that would get confused if the previous page versions
// are not in the repository yet.
ancestor_timeline.wait_lsn(*lsn, ctx).await?;
}
self.branch_timeline(&ancestor_timeline, new_timeline_id, ancestor_start_lsn, ctx)
.await?
}
None => {
self.bootstrap_timeline(new_timeline_id, pg_version, ctx)
.await?
}
};
loaded_timeline.activate(broker_client, None, ctx);
if let Some(remote_client) = loaded_timeline.remote_client.as_ref() {
// Wait for the upload of the 'index_part.json` file to finish, so that when we return
// Ok, the timeline is durable in remote storage.
let kind = ancestor_timeline_id
.map(|_| "branched")
.unwrap_or("bootstrapped");
remote_client.wait_completion().await.with_context(|| {
format!("wait for {} timeline initial uploads to complete", kind)
})?;
}
Ok(Some(loaded_timeline))
}
/// perform one garbage collection iteration, removing old data files from disk.
/// this function is periodically called by gc task.
/// also it can be explicitly requested through page server api 'do_gc' command.
///
/// `target_timeline_id` specifies the timeline to GC, or None for all.
///
/// The `horizon` an `pitr` parameters determine how much WAL history needs to be retained.
/// Also known as the retention period, or the GC cutoff point. `horizon` specifies
/// the amount of history, as LSN difference from current latest LSN on each timeline.
/// `pitr` specifies the same as a time difference from the current time. The effective
/// GC cutoff point is determined conservatively by either `horizon` and `pitr`, whichever
/// requires more history to be retained.
//
pub async fn gc_iteration(
&self,
target_timeline_id: Option<TimelineId>,
horizon: u64,
pitr: Duration,
ctx: &RequestContext,
) -> anyhow::Result<GcResult> {
// there is a global allowed_error for this
anyhow::ensure!(
self.is_active(),
"Cannot run GC iteration on inactive tenant"
);
self.gc_iteration_internal(target_timeline_id, horizon, pitr, ctx)
.await
}
/// Perform one compaction iteration.
/// This function is periodically called by compactor task.
/// Also it can be explicitly requested per timeline through page server
/// api's 'compact' command.
pub async fn compaction_iteration(&self, ctx: &RequestContext) -> anyhow::Result<()> {
anyhow::ensure!(
self.is_active(),
"Cannot run compaction iteration on inactive tenant"
);
// Scan through the hashmap and collect a list of all the timelines,
// while holding the lock. Then drop the lock and actually perform the
// compactions. We don't want to block everything else while the
// compaction runs.
let timelines_to_compact = {
let timelines = self.timelines.lock().unwrap();
let timelines_to_compact = timelines
.iter()
.map(|(timeline_id, timeline)| (*timeline_id, timeline.clone()))
.collect::<Vec<_>>();
drop(timelines);
timelines_to_compact
};
for (timeline_id, timeline) in &timelines_to_compact {
timeline
.compact(ctx)
.instrument(info_span!("compact_timeline", timeline = %timeline_id))
.await?;
}
Ok(())
}
/// Flush all in-memory data to disk and remote storage, if any.
///
/// Used at graceful shutdown.
async fn freeze_and_flush_on_shutdown(&self) {
let mut js = tokio::task::JoinSet::new();
// execute on each timeline on the JoinSet, join after.
let per_timeline = |timeline_id: TimelineId, timeline: Arc<Timeline>| {
async move {
debug_assert_current_span_has_tenant_and_timeline_id();
match timeline.freeze_and_flush().await {
Ok(()) => {}
Err(e) => {
warn!("failed to freeze and flush: {e:#}");
return;
}
}
let res = if let Some(client) = timeline.remote_client.as_ref() {
// if we did not wait for completion here, it might be our shutdown process
// didn't wait for remote uploads to complete at all, as new tasks can forever
// be spawned.
//
// what is problematic is the shutting down of RemoteTimelineClient, because
// obviously it does not make sense to stop while we wait for it, but what
// about corner cases like s3 suddenly hanging up?
client.wait_completion().await
} else {
Ok(())
};
if let Err(e) = res {
warn!("failed to await for frozen and flushed uploads: {e:#}");
}
}
.instrument(tracing::info_span!("freeze_and_flush_on_shutdown", %timeline_id))
};
{
let timelines = self.timelines.lock().unwrap();
timelines
.iter()
.map(|(id, tl)| (*id, Arc::clone(tl)))
.for_each(|(timeline_id, timeline)| {
js.spawn(per_timeline(timeline_id, timeline));
})
};
while let Some(res) = js.join_next().await {
match res {
Ok(()) => {}
Err(je) if je.is_cancelled() => unreachable!("no cancelling used"),
Err(je) if je.is_panic() => { /* logged already */ }
Err(je) => warn!("unexpected JoinError: {je:?}"),
}
}
}
/// Shuts down a timeline's tasks, removes its in-memory structures, and deletes its
/// data from both disk and s3.
async fn delete_timeline(
&self,
timeline_id: TimelineId,
timeline: Arc<Timeline>,
) -> anyhow::Result<()> {
{
// Grab the layer_removal_cs lock, and actually perform the deletion.
//
// This lock prevents prevents GC or compaction from running at the same time.
// The GC task doesn't register itself with the timeline it's operating on,
// so it might still be running even though we called `shutdown_tasks`.
//
// Note that there are still other race conditions between
// GC, compaction and timeline deletion. See
// https://github.com/neondatabase/neon/issues/2671
//
// No timeout here, GC & Compaction should be responsive to the
// `TimelineState::Stopping` change.
info!("waiting for layer_removal_cs.lock()");
let layer_removal_guard = timeline.layer_removal_cs.lock().await;
info!("got layer_removal_cs.lock(), deleting layer files");
// NB: storage_sync upload tasks that reference these layers have been cancelled
// by the caller.
let local_timeline_directory = self
.conf
.timeline_path(&timeline.timeline_id, &self.tenant_id);
fail::fail_point!("timeline-delete-before-rm", |_| {
Err(anyhow::anyhow!("failpoint: timeline-delete-before-rm"))?
});
// NB: This need not be atomic because the deleted flag in the IndexPart
// will be observed during tenant/timeline load. The deletion will be resumed there.
//
// For configurations without remote storage, we tolerate that we're not crash-safe here.
// The timeline may come up Active but with missing layer files, in such setups.
// See https://github.com/neondatabase/neon/pull/3919#issuecomment-1531726720
match std::fs::remove_dir_all(&local_timeline_directory) {
Err(e) if e.kind() == std::io::ErrorKind::NotFound => {
// This can happen if we're called a second time, e.g.,
// because of a previous failure/cancellation at/after
// failpoint timeline-delete-after-rm.
//
// It can also happen if we race with tenant detach, because,
// it doesn't grab the layer_removal_cs lock.
//
// For now, log and continue.
// warn! level is technically not appropriate for the
// first case because we should expect retries to happen.
// But the error is so rare, it seems better to get attention if it happens.
let tenant_state = self.current_state();
warn!(
timeline_dir=?local_timeline_directory,
?tenant_state,
"timeline directory not found, proceeding anyway"
);
// continue with the rest of the deletion
}
res => res.with_context(|| {
format!(
"Failed to remove local timeline directory '{}'",
local_timeline_directory.display()
)
})?,
}
info!("finished deleting layer files, releasing layer_removal_cs.lock()");
drop(layer_removal_guard);
}
fail::fail_point!("timeline-delete-after-rm", |_| {
Err(anyhow::anyhow!("failpoint: timeline-delete-after-rm"))?
});
{
// Remove the timeline from the map.
let mut timelines = self.timelines.lock().unwrap();
let children_exist = timelines
.iter()
.any(|(_, entry)| entry.get_ancestor_timeline_id() == Some(timeline_id));
// XXX this can happen because `branch_timeline` doesn't check `TimelineState::Stopping`.
// We already deleted the layer files, so it's probably best to panic.
// (Ideally, above remove_dir_all is atomic so we don't see this timeline after a restart)
if children_exist {
panic!("Timeline grew children while we removed layer files");
}
timelines.remove(&timeline_id).expect(
"timeline that we were deleting was concurrently removed from 'timelines' map",
);
drop(timelines);
}
let remote_client = match &timeline.remote_client {
Some(remote_client) => remote_client,
None => return Ok(()),
};
remote_client.delete_all().await?;
Ok(())
}
/// Removes timeline-related in-memory data and schedules removal from remote storage.
#[instrument(skip(self, _ctx))]
pub async fn prepare_and_schedule_delete_timeline(
self: Arc<Self>,
timeline_id: TimelineId,
_ctx: &RequestContext,
) -> Result<(), DeleteTimelineError> {
timeline::debug_assert_current_span_has_tenant_and_timeline_id();
// Transition the timeline into TimelineState::Stopping.
// This should prevent new operations from starting.
//
// Also grab the Timeline's delete_lock to prevent another deletion from starting.
let timeline;
let delete_lock_guard;
{
let mut timelines = self.timelines.lock().unwrap();
// Ensure that there are no child timelines **attached to that pageserver**,
// because detach removes files, which will break child branches
let children: Vec<TimelineId> = timelines
.iter()
.filter_map(|(id, entry)| {
if entry.get_ancestor_timeline_id() == Some(timeline_id) {
Some(*id)
} else {
None
}
})
.collect();
if !children.is_empty() {
return Err(DeleteTimelineError::HasChildren(children));
}
let timeline_entry = match timelines.entry(timeline_id) {
Entry::Occupied(e) => e,
Entry::Vacant(_) => return Err(DeleteTimelineError::NotFound),
};
timeline = Arc::clone(timeline_entry.get());
// Prevent two tasks from trying to delete the timeline at the same time.
//
// XXX: We should perhaps return an HTTP "202 Accepted" to signal that the caller
// needs to poll until the operation has finished. But for now, we return an
// error, because the control plane knows to retry errors.
delete_lock_guard =
Arc::clone(&timeline.delete_lock)
.try_lock_owned()
.map_err(|_| {
DeleteTimelineError::Other(anyhow::anyhow!(
"timeline deletion is already in progress"
))
})?;
// If another task finished the deletion just before we acquired the lock,
// return success.
if *delete_lock_guard {
return Ok(());
}
timeline.set_state(TimelineState::Stopping);
drop(timelines);
}
// Now that the Timeline is in Stopping state, request all the related tasks to
// shut down.
//
// NB: If this fails half-way through, and is retried, the retry will go through
// all the same steps again. Make sure the code here is idempotent, and don't
// error out if some of the shutdown tasks have already been completed!
// Stop the walreceiver first.
debug!("waiting for wal receiver to shutdown");
let maybe_started_walreceiver = { timeline.walreceiver.lock().unwrap().take() };
if let Some(walreceiver) = maybe_started_walreceiver {
walreceiver.stop().await;
}
debug!("wal receiver shutdown confirmed");
// Prevent new uploads from starting.
if let Some(remote_client) = timeline.remote_client.as_ref() {
let res = remote_client.stop();
match res {
Ok(()) => {}
Err(e) => match e {
remote_timeline_client::StopError::QueueUninitialized => {
// This case shouldn't happen currently because the
// load and attach code bails out if _any_ of the timeline fails to fetch its IndexPart.
// That is, before we declare the Tenant as Active.
// But we only allow calls to delete_timeline on Active tenants.
return Err(DeleteTimelineError::Other(anyhow::anyhow!("upload queue is uninitialized, likely the timeline was in Broken state prior to this call because it failed to fetch IndexPart during load or attach, check the logs")));
}
},
}
}
// Stop & wait for the remaining timeline tasks, including upload tasks.
// NB: This and other delete_timeline calls do not run as a task_mgr task,
// so, they are not affected by this shutdown_tasks() call.
info!("waiting for timeline tasks to shutdown");
task_mgr::shutdown_tasks(None, Some(self.tenant_id), Some(timeline_id)).await;
// Mark timeline as deleted in S3 so we won't pick it up next time
// during attach or pageserver restart.
// See comment in persist_index_part_with_deleted_flag.
if let Some(remote_client) = timeline.remote_client.as_ref() {
match remote_client.persist_index_part_with_deleted_flag().await {
// If we (now, or already) marked it successfully as deleted, we can proceed
Ok(()) | Err(PersistIndexPartWithDeletedFlagError::AlreadyDeleted(_)) => (),
// Bail out otherwise
//
// AlreadyInProgress shouldn't happen, because the 'delete_lock' prevents
// two tasks from performing the deletion at the same time. The first task
// that starts deletion should run it to completion.
Err(e @ PersistIndexPartWithDeletedFlagError::AlreadyInProgress(_))
| Err(e @ PersistIndexPartWithDeletedFlagError::Other(_)) => {
return Err(DeleteTimelineError::Other(anyhow::anyhow!(e)));
}
}
}
self.schedule_delete_timeline(timeline_id, timeline, delete_lock_guard);
Ok(())
}
fn schedule_delete_timeline(
self: Arc<Self>,
timeline_id: TimelineId,
timeline: Arc<Timeline>,
_guard: OwnedMutexGuard<bool>,
) {
let tenant_id = self.tenant_id;
let timeline_clone = Arc::clone(&timeline);
task_mgr::spawn(
task_mgr::BACKGROUND_RUNTIME.handle(),
TaskKind::TimelineDeletionWorker,
Some(self.tenant_id),
Some(timeline_id),
"timeline_delete",
false,
async move {
if let Err(err) = self.delete_timeline(timeline_id, timeline).await {
error!("Error: {err:#}");
timeline_clone.set_broken(err.to_string())
};
Ok(())
}
.instrument({
let span =
tracing::info_span!(parent: None, "delete_timeline", tenant_id=%tenant_id, timeline_id=%timeline_id);
span.follows_from(Span::current());
span
}),
);
}
pub fn current_state(&self) -> TenantState {
self.state.borrow().clone()
}
pub fn is_active(&self) -> bool {
self.current_state() == TenantState::Active
}
/// Changes tenant status to active, unless shutdown was already requested.
///
/// `background_jobs_can_start` is an optional barrier set to a value during pageserver startup
/// to delay background jobs. Background jobs can be started right away when None is given.
fn activate(
self: &Arc<Self>,
broker_client: BrokerClientChannel,
background_jobs_can_start: Option<&completion::Barrier>,
ctx: &RequestContext,
) {
debug_assert_current_span_has_tenant_id();
let mut activating = false;
self.state.send_modify(|current_state| {
use pageserver_api::models::ActivatingFrom;
match &*current_state {
TenantState::Activating(_) | TenantState::Active | TenantState::Broken { .. } | TenantState::Stopping => {
panic!("caller is responsible for calling activate() only on Loading / Attaching tenants, got {state:?}", state = current_state);
}
TenantState::Loading => {
*current_state = TenantState::Activating(ActivatingFrom::Loading);
}
TenantState::Attaching => {
*current_state = TenantState::Activating(ActivatingFrom::Attaching);
}
}
debug!(tenant_id = %self.tenant_id, "Activating tenant");
activating = true;
// Continue outside the closure. We need to grab timelines.lock()
// and we plan to turn it into a tokio::sync::Mutex in a future patch.
});
if activating {
let timelines_accessor = self.timelines.lock().unwrap();
let timelines_to_activate = timelines_accessor
.values()
.filter(|timeline| !(timeline.is_broken() || timeline.is_stopping()));
// Spawn gc and compaction loops. The loops will shut themselves
// down when they notice that the tenant is inactive.
tasks::start_background_loops(self, background_jobs_can_start);
let mut activated_timelines = 0;
for timeline in timelines_to_activate {
timeline.activate(broker_client.clone(), background_jobs_can_start, ctx);
activated_timelines += 1;
}
self.state.send_modify(move |current_state| {
assert!(
matches!(current_state, TenantState::Activating(_)),
"set_stopping and set_broken wait for us to leave Activating state",
);
*current_state = TenantState::Active;
let elapsed = self.loading_started_at.elapsed();
let total_timelines = timelines_accessor.len();
// log a lot of stuff, because some tenants sometimes suffer from user-visible
// times to activate. see https://github.com/neondatabase/neon/issues/4025
info!(
since_creation_millis = elapsed.as_millis(),
tenant_id = %self.tenant_id,
activated_timelines,
total_timelines,
post_state = <&'static str>::from(&*current_state),
"activation attempt finished"
);
});
}
}
/// Shutdown the tenant and join all of the spawned tasks.
///
/// The method caters for all use-cases:
/// - pageserver shutdown (freeze_and_flush == true)
/// - detach + ignore (freeze_and_flush == false)
///
/// This will attempt to shutdown even if tenant is broken.
pub(crate) async fn shutdown(&self, freeze_and_flush: bool) -> Result<(), ShutdownError> {
debug_assert_current_span_has_tenant_id();
// Set tenant (and its timlines) to Stoppping state.
//
// Since we can only transition into Stopping state after activation is complete,
// run it in a JoinSet so all tenants have a chance to stop before we get SIGKILLed.
//
// Transitioning tenants to Stopping state has a couple of non-obvious side effects:
// 1. Lock out any new requests to the tenants.
// 2. Signal cancellation to WAL receivers (we wait on it below).
// 3. Signal cancellation for other tenant background loops.
// 4. ???
//
// The waiting for the cancellation is not done uniformly.
// We certainly wait for WAL receivers to shut down.
// That is necessary so that no new data comes in before the freeze_and_flush.
// But the tenant background loops are joined-on in our caller.
// It's mesed up.
// we just ignore the failure to stop
match self.set_stopping().await {
Ok(()) => {}
Err(SetStoppingError::Broken) => {
// assume that this is acceptable
}
Err(SetStoppingError::AlreadyStopping) => return Err(ShutdownError::AlreadyStopping),
};
if freeze_and_flush {
// walreceiver has already began to shutdown with TenantState::Stopping, but we need to
// await for them to stop.
task_mgr::shutdown_tasks(
Some(TaskKind::WalReceiverManager),
Some(self.tenant_id),
None,
)
.await;
// this will wait for uploads to complete; in the past, it was done outside tenant
// shutdown in pageserver::shutdown_pageserver.
self.freeze_and_flush_on_shutdown().await;
}
// shutdown all tenant and timeline tasks: gc, compaction, page service
// No new tasks will be started for this tenant because it's in `Stopping` state.
//
// this will additionally shutdown and await all timeline tasks.
task_mgr::shutdown_tasks(None, Some(self.tenant_id), None).await;
Ok(())
}
/// Change tenant status to Stopping, to mark that it is being shut down.
///
/// This function waits for the tenant to become active if it isn't already, before transitioning it into Stopping state.
///
/// This function is not cancel-safe!
async fn set_stopping(&self) -> Result<(), SetStoppingError> {
let mut rx = self.state.subscribe();
// cannot stop before we're done activating, so wait out until we're done activating
rx.wait_for(|state| match state {
TenantState::Activating(_) | TenantState::Loading | TenantState::Attaching => {
info!(
"waiting for {} to turn Active|Broken|Stopping",
<&'static str>::from(state)
);
false
}
TenantState::Active | TenantState::Broken { .. } | TenantState::Stopping {} => true,
})
.await
.expect("cannot drop self.state while on a &self method");
// we now know we're done activating, let's see whether this task is the winner to transition into Stopping
let mut err = None;
let stopping = self.state.send_if_modified(|current_state| match current_state {
TenantState::Activating(_) | TenantState::Loading | TenantState::Attaching => {
unreachable!("we ensured above that we're done with activation, and, there is no re-activation")
}
TenantState::Active => {
// FIXME: due to time-of-check vs time-of-use issues, it can happen that new timelines
// are created after the transition to Stopping. That's harmless, as the Timelines
// won't be accessible to anyone afterwards, because the Tenant is in Stopping state.
*current_state = TenantState::Stopping;
// Continue stopping outside the closure. We need to grab timelines.lock()
// and we plan to turn it into a tokio::sync::Mutex in a future patch.
true
}
TenantState::Broken { reason, .. } => {
info!(
"Cannot set tenant to Stopping state, it is in Broken state due to: {reason}"
);
err = Some(SetStoppingError::Broken);
false
}
TenantState::Stopping => {
info!("Tenant is already in Stopping state");
err = Some(SetStoppingError::AlreadyStopping);
false
}
});
match (stopping, err) {
(true, None) => {} // continue
(false, Some(err)) => return Err(err),
(true, Some(_)) => unreachable!(
"send_if_modified closure must error out if not transitioning to Stopping"
),
(false, None) => unreachable!(
"send_if_modified closure must return true if transitioning to Stopping"
),
}
let timelines_accessor = self.timelines.lock().unwrap();
let not_broken_timelines = timelines_accessor
.values()
.filter(|timeline| !timeline.is_broken());
for timeline in not_broken_timelines {
timeline.set_state(TimelineState::Stopping);
}
Ok(())
}
/// Method for tenant::mgr to transition us into Broken state in case of a late failure in
/// `remove_tenant_from_memory`
///
/// This function waits for the tenant to become active if it isn't already, before transitioning it into Stopping state.
///
/// In tests, we also use this to set tenants to Broken state on purpose.
pub(crate) async fn set_broken(&self, reason: String) {
let mut rx = self.state.subscribe();
// The load & attach routines own the tenant state until it has reached `Active`.
// So, wait until it's done.
rx.wait_for(|state| match state {
TenantState::Activating(_) | TenantState::Loading | TenantState::Attaching => {
info!(
"waiting for {} to turn Active|Broken|Stopping",
<&'static str>::from(state)
);
false
}
TenantState::Active | TenantState::Broken { .. } | TenantState::Stopping {} => true,
})
.await
.expect("cannot drop self.state while on a &self method");
// we now know we're done activating, let's see whether this task is the winner to transition into Broken
self.state.send_modify(|current_state| {
match *current_state {
TenantState::Activating(_) | TenantState::Loading | TenantState::Attaching => {
unreachable!("we ensured above that we're done with activation, and, there is no re-activation")
}
TenantState::Active => {
if cfg!(feature = "testing") {
warn!("Changing Active tenant to Broken state, reason: {}", reason);
*current_state = TenantState::broken_from_reason(reason);
} else {
unreachable!("not allowed to call set_broken on Active tenants in non-testing builds")
}
}
TenantState::Broken { .. } => {
warn!("Tenant is already in Broken state");
}
// This is the only "expected" path, any other path is a bug.
TenantState::Stopping => {
warn!(
"Marking Stopping tenant as Broken state, reason: {}",
reason
);
*current_state = TenantState::broken_from_reason(reason);
}
}
});
}
pub fn subscribe_for_state_updates(&self) -> watch::Receiver<TenantState> {
self.state.subscribe()
}
pub(crate) async fn wait_to_become_active(&self) -> Result<(), WaitToBecomeActiveError> {
let mut receiver = self.state.subscribe();
loop {
let current_state = receiver.borrow_and_update().clone();
match current_state {
TenantState::Loading | TenantState::Attaching | TenantState::Activating(_) => {
// in these states, there's a chance that we can reach ::Active
receiver.changed().await.map_err(
|_e: tokio::sync::watch::error::RecvError| {
WaitToBecomeActiveError::TenantDropped {
tenant_id: self.tenant_id,
}
},
)?;
}
TenantState::Active { .. } => {
return Ok(());
}
TenantState::Broken { .. } | TenantState::Stopping => {
// There's no chance the tenant can transition back into ::Active
return Err(WaitToBecomeActiveError::WillNotBecomeActive {
tenant_id: self.tenant_id,
state: current_state,
});
}
}
}
}
}
/// Given a Vec of timelines and their ancestors (timeline_id, ancestor_id),
/// perform a topological sort, so that the parent of each timeline comes
/// before the children.
fn tree_sort_timelines(
timelines: HashMap<TimelineId, TimelineMetadata>,
) -> anyhow::Result<Vec<(TimelineId, TimelineMetadata)>> {
let mut result = Vec::with_capacity(timelines.len());
let mut now = Vec::with_capacity(timelines.len());
// (ancestor, children)
let mut later: HashMap<TimelineId, Vec<(TimelineId, TimelineMetadata)>> =
HashMap::with_capacity(timelines.len());
for (timeline_id, metadata) in timelines {
if let Some(ancestor_id) = metadata.ancestor_timeline() {
let children = later.entry(ancestor_id).or_default();
children.push((timeline_id, metadata));
} else {
now.push((timeline_id, metadata));
}
}
while let Some((timeline_id, metadata)) = now.pop() {
result.push((timeline_id, metadata));
// All children of this can be loaded now
if let Some(mut children) = later.remove(&timeline_id) {
now.append(&mut children);
}
}
// All timelines should be visited now. Unless there were timelines with missing ancestors.
if !later.is_empty() {
for (missing_id, orphan_ids) in later {
for (orphan_id, _) in orphan_ids {
error!("could not load timeline {orphan_id} because its ancestor timeline {missing_id} could not be loaded");
}
}
bail!("could not load tenant because some timelines are missing ancestors");
}
Ok(result)
}
impl Tenant {
pub fn tenant_specific_overrides(&self) -> TenantConfOpt {
*self.tenant_conf.read().unwrap()
}
pub fn effective_config(&self) -> TenantConf {
self.tenant_specific_overrides()
.merge(self.conf.default_tenant_conf)
}
pub fn get_checkpoint_distance(&self) -> u64 {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.checkpoint_distance
.unwrap_or(self.conf.default_tenant_conf.checkpoint_distance)
}
pub fn get_checkpoint_timeout(&self) -> Duration {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.checkpoint_timeout
.unwrap_or(self.conf.default_tenant_conf.checkpoint_timeout)
}
pub fn get_compaction_target_size(&self) -> u64 {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.compaction_target_size
.unwrap_or(self.conf.default_tenant_conf.compaction_target_size)
}
pub fn get_compaction_period(&self) -> Duration {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.compaction_period
.unwrap_or(self.conf.default_tenant_conf.compaction_period)
}
pub fn get_compaction_threshold(&self) -> usize {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.compaction_threshold
.unwrap_or(self.conf.default_tenant_conf.compaction_threshold)
}
pub fn get_gc_horizon(&self) -> u64 {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.gc_horizon
.unwrap_or(self.conf.default_tenant_conf.gc_horizon)
}
pub fn get_gc_period(&self) -> Duration {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.gc_period
.unwrap_or(self.conf.default_tenant_conf.gc_period)
}
pub fn get_image_creation_threshold(&self) -> usize {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.image_creation_threshold
.unwrap_or(self.conf.default_tenant_conf.image_creation_threshold)
}
pub fn get_pitr_interval(&self) -> Duration {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.pitr_interval
.unwrap_or(self.conf.default_tenant_conf.pitr_interval)
}
pub fn get_trace_read_requests(&self) -> bool {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.trace_read_requests
.unwrap_or(self.conf.default_tenant_conf.trace_read_requests)
}
pub fn get_min_resident_size_override(&self) -> Option<u64> {
let tenant_conf = self.tenant_conf.read().unwrap();
tenant_conf
.min_resident_size_override
.or(self.conf.default_tenant_conf.min_resident_size_override)
}
pub fn set_new_tenant_config(&self, new_tenant_conf: TenantConfOpt) {
*self.tenant_conf.write().unwrap() = new_tenant_conf;
// Don't hold self.timelines.lock() during the notifies.
// There's no risk of deadlock right now, but there could be if we consolidate
// mutexes in struct Timeline in the future.
let timelines = self.list_timelines();
for timeline in timelines {
timeline.tenant_conf_updated();
}
}
/// Helper function to create a new Timeline struct.
///
/// The returned Timeline is in Loading state. The caller is responsible for
/// initializing any on-disk state, and for inserting the Timeline to the 'timelines'
/// map.
fn create_timeline_struct(
&self,
new_timeline_id: TimelineId,
new_metadata: &TimelineMetadata,
ancestor: Option<Arc<Timeline>>,
remote_client: Option<RemoteTimelineClient>,
init_order: Option<&InitializationOrder>,
) -> anyhow::Result<Arc<Timeline>> {
if let Some(ancestor_timeline_id) = new_metadata.ancestor_timeline() {
anyhow::ensure!(
ancestor.is_some(),
"Timeline's {new_timeline_id} ancestor {ancestor_timeline_id} was not found"
)
}
let initial_logical_size_can_start = init_order.map(|x| &x.initial_logical_size_can_start);
let initial_logical_size_attempt = init_order.map(|x| &x.initial_logical_size_attempt);
let pg_version = new_metadata.pg_version();
Ok(Timeline::new(
self.conf,
Arc::clone(&self.tenant_conf),
new_metadata,
ancestor,
new_timeline_id,
self.tenant_id,
Arc::clone(&self.walredo_mgr),
remote_client,
pg_version,
initial_logical_size_can_start.cloned(),
initial_logical_size_attempt.cloned(),
))
}
fn new(
state: TenantState,
conf: &'static PageServerConf,
tenant_conf: TenantConfOpt,
walredo_mgr: Arc<dyn WalRedoManager + Send + Sync>,
tenant_id: TenantId,
remote_storage: Option<GenericRemoteStorage>,
) -> Tenant {
let (state, mut rx) = watch::channel(state);
tokio::spawn(async move {
let mut current_state: &'static str = From::from(&*rx.borrow_and_update());
let tid = tenant_id.to_string();
TENANT_STATE_METRIC
.with_label_values(&[&tid, current_state])
.inc();
loop {
match rx.changed().await {
Ok(()) => {
let new_state: &'static str = From::from(&*rx.borrow_and_update());
TENANT_STATE_METRIC
.with_label_values(&[&tid, current_state])
.dec();
TENANT_STATE_METRIC
.with_label_values(&[&tid, new_state])
.inc();
current_state = new_state;
}
Err(_sender_dropped_error) => {
info!("Tenant dropped the state updates sender, quitting waiting for tenant state change");
return;
}
}
}
});
Tenant {
tenant_id,
conf,
// using now here is good enough approximation to catch tenants with really long
// activation times.
loading_started_at: Instant::now(),
tenant_conf: Arc::new(RwLock::new(tenant_conf)),
timelines: Mutex::new(HashMap::new()),
gc_cs: tokio::sync::Mutex::new(()),
walredo_mgr,
remote_storage,
state,
cached_logical_sizes: tokio::sync::Mutex::new(HashMap::new()),
cached_synthetic_tenant_size: Arc::new(AtomicU64::new(0)),
eviction_task_tenant_state: tokio::sync::Mutex::new(EvictionTaskTenantState::default()),
}
}
/// Locate and load config
pub(super) fn load_tenant_config(
conf: &'static PageServerConf,
tenant_id: TenantId,
) -> anyhow::Result<TenantConfOpt> {
let target_config_path = conf.tenant_config_path(tenant_id);
let target_config_display = target_config_path.display();
info!("loading tenantconf from {target_config_display}");
// FIXME If the config file is not found, assume that we're attaching
// a detached tenant and config is passed via attach command.
// https://github.com/neondatabase/neon/issues/1555
if !target_config_path.exists() {
info!("tenant config not found in {target_config_display}");
return Ok(TenantConfOpt::default());
}
// load and parse file
let config = fs::read_to_string(&target_config_path).with_context(|| {
format!("Failed to load config from path '{target_config_display}'")
})?;
let toml = config.parse::<toml_edit::Document>().with_context(|| {
format!("Failed to parse config from file '{target_config_display}' as toml file")
})?;
let mut tenant_conf = TenantConfOpt::default();
for (key, item) in toml.iter() {
match key {
"tenant_config" => {
tenant_conf = PageServerConf::parse_toml_tenant_conf(item).with_context(|| {
format!("Failed to parse config from file '{target_config_display}' as pageserver config")
})?;
}
_ => bail!("config file {target_config_display} has unrecognized pageserver option '{key}'"),
}
}
Ok(tenant_conf)
}
pub(super) fn persist_tenant_config(
tenant_id: &TenantId,
target_config_path: &Path,
tenant_conf: TenantConfOpt,
creating_tenant: bool,
) -> anyhow::Result<()> {
let _enter = info_span!("saving tenantconf").entered();
// imitate a try-block with a closure
let do_persist = |target_config_path: &Path| -> anyhow::Result<()> {
let target_config_parent = target_config_path.parent().with_context(|| {
format!(
"Config path does not have a parent: {}",
target_config_path.display()
)
})?;
info!("persisting tenantconf to {}", target_config_path.display());
let mut conf_content = r#"# This file contains a specific per-tenant's config.
# It is read in case of pageserver restart.
[tenant_config]
"#
.to_string();
// Convert the config to a toml file.
conf_content += &toml_edit::ser::to_string(&tenant_conf)?;
let mut target_config_file = VirtualFile::open_with_options(
target_config_path,
OpenOptions::new()
.truncate(true) // This needed for overwriting with small config files
.write(true)
.create_new(creating_tenant)
// when creating a new tenant, first_save will be true and `.create(true)` will be
// ignored (per rust std docs).
//
// later when updating the config of created tenant, or persisting config for the
// first time for attached tenant, the `.create(true)` is used.
.create(true),
)?;
target_config_file
.write(conf_content.as_bytes())
.context("write toml bytes into file")
.and_then(|_| target_config_file.sync_all().context("fsync config file"))
.context("write config file")?;
// fsync the parent directory to ensure the directory entry is durable.
// before this was done conditionally on creating_tenant, but these management actions are rare
// enough to just fsync it always.
crashsafe::fsync(target_config_parent)?;
// XXX we're not fsyncing the parent dir, need to do that in case `creating_tenant`
Ok(())
};
// this function is called from creating the tenant and updating the tenant config, which
// would otherwise share this context, so keep it here in one place.
do_persist(target_config_path).with_context(|| {
format!(
"write tenant {tenant_id} config to {}",
target_config_path.display()
)
})
}
//
// How garbage collection works:
//
// +--bar------------->
// /
// +----+-----foo---------------->
// /
// ----main--+-------------------------->
// \
// +-----baz-------->
//
//
// 1. Grab 'gc_cs' mutex to prevent new timelines from being created while Timeline's
// `gc_infos` are being refreshed
// 2. Scan collected timelines, and on each timeline, make note of the
// all the points where other timelines have been branched off.
// We will refrain from removing page versions at those LSNs.
// 3. For each timeline, scan all layer files on the timeline.
// Remove all files for which a newer file exists and which
// don't cover any branch point LSNs.
//
// TODO:
// - if a relation has a non-incremental persistent layer on a child branch, then we
// don't need to keep that in the parent anymore. But currently
// we do.
async fn gc_iteration_internal(
&self,
target_timeline_id: Option<TimelineId>,
horizon: u64,
pitr: Duration,
ctx: &RequestContext,
) -> anyhow::Result<GcResult> {
let mut totals: GcResult = Default::default();
let now = Instant::now();
let gc_timelines = self
.refresh_gc_info_internal(target_timeline_id, horizon, pitr, ctx)
.await?;
utils::failpoint_sleep_millis_async!("gc_iteration_internal_after_getting_gc_timelines");
// If there is nothing to GC, we don't want any messages in the INFO log.
if !gc_timelines.is_empty() {
info!("{} timelines need GC", gc_timelines.len());
} else {
debug!("{} timelines need GC", gc_timelines.len());
}
// Perform GC for each timeline.
//
// Note that we don't hold the GC lock here because we don't want
// to delay the branch creation task, which requires the GC lock.
// A timeline GC iteration can be slow because it may need to wait for
// compaction (both require `layer_removal_cs` lock),
// but the GC iteration can run concurrently with branch creation.
//
// See comments in [`Tenant::branch_timeline`] for more information
// about why branch creation task can run concurrently with timeline's GC iteration.
for timeline in gc_timelines {
if task_mgr::is_shutdown_requested() {
// We were requested to shut down. Stop and return with the progress we
// made.
break;
}
let result = timeline.gc().await?;
totals += result;
}
totals.elapsed = now.elapsed();
Ok(totals)
}
/// Refreshes the Timeline::gc_info for all timelines, returning the
/// vector of timelines which have [`Timeline::get_last_record_lsn`] past
/// [`Tenant::get_gc_horizon`].
///
/// This is usually executed as part of periodic gc, but can now be triggered more often.
pub async fn refresh_gc_info(
&self,
ctx: &RequestContext,
) -> anyhow::Result<Vec<Arc<Timeline>>> {
// since this method can now be called at different rates than the configured gc loop, it
// might be that these configuration values get applied faster than what it was previously,
// since these were only read from the gc task.
let horizon = self.get_gc_horizon();
let pitr = self.get_pitr_interval();
// refresh all timelines
let target_timeline_id = None;
self.refresh_gc_info_internal(target_timeline_id, horizon, pitr, ctx)
.await
}
async fn refresh_gc_info_internal(
&self,
target_timeline_id: Option<TimelineId>,
horizon: u64,
pitr: Duration,
ctx: &RequestContext,
) -> anyhow::Result<Vec<Arc<Timeline>>> {
// grab mutex to prevent new timelines from being created here.
let gc_cs = self.gc_cs.lock().await;
// Scan all timelines. For each timeline, remember the timeline ID and
// the branch point where it was created.
let (all_branchpoints, timeline_ids): (BTreeSet<(TimelineId, Lsn)>, _) = {
let timelines = self.timelines.lock().unwrap();
let mut all_branchpoints = BTreeSet::new();
let timeline_ids = {
if let Some(target_timeline_id) = target_timeline_id.as_ref() {
if timelines.get(target_timeline_id).is_none() {
bail!("gc target timeline does not exist")
}
};
timelines
.iter()
.map(|(timeline_id, timeline_entry)| {
if let Some(ancestor_timeline_id) =
&timeline_entry.get_ancestor_timeline_id()
{
// If target_timeline is specified, we only need to know branchpoints of its children
if let Some(timeline_id) = target_timeline_id {
if ancestor_timeline_id == &timeline_id {
all_branchpoints.insert((
*ancestor_timeline_id,
timeline_entry.get_ancestor_lsn(),
));
}
}
// Collect branchpoints for all timelines
else {
all_branchpoints.insert((
*ancestor_timeline_id,
timeline_entry.get_ancestor_lsn(),
));
}
}
*timeline_id
})
.collect::<Vec<_>>()
};
(all_branchpoints, timeline_ids)
};
// Ok, we now know all the branch points.
// Update the GC information for each timeline.
let mut gc_timelines = Vec::with_capacity(timeline_ids.len());
for timeline_id in timeline_ids {
// Timeline is known to be local and loaded.
let timeline = self
.get_timeline(timeline_id, false)
.with_context(|| format!("Timeline {timeline_id} was not found"))?;
// If target_timeline is specified, ignore all other timelines
if let Some(target_timeline_id) = target_timeline_id {
if timeline_id != target_timeline_id {
continue;
}
}
if let Some(cutoff) = timeline.get_last_record_lsn().checked_sub(horizon) {
let branchpoints: Vec<Lsn> = all_branchpoints
.range((
Included((timeline_id, Lsn(0))),
Included((timeline_id, Lsn(u64::MAX))),
))
.map(|&x| x.1)
.collect();
timeline
.update_gc_info(branchpoints, cutoff, pitr, ctx)
.await?;
gc_timelines.push(timeline);
}
}
drop(gc_cs);
Ok(gc_timelines)
}
/// A substitute for `branch_timeline` for use in unit tests.
/// The returned timeline will have state value `Active` to make various `anyhow::ensure!()`
/// calls pass, but, we do not actually call `.activate()` under the hood. So, none of the
/// timeline background tasks are launched, except the flush loop.
#[cfg(test)]
async fn branch_timeline_test(
&self,
src_timeline: &Arc<Timeline>,
dst_id: TimelineId,
start_lsn: Option<Lsn>,
ctx: &RequestContext,
) -> anyhow::Result<Arc<Timeline>> {
let tl = self
.branch_timeline_impl(src_timeline, dst_id, start_lsn, ctx)
.await?;
tl.set_state(TimelineState::Active);
Ok(tl)
}
/// Branch an existing timeline.
///
/// The caller is responsible for activating the returned timeline.
async fn branch_timeline(
&self,
src_timeline: &Arc<Timeline>,
dst_id: TimelineId,
start_lsn: Option<Lsn>,
ctx: &RequestContext,
) -> anyhow::Result<Arc<Timeline>> {
self.branch_timeline_impl(src_timeline, dst_id, start_lsn, ctx)
.await
}
async fn branch_timeline_impl(
&self,
src_timeline: &Arc<Timeline>,
dst_id: TimelineId,
start_lsn: Option<Lsn>,
_ctx: &RequestContext,
) -> anyhow::Result<Arc<Timeline>> {
let src_id = src_timeline.timeline_id;
// If no start LSN is specified, we branch the new timeline from the source timeline's last record LSN
let start_lsn = start_lsn.unwrap_or_else(|| {
let lsn = src_timeline.get_last_record_lsn();
info!("branching timeline {dst_id} from timeline {src_id} at last record LSN: {lsn}");
lsn
});
// First acquire the GC lock so that another task cannot advance the GC
// cutoff in 'gc_info', and make 'start_lsn' invalid, while we are
// creating the branch.
let _gc_cs = self.gc_cs.lock().await;
// Create a placeholder for the new branch. This will error
// out if the new timeline ID is already in use.
let timeline_uninit_mark = {
let timelines = self.timelines.lock().unwrap();
self.create_timeline_uninit_mark(dst_id, &timelines)?
};
// Ensure that `start_lsn` is valid, i.e. the LSN is within the PITR
// horizon on the source timeline
//
// We check it against both the planned GC cutoff stored in 'gc_info',
// and the 'latest_gc_cutoff' of the last GC that was performed. The
// planned GC cutoff in 'gc_info' is normally larger than
// 'latest_gc_cutoff_lsn', but beware of corner cases like if you just
// changed the GC settings for the tenant to make the PITR window
// larger, but some of the data was already removed by an earlier GC
// iteration.
// check against last actual 'latest_gc_cutoff' first
let latest_gc_cutoff_lsn = src_timeline.get_latest_gc_cutoff_lsn();
src_timeline
.check_lsn_is_in_scope(start_lsn, &latest_gc_cutoff_lsn)
.context(format!(
"invalid branch start lsn: less than latest GC cutoff {}",
*latest_gc_cutoff_lsn,
))?;
// and then the planned GC cutoff
{
let gc_info = src_timeline.gc_info.read().unwrap();
let cutoff = min(gc_info.pitr_cutoff, gc_info.horizon_cutoff);
if start_lsn < cutoff {
bail!(format!(
"invalid branch start lsn: less than planned GC cutoff {cutoff}"
));
}
}
//
// The branch point is valid, and we are still holding the 'gc_cs' lock
// so that GC cannot advance the GC cutoff until we are finished.
// Proceed with the branch creation.
//
// Determine prev-LSN for the new timeline. We can only determine it if
// the timeline was branched at the current end of the source timeline.
let RecordLsn {
last: src_last,
prev: src_prev,
} = src_timeline.get_last_record_rlsn();
let dst_prev = if src_last == start_lsn {
Some(src_prev)
} else {
None
};
// Create the metadata file, noting the ancestor of the new timeline.
// There is initially no data in it, but all the read-calls know to look
// into the ancestor.
let metadata = TimelineMetadata::new(
start_lsn,
dst_prev,
Some(src_id),
start_lsn,
*src_timeline.latest_gc_cutoff_lsn.read(), // FIXME: should we hold onto this guard longer?
src_timeline.initdb_lsn,
src_timeline.pg_version,
);
let uninitialized_timeline = self.prepare_new_timeline(
dst_id,
&metadata,
timeline_uninit_mark,
start_lsn + 1,
Some(Arc::clone(src_timeline)),
)?;
let new_timeline = uninitialized_timeline.finish_creation()?;
// Root timeline gets its layers during creation and uploads them along with the metadata.
// A branch timeline though, when created, can get no writes for some time, hence won't get any layers created.
// We still need to upload its metadata eagerly: if other nodes `attach` the tenant and miss this timeline, their GC
// could get incorrect information and remove more layers, than needed.
// See also https://github.com/neondatabase/neon/issues/3865
if let Some(remote_client) = new_timeline.remote_client.as_ref() {
remote_client
.schedule_index_upload_for_metadata_update(&metadata)
.context("branch initial metadata upload")?;
}
info!("branched timeline {dst_id} from {src_id} at {start_lsn}");
Ok(new_timeline)
}
/// - run initdb to init temporary instance and get bootstrap data
/// - after initialization complete, remove the temp dir.
///
/// The caller is responsible for activating the returned timeline.
async fn bootstrap_timeline(
&self,
timeline_id: TimelineId,
pg_version: u32,
ctx: &RequestContext,
) -> anyhow::Result<Arc<Timeline>> {
let timeline_uninit_mark = {
let timelines = self.timelines.lock().unwrap();
self.create_timeline_uninit_mark(timeline_id, &timelines)?
};
// create a `tenant/{tenant_id}/timelines/basebackup-{timeline_id}.{TEMP_FILE_SUFFIX}/`
// temporary directory for basebackup files for the given timeline.
let initdb_path = path_with_suffix_extension(
self.conf
.timelines_path(&self.tenant_id)
.join(format!("basebackup-{timeline_id}")),
TEMP_FILE_SUFFIX,
);
// an uninit mark was placed before, nothing else can access this timeline files
// current initdb was not run yet, so remove whatever was left from the previous runs
if initdb_path.exists() {
fs::remove_dir_all(&initdb_path).with_context(|| {
format!(
"Failed to remove already existing initdb directory: {}",
initdb_path.display()
)
})?;
}
// Init temporarily repo to get bootstrap data, this creates a directory in the `initdb_path` path
run_initdb(self.conf, &initdb_path, pg_version)?;
// this new directory is very temporary, set to remove it immediately after bootstrap, we don't need it
scopeguard::defer! {
if let Err(e) = fs::remove_dir_all(&initdb_path) {
// this is unlikely, but we will remove the directory on pageserver restart or another bootstrap call
error!("Failed to remove temporary initdb directory '{}': {}", initdb_path.display(), e);
}
}
let pgdata_path = &initdb_path;
let pgdata_lsn = import_datadir::get_lsn_from_controlfile(pgdata_path)?.align();
// Import the contents of the data directory at the initial checkpoint
// LSN, and any WAL after that.
// Initdb lsn will be equal to last_record_lsn which will be set after import.
// Because we know it upfront avoid having an option or dummy zero value by passing it to the metadata.
let new_metadata = TimelineMetadata::new(
Lsn(0),
None,
None,
Lsn(0),
pgdata_lsn,
pgdata_lsn,
pg_version,
);
let raw_timeline = self.prepare_new_timeline(
timeline_id,
&new_metadata,
timeline_uninit_mark,
pgdata_lsn,
None,
)?;
let tenant_id = raw_timeline.owning_tenant.tenant_id;
let unfinished_timeline = raw_timeline.raw_timeline()?;
import_datadir::import_timeline_from_postgres_datadir(
unfinished_timeline,
pgdata_path,
pgdata_lsn,
ctx,
)
.await
.with_context(|| {
format!("Failed to import pgdatadir for timeline {tenant_id}/{timeline_id}")
})?;
// Flush the new layer files to disk, before we make the timeline as available to
// the outside world.
//
// Flush loop needs to be spawned in order to be able to flush.
unfinished_timeline.maybe_spawn_flush_loop();
fail::fail_point!("before-checkpoint-new-timeline", |_| {
anyhow::bail!("failpoint before-checkpoint-new-timeline");
});
unfinished_timeline
.freeze_and_flush()
.await
.with_context(|| {
format!(
"Failed to flush after pgdatadir import for timeline {tenant_id}/{timeline_id}"
)
})?;
// All done!
let timeline = raw_timeline.finish_creation()?;
info!(
"created root timeline {} timeline.lsn {}",
timeline_id,
timeline.get_last_record_lsn()
);
Ok(timeline)
}
/// Creates intermediate timeline structure and its files.
///
/// An empty layer map is initialized, and new data and WAL can be imported starting
/// at 'disk_consistent_lsn'. After any initial data has been imported, call
/// `finish_creation` to insert the Timeline into the timelines map and to remove the
/// uninit mark file.
fn prepare_new_timeline(
&self,
new_timeline_id: TimelineId,
new_metadata: &TimelineMetadata,
uninit_mark: TimelineUninitMark,
start_lsn: Lsn,
ancestor: Option<Arc<Timeline>>,
) -> anyhow::Result<UninitializedTimeline> {
let tenant_id = self.tenant_id;
let remote_client = if let Some(remote_storage) = self.remote_storage.as_ref() {
let remote_client = RemoteTimelineClient::new(
remote_storage.clone(),
self.conf,
tenant_id,
new_timeline_id,
);
remote_client.init_upload_queue_for_empty_remote(new_metadata)?;
Some(remote_client)
} else {
None
};
let timeline_struct = self
.create_timeline_struct(new_timeline_id, new_metadata, ancestor, remote_client, None)
.context("Failed to create timeline data structure")?;
timeline_struct.init_empty_layer_map(start_lsn);
if let Err(e) =
self.create_timeline_files(&uninit_mark.timeline_path, new_timeline_id, new_metadata)
{
error!("Failed to create initial files for timeline {tenant_id}/{new_timeline_id}, cleaning up: {e:?}");
cleanup_timeline_directory(uninit_mark);
return Err(e);
}
debug!("Successfully created initial files for timeline {tenant_id}/{new_timeline_id}");
Ok(UninitializedTimeline {
owning_tenant: self,
timeline_id: new_timeline_id,
raw_timeline: Some((timeline_struct, uninit_mark)),
})
}
fn create_timeline_files(
&self,
timeline_path: &Path,
new_timeline_id: TimelineId,
new_metadata: &TimelineMetadata,
) -> anyhow::Result<()> {
crashsafe::create_dir(timeline_path).context("Failed to create timeline directory")?;
fail::fail_point!("after-timeline-uninit-mark-creation", |_| {
anyhow::bail!("failpoint after-timeline-uninit-mark-creation");
});
save_metadata(
self.conf,
new_timeline_id,
self.tenant_id,
new_metadata,
true,
)
.context("Failed to create timeline metadata")?;
Ok(())
}
/// Attempts to create an uninit mark file for the timeline initialization.
/// Bails, if the timeline is already loaded into the memory (i.e. initialized before), or the uninit mark file already exists.
///
/// This way, we need to hold the timelines lock only for small amount of time during the mark check/creation per timeline init.
fn create_timeline_uninit_mark(
&self,
timeline_id: TimelineId,
timelines: &MutexGuard<HashMap<TimelineId, Arc<Timeline>>>,
) -> anyhow::Result<TimelineUninitMark> {
let tenant_id = self.tenant_id;
anyhow::ensure!(
timelines.get(&timeline_id).is_none(),
"Timeline {tenant_id}/{timeline_id} already exists in pageserver's memory"
);
let timeline_path = self.conf.timeline_path(&timeline_id, &tenant_id);
anyhow::ensure!(
!timeline_path.exists(),
"Timeline {} already exists, cannot create its uninit mark file",
timeline_path.display()
);
let uninit_mark_path = self
.conf
.timeline_uninit_mark_file_path(tenant_id, timeline_id);
fs::File::create(&uninit_mark_path)
.context("Failed to create uninit mark file")
.and_then(|_| {
crashsafe::fsync_file_and_parent(&uninit_mark_path)
.context("Failed to fsync uninit mark file")
})
.with_context(|| {
format!("Failed to crate uninit mark for timeline {tenant_id}/{timeline_id}")
})?;
let uninit_mark = TimelineUninitMark::new(uninit_mark_path, timeline_path);
Ok(uninit_mark)
}
/// Gathers inputs from all of the timelines to produce a sizing model input.
///
/// Future is cancellation safe. Only one calculation can be running at once per tenant.
#[instrument(skip_all, fields(tenant_id=%self.tenant_id))]
pub async fn gather_size_inputs(
&self,
// `max_retention_period` overrides the cutoff that is used to calculate the size
// (only if it is shorter than the real cutoff).
max_retention_period: Option<u64>,
cause: LogicalSizeCalculationCause,
ctx: &RequestContext,
) -> anyhow::Result<size::ModelInputs> {
let logical_sizes_at_once = self
.conf
.concurrent_tenant_size_logical_size_queries
.inner();
// TODO: Having a single mutex block concurrent reads is not great for performance.
//
// But the only case where we need to run multiple of these at once is when we
// request a size for a tenant manually via API, while another background calculation
// is in progress (which is not a common case).
//
// See more for on the issue #2748 condenced out of the initial PR review.
let mut shared_cache = self.cached_logical_sizes.lock().await;
size::gather_inputs(
self,
logical_sizes_at_once,
max_retention_period,
&mut shared_cache,
cause,
ctx,
)
.await
}
/// Calculate synthetic tenant size and cache the result.
/// This is periodically called by background worker.
/// result is cached in tenant struct
#[instrument(skip_all, fields(tenant_id=%self.tenant_id))]
pub async fn calculate_synthetic_size(
&self,
cause: LogicalSizeCalculationCause,
ctx: &RequestContext,
) -> anyhow::Result<u64> {
let inputs = self.gather_size_inputs(None, cause, ctx).await?;
let size = inputs.calculate()?;
self.set_cached_synthetic_size(size);
Ok(size)
}
/// Cache given synthetic size and update the metric value
pub fn set_cached_synthetic_size(&self, size: u64) {
self.cached_synthetic_tenant_size
.store(size, Ordering::Relaxed);
TENANT_SYNTHETIC_SIZE_METRIC
.get_metric_with_label_values(&[&self.tenant_id.to_string()])
.unwrap()
.set(size);
}
pub fn get_cached_synthetic_size(&self) -> u64 {
self.cached_synthetic_tenant_size.load(Ordering::Relaxed)
}
}
fn remove_timeline_and_uninit_mark(timeline_dir: &Path, uninit_mark: &Path) -> anyhow::Result<()> {
fs::remove_dir_all(timeline_dir)
.or_else(|e| {
if e.kind() == std::io::ErrorKind::NotFound {
// we can leave the uninit mark without a timeline dir,
// just remove the mark then
Ok(())
} else {
Err(e)
}
})
.with_context(|| {
format!(
"Failed to remove unit marked timeline directory {}",
timeline_dir.display()
)
})?;
fs::remove_file(uninit_mark).with_context(|| {
format!(
"Failed to remove timeline uninit mark file {}",
uninit_mark.display()
)
})?;
Ok(())
}
pub(crate) enum CreateTenantFilesMode {
Create,
Attach,
}
pub(crate) fn create_tenant_files(
conf: &'static PageServerConf,
tenant_conf: TenantConfOpt,
tenant_id: TenantId,
mode: CreateTenantFilesMode,
) -> anyhow::Result<PathBuf> {
let target_tenant_directory = conf.tenant_path(&tenant_id);
anyhow::ensure!(
!target_tenant_directory
.try_exists()
.context("check existence of tenant directory")?,
"tenant directory already exists",
);
let temporary_tenant_dir =
path_with_suffix_extension(&target_tenant_directory, TEMP_FILE_SUFFIX);
debug!(
"Creating temporary directory structure in {}",
temporary_tenant_dir.display()
);
// top-level dir may exist if we are creating it through CLI
crashsafe::create_dir_all(&temporary_tenant_dir).with_context(|| {
format!(
"could not create temporary tenant directory {}",
temporary_tenant_dir.display()
)
})?;
let creation_result = try_create_target_tenant_dir(
conf,
tenant_conf,
tenant_id,
mode,
&temporary_tenant_dir,
&target_tenant_directory,
);
if creation_result.is_err() {
error!("Failed to create directory structure for tenant {tenant_id}, cleaning tmp data");
if let Err(e) = fs::remove_dir_all(&temporary_tenant_dir) {
error!("Failed to remove temporary tenant directory {temporary_tenant_dir:?}: {e}")
} else if let Err(e) = crashsafe::fsync(&temporary_tenant_dir) {
error!(
"Failed to fsync removed temporary tenant directory {temporary_tenant_dir:?}: {e}"
)
}
}
creation_result?;
Ok(target_tenant_directory)
}
fn try_create_target_tenant_dir(
conf: &'static PageServerConf,
tenant_conf: TenantConfOpt,
tenant_id: TenantId,
mode: CreateTenantFilesMode,
temporary_tenant_dir: &Path,
target_tenant_directory: &Path,
) -> Result<(), anyhow::Error> {
match mode {
CreateTenantFilesMode::Create => {} // needs no attach marker, writing tenant conf + atomic rename of dir is good enough
CreateTenantFilesMode::Attach => {
let attach_marker_path = temporary_tenant_dir.join(TENANT_ATTACHING_MARKER_FILENAME);
let file = std::fs::OpenOptions::new()
.create_new(true)
.write(true)
.open(&attach_marker_path)
.with_context(|| {
format!("could not create attach marker file {attach_marker_path:?}")
})?;
file.sync_all().with_context(|| {
format!("could not sync attach marker file: {attach_marker_path:?}")
})?;
// fsync of the directory in which the file resides comes later in this function
}
}
let temporary_tenant_timelines_dir = rebase_directory(
&conf.timelines_path(&tenant_id),
target_tenant_directory,
temporary_tenant_dir,
)
.with_context(|| format!("resolve tenant {tenant_id} temporary timelines dir"))?;
let temporary_tenant_config_path = rebase_directory(
&conf.tenant_config_path(tenant_id),
target_tenant_directory,
temporary_tenant_dir,
)
.with_context(|| format!("resolve tenant {tenant_id} temporary config path"))?;
Tenant::persist_tenant_config(&tenant_id, &temporary_tenant_config_path, tenant_conf, true)?;
crashsafe::create_dir(&temporary_tenant_timelines_dir).with_context(|| {
format!(
"create tenant {} temporary timelines directory {}",
tenant_id,
temporary_tenant_timelines_dir.display()
)
})?;
fail::fail_point!("tenant-creation-before-tmp-rename", |_| {
anyhow::bail!("failpoint tenant-creation-before-tmp-rename");
});
// Make sure the current tenant directory entries are durable before renaming.
// Without this, a crash may reorder any of the directory entry creations above.
crashsafe::fsync(temporary_tenant_dir)
.with_context(|| format!("sync temporary tenant directory {temporary_tenant_dir:?}"))?;
fs::rename(temporary_tenant_dir, target_tenant_directory).with_context(|| {
format!(
"move tenant {} temporary directory {} into the permanent one {}",
tenant_id,
temporary_tenant_dir.display(),
target_tenant_directory.display()
)
})?;
let target_dir_parent = target_tenant_directory.parent().with_context(|| {
format!(
"get tenant {} dir parent for {}",
tenant_id,
target_tenant_directory.display()
)
})?;
crashsafe::fsync(target_dir_parent).with_context(|| {
format!(
"fsync renamed directory's parent {} for tenant {}",
target_dir_parent.display(),
tenant_id,
)
})?;
Ok(())
}
fn rebase_directory(original_path: &Path, base: &Path, new_base: &Path) -> anyhow::Result<PathBuf> {
let relative_path = original_path.strip_prefix(base).with_context(|| {
format!(
"Failed to strip base prefix '{}' off path '{}'",
base.display(),
original_path.display()
)
})?;
Ok(new_base.join(relative_path))
}
/// Create the cluster temporarily in 'initdbpath' directory inside the repository
/// to get bootstrap data for timeline initialization.
fn run_initdb(
conf: &'static PageServerConf,
initdb_target_dir: &Path,
pg_version: u32,
) -> anyhow::Result<()> {
let initdb_bin_path = conf.pg_bin_dir(pg_version)?.join("initdb");
let initdb_lib_dir = conf.pg_lib_dir(pg_version)?;
info!(
"running {} in {}, libdir: {}",
initdb_bin_path.display(),
initdb_target_dir.display(),
initdb_lib_dir.display(),
);
let initdb_output = Command::new(&initdb_bin_path)
.args(["-D", &initdb_target_dir.to_string_lossy()])
.args(["-U", &conf.superuser])
.args(["-E", "utf8"])
.arg("--no-instructions")
// This is only used for a temporary installation that is deleted shortly after,
// so no need to fsync it
.arg("--no-sync")
.env_clear()
.env("LD_LIBRARY_PATH", &initdb_lib_dir)
.env("DYLD_LIBRARY_PATH", &initdb_lib_dir)
.stdout(Stdio::null())
.output()
.with_context(|| {
format!(
"failed to execute {} at target dir {}",
initdb_bin_path.display(),
initdb_target_dir.display()
)
})?;
if !initdb_output.status.success() {
bail!(
"initdb failed: '{}'",
String::from_utf8_lossy(&initdb_output.stderr)
);
}
Ok(())
}
impl Drop for Tenant {
fn drop(&mut self) {
remove_tenant_metrics(&self.tenant_id);
}
}
/// Dump contents of a layer file to stdout.
pub fn dump_layerfile_from_path(
path: &Path,
verbose: bool,
ctx: &RequestContext,
) -> anyhow::Result<()> {
use std::os::unix::fs::FileExt;
// All layer files start with a two-byte "magic" value, to identify the kind of
// file.
let file = File::open(path)?;
let mut header_buf = [0u8; 2];
file.read_exact_at(&mut header_buf, 0)?;
match u16::from_be_bytes(header_buf) {
crate::IMAGE_FILE_MAGIC => ImageLayer::new_for_path(path, file)?.dump(verbose, ctx)?,
crate::DELTA_FILE_MAGIC => DeltaLayer::new_for_path(path, file)?.dump(verbose, ctx)?,
magic => bail!("unrecognized magic identifier: {:?}", magic),
}
Ok(())
}
fn ignore_absent_files<F>(fs_operation: F) -> io::Result<()>
where
F: Fn() -> io::Result<()>,
{
fs_operation().or_else(|e| {
if e.kind() == io::ErrorKind::NotFound {
Ok(())
} else {
Err(e)
}
})
}
#[cfg(test)]
pub mod harness {
use bytes::{Bytes, BytesMut};
use once_cell::sync::Lazy;
use once_cell::sync::OnceCell;
use std::sync::{Arc, RwLock, RwLockReadGuard, RwLockWriteGuard};
use std::{fs, path::PathBuf};
use utils::logging;
use utils::lsn::Lsn;
use crate::{
config::PageServerConf,
repository::Key,
tenant::Tenant,
walrecord::NeonWalRecord,
walredo::{WalRedoError, WalRedoManager},
};
use super::*;
use crate::tenant::config::{TenantConf, TenantConfOpt};
use hex_literal::hex;
use utils::id::{TenantId, TimelineId};
pub const TIMELINE_ID: TimelineId =
TimelineId::from_array(hex!("11223344556677881122334455667788"));
pub const NEW_TIMELINE_ID: TimelineId =
TimelineId::from_array(hex!("AA223344556677881122334455667788"));
/// Convenience function to create a page image with given string as the only content
#[allow(non_snake_case)]
pub fn TEST_IMG(s: &str) -> Bytes {
let mut buf = BytesMut::new();
buf.extend_from_slice(s.as_bytes());
buf.resize(64, 0);
buf.freeze()
}
static LOCK: Lazy<RwLock<()>> = Lazy::new(|| RwLock::new(()));
impl From<TenantConf> for TenantConfOpt {
fn from(tenant_conf: TenantConf) -> Self {
Self {
checkpoint_distance: Some(tenant_conf.checkpoint_distance),
checkpoint_timeout: Some(tenant_conf.checkpoint_timeout),
compaction_target_size: Some(tenant_conf.compaction_target_size),
compaction_period: Some(tenant_conf.compaction_period),
compaction_threshold: Some(tenant_conf.compaction_threshold),
gc_horizon: Some(tenant_conf.gc_horizon),
gc_period: Some(tenant_conf.gc_period),
image_creation_threshold: Some(tenant_conf.image_creation_threshold),
pitr_interval: Some(tenant_conf.pitr_interval),
walreceiver_connect_timeout: Some(tenant_conf.walreceiver_connect_timeout),
lagging_wal_timeout: Some(tenant_conf.lagging_wal_timeout),
max_lsn_wal_lag: Some(tenant_conf.max_lsn_wal_lag),
trace_read_requests: Some(tenant_conf.trace_read_requests),
eviction_policy: Some(tenant_conf.eviction_policy),
min_resident_size_override: tenant_conf.min_resident_size_override,
evictions_low_residence_duration_metric_threshold: Some(
tenant_conf.evictions_low_residence_duration_metric_threshold,
),
gc_feedback: Some(tenant_conf.gc_feedback),
}
}
}
pub struct TenantHarness<'a> {
pub conf: &'static PageServerConf,
pub tenant_conf: TenantConf,
pub tenant_id: TenantId,
pub lock_guard: (
Option<RwLockReadGuard<'a, ()>>,
Option<RwLockWriteGuard<'a, ()>>,
),
}
static LOG_HANDLE: OnceCell<()> = OnceCell::new();
impl<'a> TenantHarness<'a> {
pub fn create(test_name: &'static str) -> anyhow::Result<Self> {
Self::create_internal(test_name, false)
}
pub fn create_exclusive(test_name: &'static str) -> anyhow::Result<Self> {
Self::create_internal(test_name, true)
}
fn create_internal(test_name: &'static str, exclusive: bool) -> anyhow::Result<Self> {
let lock_guard = if exclusive {
(None, Some(LOCK.write().unwrap()))
} else {
(Some(LOCK.read().unwrap()), None)
};
LOG_HANDLE.get_or_init(|| {
logging::init(
logging::LogFormat::Test,
// enable it in case in case the tests exercise code paths that use
// debug_assert_current_span_has_tenant_and_timeline_id
logging::TracingErrorLayerEnablement::EnableWithRustLogFilter,
)
.expect("Failed to init test logging")
});
let repo_dir = PageServerConf::test_repo_dir(test_name);
let _ = fs::remove_dir_all(&repo_dir);
fs::create_dir_all(&repo_dir)?;
let conf = PageServerConf::dummy_conf(repo_dir);
// Make a static copy of the config. This can never be free'd, but that's
// OK in a test.
let conf: &'static PageServerConf = Box::leak(Box::new(conf));
// Disable automatic GC and compaction to make the unit tests more deterministic.
// The tests perform them manually if needed.
let tenant_conf = TenantConf {
gc_period: Duration::ZERO,
compaction_period: Duration::ZERO,
..TenantConf::default()
};
let tenant_id = TenantId::generate();
fs::create_dir_all(conf.tenant_path(&tenant_id))?;
fs::create_dir_all(conf.timelines_path(&tenant_id))?;
Ok(Self {
conf,
tenant_conf,
tenant_id,
lock_guard,
})
}
pub async fn load(&self) -> (Arc<Tenant>, RequestContext) {
let ctx = RequestContext::new(TaskKind::UnitTest, DownloadBehavior::Error);
(
self.try_load(&ctx)
.await
.expect("failed to load test tenant"),
ctx,
)
}
pub async fn try_load(&self, ctx: &RequestContext) -> anyhow::Result<Arc<Tenant>> {
let walredo_mgr = Arc::new(TestRedoManager);
let tenant = Arc::new(Tenant::new(
TenantState::Loading,
self.conf,
TenantConfOpt::from(self.tenant_conf),
walredo_mgr,
self.tenant_id,
None,
));
// populate tenant with locally available timelines
let mut timelines_to_load = HashMap::new();
for timeline_dir_entry in fs::read_dir(self.conf.timelines_path(&self.tenant_id))
.expect("should be able to read timelines dir")
{
let timeline_dir_entry = timeline_dir_entry?;
let timeline_id: TimelineId = timeline_dir_entry
.path()
.file_name()
.unwrap()
.to_string_lossy()
.parse()?;
let timeline_metadata = load_metadata(self.conf, timeline_id, self.tenant_id)?;
timelines_to_load.insert(timeline_id, timeline_metadata);
}
tenant
.load(None, ctx)
.instrument(info_span!("try_load", tenant_id=%self.tenant_id))
.await?;
tenant.state.send_replace(TenantState::Active);
for timeline in tenant.timelines.lock().unwrap().values() {
timeline.set_state(TimelineState::Active);
}
Ok(tenant)
}
pub fn timeline_path(&self, timeline_id: &TimelineId) -> PathBuf {
self.conf.timeline_path(timeline_id, &self.tenant_id)
}
}
// Mock WAL redo manager that doesn't do much
pub struct TestRedoManager;
impl WalRedoManager for TestRedoManager {
fn request_redo(
&self,
key: Key,
lsn: Lsn,
base_img: Option<(Lsn, Bytes)>,
records: Vec<(Lsn, NeonWalRecord)>,
_pg_version: u32,
) -> Result<Bytes, WalRedoError> {
let s = format!(
"redo for {} to get to {}, with {} and {} records",
key,
lsn,
if base_img.is_some() {
"base image"
} else {
"no base image"
},
records.len()
);
println!("{s}");
Ok(TEST_IMG(&s))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::keyspace::KeySpaceAccum;
use crate::repository::{Key, Value};
use crate::tenant::harness::*;
use crate::DEFAULT_PG_VERSION;
use crate::METADATA_FILE_NAME;
use bytes::BytesMut;
use hex_literal::hex;
use once_cell::sync::Lazy;
use rand::{thread_rng, Rng};
static TEST_KEY: Lazy<Key> =
Lazy::new(|| Key::from_slice(&hex!("112222222233333333444444445500000001")));
#[tokio::test]
async fn test_basic() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("test_basic")?.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)?;
let writer = tline.writer();
writer.put(*TEST_KEY, Lsn(0x10), &Value::Image(TEST_IMG("foo at 0x10")))?;
writer.finish_write(Lsn(0x10));
drop(writer);
let writer = tline.writer();
writer.put(*TEST_KEY, Lsn(0x20), &Value::Image(TEST_IMG("foo at 0x20")))?;
writer.finish_write(Lsn(0x20));
drop(writer);
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x10), &ctx).await?,
TEST_IMG("foo at 0x10")
);
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x1f), &ctx).await?,
TEST_IMG("foo at 0x10")
);
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x20), &ctx).await?,
TEST_IMG("foo at 0x20")
);
Ok(())
}
#[tokio::test]
async fn no_duplicate_timelines() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("no_duplicate_timelines")?
.load()
.await;
let _ = tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
match tenant.create_empty_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx) {
Ok(_) => panic!("duplicate timeline creation should fail"),
Err(e) => assert_eq!(
e.to_string(),
format!(
"Timeline {}/{} already exists in pageserver's memory",
tenant.tenant_id, TIMELINE_ID
)
),
}
Ok(())
}
/// Convenience function to create a page image with given string as the only content
pub fn test_value(s: &str) -> Value {
let mut buf = BytesMut::new();
buf.extend_from_slice(s.as_bytes());
Value::Image(buf.freeze())
}
///
/// Test branch creation
///
#[tokio::test]
async fn test_branch() -> anyhow::Result<()> {
use std::str::from_utf8;
let (tenant, ctx) = TenantHarness::create("test_branch")?.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
let writer = tline.writer();
#[allow(non_snake_case)]
let TEST_KEY_A: Key = Key::from_hex("112222222233333333444444445500000001").unwrap();
#[allow(non_snake_case)]
let TEST_KEY_B: Key = Key::from_hex("112222222233333333444444445500000002").unwrap();
// Insert a value on the timeline
writer.put(TEST_KEY_A, Lsn(0x20), &test_value("foo at 0x20"))?;
writer.put(TEST_KEY_B, Lsn(0x20), &test_value("foobar at 0x20"))?;
writer.finish_write(Lsn(0x20));
writer.put(TEST_KEY_A, Lsn(0x30), &test_value("foo at 0x30"))?;
writer.finish_write(Lsn(0x30));
writer.put(TEST_KEY_A, Lsn(0x40), &test_value("foo at 0x40"))?;
writer.finish_write(Lsn(0x40));
//assert_current_logical_size(&tline, Lsn(0x40));
// Branch the history, modify relation differently on the new timeline
tenant
.branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x30)), &ctx)
.await?;
let newtline = tenant
.get_timeline(NEW_TIMELINE_ID, true)
.expect("Should have a local timeline");
let new_writer = newtline.writer();
new_writer.put(TEST_KEY_A, Lsn(0x40), &test_value("bar at 0x40"))?;
new_writer.finish_write(Lsn(0x40));
// Check page contents on both branches
assert_eq!(
from_utf8(&tline.get(TEST_KEY_A, Lsn(0x40), &ctx).await?)?,
"foo at 0x40"
);
assert_eq!(
from_utf8(&newtline.get(TEST_KEY_A, Lsn(0x40), &ctx).await?)?,
"bar at 0x40"
);
assert_eq!(
from_utf8(&newtline.get(TEST_KEY_B, Lsn(0x40), &ctx).await?)?,
"foobar at 0x20"
);
//assert_current_logical_size(&tline, Lsn(0x40));
Ok(())
}
async fn make_some_layers(tline: &Timeline, start_lsn: Lsn) -> anyhow::Result<()> {
let mut lsn = start_lsn;
#[allow(non_snake_case)]
{
let writer = tline.writer();
// Create a relation on the timeline
writer.put(
*TEST_KEY,
lsn,
&Value::Image(TEST_IMG(&format!("foo at {}", lsn))),
)?;
writer.finish_write(lsn);
lsn += 0x10;
writer.put(
*TEST_KEY,
lsn,
&Value::Image(TEST_IMG(&format!("foo at {}", lsn))),
)?;
writer.finish_write(lsn);
lsn += 0x10;
}
tline.freeze_and_flush().await?;
{
let writer = tline.writer();
writer.put(
*TEST_KEY,
lsn,
&Value::Image(TEST_IMG(&format!("foo at {}", lsn))),
)?;
writer.finish_write(lsn);
lsn += 0x10;
writer.put(
*TEST_KEY,
lsn,
&Value::Image(TEST_IMG(&format!("foo at {}", lsn))),
)?;
writer.finish_write(lsn);
}
tline.freeze_and_flush().await
}
#[tokio::test]
async fn test_prohibit_branch_creation_on_garbage_collected_data() -> anyhow::Result<()> {
let (tenant, ctx) =
TenantHarness::create("test_prohibit_branch_creation_on_garbage_collected_data")?
.load()
.await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
make_some_layers(tline.as_ref(), Lsn(0x20)).await?;
// this removes layers before lsn 40 (50 minus 10), so there are two remaining layers, image and delta for 31-50
// FIXME: this doesn't actually remove any layer currently, given how the flushing
// and compaction works. But it does set the 'cutoff' point so that the cross check
// below should fail.
tenant
.gc_iteration(Some(TIMELINE_ID), 0x10, Duration::ZERO, &ctx)
.await?;
// try to branch at lsn 25, should fail because we already garbage collected the data
match tenant
.branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x25)), &ctx)
.await
{
Ok(_) => panic!("branching should have failed"),
Err(err) => {
assert!(err.to_string().contains("invalid branch start lsn"));
assert!(err
.source()
.unwrap()
.to_string()
.contains("we might've already garbage collected needed data"))
}
}
Ok(())
}
#[tokio::test]
async fn test_prohibit_branch_creation_on_pre_initdb_lsn() -> anyhow::Result<()> {
let (tenant, ctx) =
TenantHarness::create("test_prohibit_branch_creation_on_pre_initdb_lsn")?
.load()
.await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x50), DEFAULT_PG_VERSION, &ctx)?;
// try to branch at lsn 0x25, should fail because initdb lsn is 0x50
match tenant
.branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x25)), &ctx)
.await
{
Ok(_) => panic!("branching should have failed"),
Err(err) => {
assert!(&err.to_string().contains("invalid branch start lsn"));
assert!(&err
.source()
.unwrap()
.to_string()
.contains("is earlier than latest GC horizon"));
}
}
Ok(())
}
/*
// FIXME: This currently fails to error out. Calling GC doesn't currently
// remove the old value, we'd need to work a little harder
#[tokio::test]
async fn test_prohibit_get_for_garbage_collected_data() -> anyhow::Result<()> {
let repo =
RepoHarness::create("test_prohibit_get_for_garbage_collected_data")?
.load();
let tline = repo.create_empty_timeline(TIMELINE_ID, Lsn(0), DEFAULT_PG_VERSION)?;
make_some_layers(tline.as_ref(), Lsn(0x20)).await?;
repo.gc_iteration(Some(TIMELINE_ID), 0x10, Duration::ZERO)?;
let latest_gc_cutoff_lsn = tline.get_latest_gc_cutoff_lsn();
assert!(*latest_gc_cutoff_lsn > Lsn(0x25));
match tline.get(*TEST_KEY, Lsn(0x25)) {
Ok(_) => panic!("request for page should have failed"),
Err(err) => assert!(err.to_string().contains("not found at")),
}
Ok(())
}
*/
#[tokio::test]
async fn test_get_branchpoints_from_an_inactive_timeline() -> anyhow::Result<()> {
let (tenant, ctx) =
TenantHarness::create("test_get_branchpoints_from_an_inactive_timeline")?
.load()
.await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
make_some_layers(tline.as_ref(), Lsn(0x20)).await?;
tenant
.branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
.await?;
let newtline = tenant
.get_timeline(NEW_TIMELINE_ID, true)
.expect("Should have a local timeline");
make_some_layers(newtline.as_ref(), Lsn(0x60)).await?;
tline.set_broken("test".to_owned());
tenant
.gc_iteration(Some(TIMELINE_ID), 0x10, Duration::ZERO, &ctx)
.await?;
// The branchpoints should contain all timelines, even ones marked
// as Broken.
{
let branchpoints = &tline.gc_info.read().unwrap().retain_lsns;
assert_eq!(branchpoints.len(), 1);
assert_eq!(branchpoints[0], Lsn(0x40));
}
// You can read the key from the child branch even though the parent is
// Broken, as long as you don't need to access data from the parent.
assert_eq!(
newtline.get(*TEST_KEY, Lsn(0x70), &ctx).await?,
TEST_IMG(&format!("foo at {}", Lsn(0x70)))
);
// This needs to traverse to the parent, and fails.
let err = newtline.get(*TEST_KEY, Lsn(0x50), &ctx).await.unwrap_err();
assert!(err
.to_string()
.contains("will not become active. Current state: Broken"));
Ok(())
}
#[tokio::test]
async fn test_retain_data_in_parent_which_is_needed_for_child() -> anyhow::Result<()> {
let (tenant, ctx) =
TenantHarness::create("test_retain_data_in_parent_which_is_needed_for_child")?
.load()
.await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
make_some_layers(tline.as_ref(), Lsn(0x20)).await?;
tenant
.branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
.await?;
let newtline = tenant
.get_timeline(NEW_TIMELINE_ID, true)
.expect("Should have a local timeline");
// this removes layers before lsn 40 (50 minus 10), so there are two remaining layers, image and delta for 31-50
tenant
.gc_iteration(Some(TIMELINE_ID), 0x10, Duration::ZERO, &ctx)
.await?;
assert!(newtline.get(*TEST_KEY, Lsn(0x25), &ctx).await.is_ok());
Ok(())
}
#[tokio::test]
async fn test_parent_keeps_data_forever_after_branching() -> anyhow::Result<()> {
let (tenant, ctx) =
TenantHarness::create("test_parent_keeps_data_forever_after_branching")?
.load()
.await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
make_some_layers(tline.as_ref(), Lsn(0x20)).await?;
tenant
.branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
.await?;
let newtline = tenant
.get_timeline(NEW_TIMELINE_ID, true)
.expect("Should have a local timeline");
make_some_layers(newtline.as_ref(), Lsn(0x60)).await?;
// run gc on parent
tenant
.gc_iteration(Some(TIMELINE_ID), 0x10, Duration::ZERO, &ctx)
.await?;
// Check that the data is still accessible on the branch.
assert_eq!(
newtline.get(*TEST_KEY, Lsn(0x50), &ctx).await?,
TEST_IMG(&format!("foo at {}", Lsn(0x40)))
);
Ok(())
}
#[tokio::test]
async fn timeline_load() -> anyhow::Result<()> {
const TEST_NAME: &str = "timeline_load";
let harness = TenantHarness::create(TEST_NAME)?;
{
let (tenant, ctx) = harness.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x7000), DEFAULT_PG_VERSION, &ctx)?;
make_some_layers(tline.as_ref(), Lsn(0x8000)).await?;
}
let (tenant, _ctx) = harness.load().await;
tenant
.get_timeline(TIMELINE_ID, true)
.expect("cannot load timeline");
Ok(())
}
#[tokio::test]
async fn timeline_load_with_ancestor() -> anyhow::Result<()> {
const TEST_NAME: &str = "timeline_load_with_ancestor";
let harness = TenantHarness::create(TEST_NAME)?;
// create two timelines
{
let (tenant, ctx) = harness.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
make_some_layers(tline.as_ref(), Lsn(0x20)).await?;
let child_tline = tenant
.branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
.await?;
child_tline.set_state(TimelineState::Active);
let newtline = tenant
.get_timeline(NEW_TIMELINE_ID, true)
.expect("Should have a local timeline");
make_some_layers(newtline.as_ref(), Lsn(0x60)).await?;
}
// check that both of them are initially unloaded
let (tenant, _ctx) = harness.load().await;
// check that both, child and ancestor are loaded
let _child_tline = tenant
.get_timeline(NEW_TIMELINE_ID, true)
.expect("cannot get child timeline loaded");
let _ancestor_tline = tenant
.get_timeline(TIMELINE_ID, true)
.expect("cannot get ancestor timeline loaded");
Ok(())
}
#[tokio::test]
async fn corrupt_metadata() -> anyhow::Result<()> {
const TEST_NAME: &str = "corrupt_metadata";
let harness = TenantHarness::create(TEST_NAME)?;
let (tenant, ctx) = harness.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
drop(tline);
drop(tenant);
let metadata_path = harness.timeline_path(&TIMELINE_ID).join(METADATA_FILE_NAME);
assert!(metadata_path.is_file());
let mut metadata_bytes = std::fs::read(&metadata_path)?;
assert_eq!(metadata_bytes.len(), 512);
metadata_bytes[8] ^= 1;
std::fs::write(metadata_path, metadata_bytes)?;
let err = harness.try_load(&ctx).await.err().expect("should fail");
assert!(err
.to_string()
.starts_with("Failed to parse metadata bytes from path"));
let mut found_error_message = false;
let mut err_source = err.source();
while let Some(source) = err_source {
if source.to_string() == "metadata checksum mismatch" {
found_error_message = true;
break;
}
err_source = source.source();
}
assert!(
found_error_message,
"didn't find the corrupted metadata error"
);
Ok(())
}
#[tokio::test]
async fn test_images() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("test_images")?.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)?;
let writer = tline.writer();
writer.put(*TEST_KEY, Lsn(0x10), &Value::Image(TEST_IMG("foo at 0x10")))?;
writer.finish_write(Lsn(0x10));
drop(writer);
tline.freeze_and_flush().await?;
tline.compact(&ctx).await?;
let writer = tline.writer();
writer.put(*TEST_KEY, Lsn(0x20), &Value::Image(TEST_IMG("foo at 0x20")))?;
writer.finish_write(Lsn(0x20));
drop(writer);
tline.freeze_and_flush().await?;
tline.compact(&ctx).await?;
let writer = tline.writer();
writer.put(*TEST_KEY, Lsn(0x30), &Value::Image(TEST_IMG("foo at 0x30")))?;
writer.finish_write(Lsn(0x30));
drop(writer);
tline.freeze_and_flush().await?;
tline.compact(&ctx).await?;
let writer = tline.writer();
writer.put(*TEST_KEY, Lsn(0x40), &Value::Image(TEST_IMG("foo at 0x40")))?;
writer.finish_write(Lsn(0x40));
drop(writer);
tline.freeze_and_flush().await?;
tline.compact(&ctx).await?;
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x10), &ctx).await?,
TEST_IMG("foo at 0x10")
);
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x1f), &ctx).await?,
TEST_IMG("foo at 0x10")
);
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x20), &ctx).await?,
TEST_IMG("foo at 0x20")
);
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x30), &ctx).await?,
TEST_IMG("foo at 0x30")
);
assert_eq!(
tline.get(*TEST_KEY, Lsn(0x40), &ctx).await?,
TEST_IMG("foo at 0x40")
);
Ok(())
}
//
// Insert 1000 key-value pairs with increasing keys, flush, compact, GC.
// Repeat 50 times.
//
#[tokio::test]
async fn test_bulk_insert() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("test_bulk_insert")?.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)?;
let mut lsn = Lsn(0x10);
let mut keyspace = KeySpaceAccum::new();
let mut test_key = Key::from_hex("012222222233333333444444445500000000").unwrap();
let mut blknum = 0;
for _ in 0..50 {
for _ in 0..10000 {
test_key.field6 = blknum;
let writer = tline.writer();
writer.put(
test_key,
lsn,
&Value::Image(TEST_IMG(&format!("{} at {}", blknum, lsn))),
)?;
writer.finish_write(lsn);
drop(writer);
keyspace.add_key(test_key);
lsn = Lsn(lsn.0 + 0x10);
blknum += 1;
}
let cutoff = tline.get_last_record_lsn();
tline
.update_gc_info(Vec::new(), cutoff, Duration::ZERO, &ctx)
.await?;
tline.freeze_and_flush().await?;
tline.compact(&ctx).await?;
tline.gc().await?;
}
Ok(())
}
#[tokio::test]
async fn test_random_updates() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("test_random_updates")?.load().await;
let tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
const NUM_KEYS: usize = 1000;
let mut test_key = Key::from_hex("012222222233333333444444445500000000").unwrap();
let mut keyspace = KeySpaceAccum::new();
// Track when each page was last modified. Used to assert that
// a read sees the latest page version.
let mut updated = [Lsn(0); NUM_KEYS];
let mut lsn = Lsn(0x10);
#[allow(clippy::needless_range_loop)]
for blknum in 0..NUM_KEYS {
lsn = Lsn(lsn.0 + 0x10);
test_key.field6 = blknum as u32;
let writer = tline.writer();
writer.put(
test_key,
lsn,
&Value::Image(TEST_IMG(&format!("{} at {}", blknum, lsn))),
)?;
writer.finish_write(lsn);
updated[blknum] = lsn;
drop(writer);
keyspace.add_key(test_key);
}
for _ in 0..50 {
for _ in 0..NUM_KEYS {
lsn = Lsn(lsn.0 + 0x10);
let blknum = thread_rng().gen_range(0..NUM_KEYS);
test_key.field6 = blknum as u32;
let writer = tline.writer();
writer.put(
test_key,
lsn,
&Value::Image(TEST_IMG(&format!("{} at {}", blknum, lsn))),
)?;
writer.finish_write(lsn);
drop(writer);
updated[blknum] = lsn;
}
// Read all the blocks
for (blknum, last_lsn) in updated.iter().enumerate() {
test_key.field6 = blknum as u32;
assert_eq!(
tline.get(test_key, lsn, &ctx).await?,
TEST_IMG(&format!("{} at {}", blknum, last_lsn))
);
}
// Perform a cycle of flush, compact, and GC
let cutoff = tline.get_last_record_lsn();
tline
.update_gc_info(Vec::new(), cutoff, Duration::ZERO, &ctx)
.await?;
tline.freeze_and_flush().await?;
tline.compact(&ctx).await?;
tline.gc().await?;
}
Ok(())
}
#[tokio::test]
async fn test_traverse_branches() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("test_traverse_branches")?
.load()
.await;
let mut tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
const NUM_KEYS: usize = 1000;
let mut test_key = Key::from_hex("012222222233333333444444445500000000").unwrap();
let mut keyspace = KeySpaceAccum::new();
// Track when each page was last modified. Used to assert that
// a read sees the latest page version.
let mut updated = [Lsn(0); NUM_KEYS];
let mut lsn = Lsn(0x10);
#[allow(clippy::needless_range_loop)]
for blknum in 0..NUM_KEYS {
lsn = Lsn(lsn.0 + 0x10);
test_key.field6 = blknum as u32;
let writer = tline.writer();
writer.put(
test_key,
lsn,
&Value::Image(TEST_IMG(&format!("{} at {}", blknum, lsn))),
)?;
writer.finish_write(lsn);
updated[blknum] = lsn;
drop(writer);
keyspace.add_key(test_key);
}
for _ in 0..50 {
let new_tline_id = TimelineId::generate();
tenant
.branch_timeline_test(&tline, new_tline_id, Some(lsn), &ctx)
.await?;
tline = tenant
.get_timeline(new_tline_id, true)
.expect("Should have the branched timeline");
for _ in 0..NUM_KEYS {
lsn = Lsn(lsn.0 + 0x10);
let blknum = thread_rng().gen_range(0..NUM_KEYS);
test_key.field6 = blknum as u32;
let writer = tline.writer();
writer.put(
test_key,
lsn,
&Value::Image(TEST_IMG(&format!("{} at {}", blknum, lsn))),
)?;
println!("updating {} at {}", blknum, lsn);
writer.finish_write(lsn);
drop(writer);
updated[blknum] = lsn;
}
// Read all the blocks
for (blknum, last_lsn) in updated.iter().enumerate() {
test_key.field6 = blknum as u32;
assert_eq!(
tline.get(test_key, lsn, &ctx).await?,
TEST_IMG(&format!("{} at {}", blknum, last_lsn))
);
}
// Perform a cycle of flush, compact, and GC
let cutoff = tline.get_last_record_lsn();
tline
.update_gc_info(Vec::new(), cutoff, Duration::ZERO, &ctx)
.await?;
tline.freeze_and_flush().await?;
tline.compact(&ctx).await?;
tline.gc().await?;
}
Ok(())
}
#[tokio::test]
async fn test_traverse_ancestors() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("test_traverse_ancestors")?
.load()
.await;
let mut tline =
tenant.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)?;
const NUM_KEYS: usize = 100;
const NUM_TLINES: usize = 50;
let mut test_key = Key::from_hex("012222222233333333444444445500000000").unwrap();
// Track page mutation lsns across different timelines.
let mut updated = [[Lsn(0); NUM_KEYS]; NUM_TLINES];
let mut lsn = Lsn(0x10);
#[allow(clippy::needless_range_loop)]
for idx in 0..NUM_TLINES {
let new_tline_id = TimelineId::generate();
tenant
.branch_timeline_test(&tline, new_tline_id, Some(lsn), &ctx)
.await?;
tline = tenant
.get_timeline(new_tline_id, true)
.expect("Should have the branched timeline");
for _ in 0..NUM_KEYS {
lsn = Lsn(lsn.0 + 0x10);
let blknum = thread_rng().gen_range(0..NUM_KEYS);
test_key.field6 = blknum as u32;
let writer = tline.writer();
writer.put(
test_key,
lsn,
&Value::Image(TEST_IMG(&format!("{} {} at {}", idx, blknum, lsn))),
)?;
println!("updating [{}][{}] at {}", idx, blknum, lsn);
writer.finish_write(lsn);
drop(writer);
updated[idx][blknum] = lsn;
}
}
// Read pages from leaf timeline across all ancestors.
for (idx, lsns) in updated.iter().enumerate() {
for (blknum, lsn) in lsns.iter().enumerate() {
// Skip empty mutations.
if lsn.0 == 0 {
continue;
}
println!("checking [{idx}][{blknum}] at {lsn}");
test_key.field6 = blknum as u32;
assert_eq!(
tline.get(test_key, *lsn, &ctx).await?,
TEST_IMG(&format!("{idx} {blknum} at {lsn}"))
);
}
}
Ok(())
}
#[tokio::test]
async fn test_write_at_initdb_lsn_takes_optimization_code_path() -> anyhow::Result<()> {
let (tenant, ctx) = TenantHarness::create("test_empty_test_timeline_is_usable")?
.load()
.await;
let initdb_lsn = Lsn(0x20);
let utline =
tenant.create_empty_timeline(TIMELINE_ID, initdb_lsn, DEFAULT_PG_VERSION, &ctx)?;
let tline = utline.raw_timeline().unwrap();
// Spawn flush loop now so that we can set the `expect_initdb_optimization`
tline.maybe_spawn_flush_loop();
// Make sure the timeline has the minimum set of required keys for operation.
// The only operation you can always do on an empty timeline is to `put` new data.
// Except if you `put` at `initdb_lsn`.
// In that case, there's an optimization to directly create image layers instead of delta layers.
// It uses `repartition()`, which assumes some keys to be present.
// Let's make sure the test timeline can handle that case.
{
let mut state = tline.flush_loop_state.lock().unwrap();
assert_eq!(
timeline::FlushLoopState::Running {
expect_initdb_optimization: false,
initdb_optimization_count: 0,
},
*state
);
*state = timeline::FlushLoopState::Running {
expect_initdb_optimization: true,
initdb_optimization_count: 0,
};
}
// Make writes at the initdb_lsn. When we flush it below, it should be handled by the optimization.
// As explained above, the optimization requires some keys to be present.
// As per `create_empty_timeline` documentation, use init_empty to set them.
// This is what `create_test_timeline` does, by the way.
let mut modification = tline.begin_modification(initdb_lsn);
modification
.init_empty_test_timeline()
.context("init_empty_test_timeline")?;
modification
.commit()
.context("commit init_empty_test_timeline modification")?;
// Do the flush. The flush code will check the expectations that we set above.
tline.freeze_and_flush().await?;
// assert freeze_and_flush exercised the initdb optimization
{
let state = tline.flush_loop_state.lock().unwrap();
let
timeline::FlushLoopState::Running {
expect_initdb_optimization,
initdb_optimization_count,
} = *state else {
panic!("unexpected state: {:?}", *state);
};
assert!(expect_initdb_optimization);
assert!(initdb_optimization_count > 0);
}
Ok(())
}
}
#[cfg(not(debug_assertions))]
#[inline]
pub(crate) fn debug_assert_current_span_has_tenant_id() {}
#[cfg(debug_assertions)]
pub static TENANT_ID_EXTRACTOR: once_cell::sync::Lazy<
utils::tracing_span_assert::MultiNameExtractor<2>,
> = once_cell::sync::Lazy::new(|| {
utils::tracing_span_assert::MultiNameExtractor::new("TenantId", ["tenant_id", "tenant"])
});
#[cfg(debug_assertions)]
#[inline]
pub(crate) fn debug_assert_current_span_has_tenant_id() {
use utils::tracing_span_assert;
match tracing_span_assert::check_fields_present([&*TENANT_ID_EXTRACTOR]) {
Ok(()) => (),
Err(missing) => panic!(
"missing extractors: {:?}",
missing.into_iter().map(|e| e.name()).collect::<Vec<_>>()
),
}
}