Files
neon/libs/utils/src/id.rs
Mikhail 5c356c63eb endpoint_storage compute_ctl integration (#11550)
Add `/lfc/(prewarm|offload)` routes to `compute_ctl` which interact with
endpoint storage.

Add `prewarm_lfc_on_startup` spec option which, if enabled, downloads
LFC prewarm data on compute startup.

Resolves: https://github.com/neondatabase/cloud/issues/26343
2025-05-06 22:02:12 +00:00

477 lines
14 KiB
Rust

use std::fmt;
use std::num::ParseIntError;
use std::str::FromStr;
use anyhow::Context;
use hex::FromHex;
use rand::Rng;
use serde::de::Visitor;
use serde::{Deserialize, Serialize};
use thiserror::Error;
#[derive(Error, Debug)]
pub enum IdError {
#[error("invalid id length {0}")]
SliceParseError(usize),
}
/// Neon ID is a 128-bit random ID.
/// Used to represent various identifiers. Provides handy utility methods and impls.
///
/// NOTE: It (de)serializes as an array of hex bytes, so the string representation would look
/// like `[173,80,132,115,129,226,72,254,170,201,135,108,199,26,228,24]`.
#[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
struct Id([u8; 16]);
impl Serialize for Id {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
if serializer.is_human_readable() {
serializer.collect_str(self)
} else {
self.0.serialize(serializer)
}
}
}
impl<'de> Deserialize<'de> for Id {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
struct IdVisitor {
is_human_readable_deserializer: bool,
}
impl<'de> Visitor<'de> for IdVisitor {
type Value = Id;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
if self.is_human_readable_deserializer {
formatter.write_str("value in form of hex string")
} else {
formatter.write_str("value in form of integer array([u8; 16])")
}
}
fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
where
A: serde::de::SeqAccess<'de>,
{
let s = serde::de::value::SeqAccessDeserializer::new(seq);
let id: [u8; 16] = Deserialize::deserialize(s)?;
Ok(Id::from(id))
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Id::from_str(v).map_err(E::custom)
}
}
if deserializer.is_human_readable() {
deserializer.deserialize_str(IdVisitor {
is_human_readable_deserializer: true,
})
} else {
deserializer.deserialize_tuple(
16,
IdVisitor {
is_human_readable_deserializer: false,
},
)
}
}
}
impl Id {
pub fn from_slice(src: &[u8]) -> Result<Id, IdError> {
if src.len() != 16 {
return Err(IdError::SliceParseError(src.len()));
}
let mut id_array = [0u8; 16];
id_array.copy_from_slice(src);
Ok(id_array.into())
}
pub fn as_arr(&self) -> [u8; 16] {
self.0
}
pub fn generate() -> Self {
let mut tli_buf = [0u8; 16];
rand::thread_rng().fill(&mut tli_buf);
Id::from(tli_buf)
}
fn hex_encode(&self) -> String {
static HEX: &[u8] = b"0123456789abcdef";
let mut buf = vec![0u8; self.0.len() * 2];
for (&b, chunk) in self.0.as_ref().iter().zip(buf.chunks_exact_mut(2)) {
chunk[0] = HEX[((b >> 4) & 0xf) as usize];
chunk[1] = HEX[(b & 0xf) as usize];
}
// SAFETY: vec constructed out of `HEX`, it can only be ascii
unsafe { String::from_utf8_unchecked(buf) }
}
}
impl FromStr for Id {
type Err = hex::FromHexError;
fn from_str(s: &str) -> Result<Id, Self::Err> {
Self::from_hex(s)
}
}
// this is needed for pretty serialization and deserialization of Id's using serde integration with hex crate
impl FromHex for Id {
type Error = hex::FromHexError;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut buf: [u8; 16] = [0u8; 16];
hex::decode_to_slice(hex, &mut buf)?;
Ok(Id(buf))
}
}
impl AsRef<[u8]> for Id {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl From<[u8; 16]> for Id {
fn from(b: [u8; 16]) -> Self {
Id(b)
}
}
impl From<Id> for u128 {
fn from(id: Id) -> Self {
u128::from_le_bytes(id.0)
}
}
impl fmt::Display for Id {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.hex_encode())
}
}
impl fmt::Debug for Id {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.hex_encode())
}
}
macro_rules! id_newtype {
($t:ident) => {
impl $t {
pub fn from_slice(src: &[u8]) -> Result<$t, IdError> {
Ok($t(Id::from_slice(src)?))
}
pub fn as_arr(&self) -> [u8; 16] {
self.0.as_arr()
}
pub fn generate() -> Self {
$t(Id::generate())
}
pub const fn from_array(b: [u8; 16]) -> Self {
$t(Id(b))
}
}
impl FromStr for $t {
type Err = hex::FromHexError;
fn from_str(s: &str) -> Result<$t, Self::Err> {
let value = Id::from_str(s)?;
Ok($t(value))
}
}
impl From<[u8; 16]> for $t {
fn from(b: [u8; 16]) -> Self {
$t(Id::from(b))
}
}
impl FromHex for $t {
type Error = hex::FromHexError;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
Ok($t(Id::from_hex(hex)?))
}
}
impl AsRef<[u8]> for $t {
fn as_ref(&self) -> &[u8] {
&self.0.0
}
}
impl From<$t> for u128 {
fn from(id: $t) -> Self {
u128::from(id.0)
}
}
impl fmt::Display for $t {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::Debug for $t {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
};
}
/// Neon timeline ID.
///
/// They are different from PostgreSQL timeline
/// IDs, but serve a similar purpose: they differentiate
/// between different "histories" of the same cluster. However,
/// PostgreSQL timeline IDs are a bit cumbersome, because they are only
/// 32-bits wide, and they must be in ascending order in any given
/// timeline history. Those limitations mean that we cannot generate a
/// new PostgreSQL timeline ID by just generating a random number. And
/// that in turn is problematic for the "pull/push" workflow, where you
/// have a local copy of a Neon repository, and you periodically sync
/// the local changes with a remote server. When you work "detached"
/// from the remote server, you cannot create a PostgreSQL timeline ID
/// that's guaranteed to be different from all existing timelines in
/// the remote server. For example, if two people are having a clone of
/// the repository on their laptops, and they both create a new branch
/// with different name. What timeline ID would they assign to their
/// branches? If they pick the same one, and later try to push the
/// branches to the same remote server, they will get mixed up.
///
/// To avoid those issues, Neon has its own concept of timelines that
/// is separate from PostgreSQL timelines, and doesn't have those
/// limitations. A Neon timeline is identified by a 128-bit ID, which
/// is usually printed out as a hex string.
///
/// NOTE: It (de)serializes as an array of hex bytes, so the string representation would look
/// like `[173,80,132,115,129,226,72,254,170,201,135,108,199,26,228,24]`.
/// See [`Id`] for alternative ways to serialize it.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd, Serialize, Deserialize)]
pub struct TimelineId(Id);
id_newtype!(TimelineId);
impl TryFrom<Option<&str>> for TimelineId {
type Error = anyhow::Error;
fn try_from(value: Option<&str>) -> Result<Self, Self::Error> {
value
.unwrap_or_default()
.parse::<TimelineId>()
.with_context(|| format!("Could not parse timeline id from {:?}", value))
}
}
/// Neon Tenant Id represents identifiar of a particular tenant.
/// Is used for distinguishing requests and data belonging to different users.
///
/// NOTE: It (de)serializes as an array of hex bytes, so the string representation would look
/// like `[173,80,132,115,129,226,72,254,170,201,135,108,199,26,228,24]`.
/// See [`Id`] for alternative ways to serialize it.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize, PartialOrd, Ord)]
pub struct TenantId(Id);
id_newtype!(TenantId);
/// If needed, reuse small string from proxy/src/types.rc
pub type EndpointId = String;
// A pair uniquely identifying Neon instance.
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct TenantTimelineId {
pub tenant_id: TenantId,
pub timeline_id: TimelineId,
}
impl TenantTimelineId {
pub fn new(tenant_id: TenantId, timeline_id: TimelineId) -> Self {
TenantTimelineId {
tenant_id,
timeline_id,
}
}
pub fn generate() -> Self {
Self::new(TenantId::generate(), TimelineId::generate())
}
pub fn empty() -> Self {
Self::new(TenantId::from([0u8; 16]), TimelineId::from([0u8; 16]))
}
}
impl fmt::Display for TenantTimelineId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}/{}", self.tenant_id, self.timeline_id)
}
}
impl FromStr for TenantTimelineId {
type Err = anyhow::Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut parts = s.split('/');
let tenant_id = parts
.next()
.ok_or_else(|| anyhow::anyhow!("TenantTimelineId must contain tenant_id"))?
.parse()?;
let timeline_id = parts
.next()
.ok_or_else(|| anyhow::anyhow!("TenantTimelineId must contain timeline_id"))?
.parse()?;
if parts.next().is_some() {
anyhow::bail!("TenantTimelineId must contain only tenant_id and timeline_id");
}
Ok(TenantTimelineId::new(tenant_id, timeline_id))
}
}
// Unique ID of a storage node (safekeeper or pageserver). Supposed to be issued
// by the console.
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd, Hash, Debug, Serialize, Deserialize)]
#[serde(transparent)]
pub struct NodeId(pub u64);
impl fmt::Display for NodeId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl FromStr for NodeId {
type Err = ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(NodeId(u64::from_str(s)?))
}
}
#[cfg(test)]
mod tests {
use serde_assert::{Deserializer, Serializer, Token, Tokens};
use super::*;
use crate::bin_ser::BeSer;
#[test]
fn test_id_serde_non_human_readable() {
let original_id = Id([
173, 80, 132, 115, 129, 226, 72, 254, 170, 201, 135, 108, 199, 26, 228, 24,
]);
let expected_tokens = Tokens(vec![
Token::Tuple { len: 16 },
Token::U8(173),
Token::U8(80),
Token::U8(132),
Token::U8(115),
Token::U8(129),
Token::U8(226),
Token::U8(72),
Token::U8(254),
Token::U8(170),
Token::U8(201),
Token::U8(135),
Token::U8(108),
Token::U8(199),
Token::U8(26),
Token::U8(228),
Token::U8(24),
Token::TupleEnd,
]);
let serializer = Serializer::builder().is_human_readable(false).build();
let serialized_tokens = original_id.serialize(&serializer).unwrap();
assert_eq!(serialized_tokens, expected_tokens);
let mut deserializer = Deserializer::builder()
.is_human_readable(false)
.tokens(serialized_tokens)
.build();
let deserialized_id = Id::deserialize(&mut deserializer).unwrap();
assert_eq!(deserialized_id, original_id);
}
#[test]
fn test_id_serde_human_readable() {
let original_id = Id([
173, 80, 132, 115, 129, 226, 72, 254, 170, 201, 135, 108, 199, 26, 228, 24,
]);
let expected_tokens = Tokens(vec![Token::Str(String::from(
"ad50847381e248feaac9876cc71ae418",
))]);
let serializer = Serializer::builder().is_human_readable(true).build();
let serialized_tokens = original_id.serialize(&serializer).unwrap();
assert_eq!(serialized_tokens, expected_tokens);
let mut deserializer = Deserializer::builder()
.is_human_readable(true)
.tokens(Tokens(vec![Token::Str(String::from(
"ad50847381e248feaac9876cc71ae418",
))]))
.build();
assert_eq!(Id::deserialize(&mut deserializer).unwrap(), original_id);
}
macro_rules! roundtrip_type {
($type:ty, $expected_bytes:expr) => {{
let expected_bytes: [u8; 16] = $expected_bytes;
let original_id = <$type>::from(expected_bytes);
let ser_bytes = original_id.ser().unwrap();
assert_eq!(ser_bytes, expected_bytes);
let des_id = <$type>::des(&ser_bytes).unwrap();
assert_eq!(des_id, original_id);
}};
}
#[test]
fn test_id_bincode_serde() {
let expected_bytes = [
173, 80, 132, 115, 129, 226, 72, 254, 170, 201, 135, 108, 199, 26, 228, 24,
];
roundtrip_type!(Id, expected_bytes);
}
#[test]
fn test_tenant_id_bincode_serde() {
let expected_bytes = [
173, 80, 132, 115, 129, 226, 72, 254, 170, 201, 135, 108, 199, 26, 228, 24,
];
roundtrip_type!(TenantId, expected_bytes);
}
#[test]
fn test_timeline_id_bincode_serde() {
let expected_bytes = [
173, 80, 132, 115, 129, 226, 72, 254, 170, 201, 135, 108, 199, 26, 228, 24,
];
roundtrip_type!(TimelineId, expected_bytes);
}
}