Files
neon/pageserver/src/tenant/storage_layer/delta_layer.rs
2025-07-22 09:31:39 +00:00

2339 lines
78 KiB
Rust

//! A DeltaLayer represents a collection of WAL records or page images in a range of
//! LSNs, and in a range of Keys. It is stored on a file on disk.
//!
//! Usually a delta layer only contains differences, in the form of WAL records
//! against a base LSN. However, if a relation extended or a whole new relation
//! is created, there would be no base for the new pages. The entries for them
//! must be page images or WAL records with the 'will_init' flag set, so that
//! they can be replayed without referring to an older page version.
//!
//! The delta files are stored in `timelines/<timeline_id>` directory. Currently,
//! there are no subdirectories, and each delta file is named like this:
//!
//! ```text
//! <key start>-<key end>__<start LSN>-<end LSN>
//! ```
//!
//! For example:
//!
//! ```text
//! 000000067F000032BE0000400000000020B6-000000067F000032BE0000400000000030B6__000000578C6B29-0000000057A50051
//! ```
//!
//! Every delta file consists of three parts: "summary", "values", and
//! "index". The summary is a fixed size header at the beginning of the file,
//! and it contains basic information about the layer, and offsets to the other
//! parts. The "index" is a B-tree, mapping from Key and LSN to an offset in the
//! "values" part. The actual page images and WAL records are stored in the
//! "values" part.
//!
use std::collections::{HashMap, VecDeque};
use std::fs::File;
use std::ops::Range;
use std::os::unix::fs::FileExt;
use std::str::FromStr;
use std::sync::Arc;
use std::sync::atomic::AtomicU64;
use anyhow::{Context, Result, bail, ensure};
use camino::{Utf8Path, Utf8PathBuf};
use futures::StreamExt;
use itertools::Itertools;
use pageserver_api::config::MaxVectoredReadBytes;
use pageserver_api::key::{DBDIR_KEY, KEY_SIZE, Key};
use pageserver_api::keyspace::KeySpace;
use pageserver_api::models::ImageCompressionAlgorithm;
use pageserver_api::shard::TenantShardId;
use serde::{Deserialize, Serialize};
use tokio::sync::OnceCell;
use tokio_epoll_uring::IoBuf;
use tokio_util::sync::CancellationToken;
use tracing::*;
use utils::bin_ser::BeSer;
use utils::bin_ser::SerializeError;
use utils::id::{TenantId, TimelineId};
use utils::lsn::Lsn;
use wal_decoder::models::value::Value;
use super::errors::PutError;
use super::{
AsLayerDesc, LayerName, OnDiskValue, OnDiskValueIo, PersistentLayerDesc, ResidentLayer,
ValuesReconstructState,
};
use crate::config::PageServerConf;
use crate::context::{PageContentKind, RequestContext, RequestContextBuilder};
use crate::page_cache::{self, FileId, PAGE_SZ};
use crate::tenant::blob_io::BlobWriter;
use crate::tenant::block_io::{BlockBuf, BlockCursor, BlockLease, BlockReader, FileBlockReader};
use crate::tenant::disk_btree::{
DiskBtreeBuilder, DiskBtreeIterator, DiskBtreeReader, VisitDirection,
};
use crate::tenant::storage_layer::layer::S3_UPLOAD_LIMIT;
use crate::tenant::timeline::GetVectoredError;
use crate::tenant::vectored_blob_io::{
BlobFlag, BufView, StreamingVectoredReadPlanner, VectoredBlobReader, VectoredRead,
VectoredReadPlanner,
};
use crate::virtual_file::TempVirtualFile;
use crate::virtual_file::owned_buffers_io::io_buf_ext::{FullSlice, IoBufExt};
use crate::virtual_file::owned_buffers_io::write::{Buffer, BufferedWriterShutdownMode};
use crate::virtual_file::{self, IoBuffer, IoBufferMut, MaybeFatalIo, VirtualFile};
use crate::{DELTA_FILE_MAGIC, STORAGE_FORMAT_VERSION, TEMP_FILE_SUFFIX};
///
/// Header stored in the beginning of the file
///
/// After this comes the 'values' part, starting on block 1. After that,
/// the 'index' starts at the block indicated by 'index_start_blk'
///
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq)]
pub struct Summary {
/// Magic value to identify this as a neon delta file. Always DELTA_FILE_MAGIC.
pub magic: u16,
pub format_version: u16,
pub tenant_id: TenantId,
pub timeline_id: TimelineId,
pub key_range: Range<Key>,
pub lsn_range: Range<Lsn>,
/// Block number where the 'index' part of the file begins.
pub index_start_blk: u32,
/// Block within the 'index', where the B-tree root page is stored
pub index_root_blk: u32,
}
impl From<&DeltaLayer> for Summary {
fn from(layer: &DeltaLayer) -> Self {
Self::expected(
layer.desc.tenant_shard_id.tenant_id,
layer.desc.timeline_id,
layer.desc.key_range.clone(),
layer.desc.lsn_range.clone(),
)
}
}
impl Summary {
/// Serializes the summary header into an aligned buffer of lenth `PAGE_SZ`.
pub fn ser_into_page(&self) -> Result<IoBuffer, SerializeError> {
let mut buf = IoBufferMut::with_capacity(PAGE_SZ);
Self::ser_into(self, &mut buf)?;
// Pad zeroes to the buffer so the length is a multiple of the alignment.
buf.extend_with(0, buf.capacity() - buf.len());
Ok(buf.freeze())
}
pub(super) fn expected(
tenant_id: TenantId,
timeline_id: TimelineId,
keys: Range<Key>,
lsns: Range<Lsn>,
) -> Self {
Self {
magic: DELTA_FILE_MAGIC,
format_version: STORAGE_FORMAT_VERSION,
tenant_id,
timeline_id,
key_range: keys,
lsn_range: lsns,
index_start_blk: 0,
index_root_blk: 0,
}
}
}
// Flag indicating that this version initialize the page
const WILL_INIT: u64 = 1;
/// Struct representing reference to BLOB in layers.
///
/// Reference contains BLOB offset, and for WAL records it also contains
/// `will_init` flag. The flag helps to determine the range of records
/// that needs to be applied, without reading/deserializing records themselves.
#[derive(Debug, Serialize, Deserialize, Copy, Clone)]
pub struct BlobRef(pub u64);
impl BlobRef {
pub fn will_init(&self) -> bool {
(self.0 & WILL_INIT) != 0
}
pub fn pos(&self) -> u64 {
self.0 >> 1
}
pub fn new(pos: u64, will_init: bool) -> BlobRef {
let mut blob_ref = pos << 1;
if will_init {
blob_ref |= WILL_INIT;
}
BlobRef(blob_ref)
}
}
pub const DELTA_KEY_SIZE: usize = KEY_SIZE + 8;
struct DeltaKey([u8; DELTA_KEY_SIZE]);
/// This is the key of the B-tree index stored in the delta layer. It consists
/// of the serialized representation of a Key and LSN.
impl DeltaKey {
fn from_slice(buf: &[u8]) -> Self {
let mut bytes: [u8; DELTA_KEY_SIZE] = [0u8; DELTA_KEY_SIZE];
bytes.copy_from_slice(buf);
DeltaKey(bytes)
}
fn from_key_lsn(key: &Key, lsn: Lsn) -> Self {
let mut bytes: [u8; DELTA_KEY_SIZE] = [0u8; DELTA_KEY_SIZE];
key.write_to_byte_slice(&mut bytes[0..KEY_SIZE]);
bytes[KEY_SIZE..].copy_from_slice(&u64::to_be_bytes(lsn.0));
DeltaKey(bytes)
}
fn key(&self) -> Key {
Key::from_slice(&self.0)
}
fn lsn(&self) -> Lsn {
Lsn(u64::from_be_bytes(self.0[KEY_SIZE..].try_into().unwrap()))
}
fn extract_lsn_from_buf(buf: &[u8]) -> Lsn {
let mut lsn_buf = [0u8; 8];
lsn_buf.copy_from_slice(&buf[KEY_SIZE..]);
Lsn(u64::from_be_bytes(lsn_buf))
}
}
/// This is used only from `pagectl`. Within pageserver, all layers are
/// [`crate::tenant::storage_layer::Layer`], which can hold a [`DeltaLayerInner`].
pub struct DeltaLayer {
path: Utf8PathBuf,
pub desc: PersistentLayerDesc,
inner: OnceCell<Arc<DeltaLayerInner>>,
}
impl std::fmt::Debug for DeltaLayer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use super::RangeDisplayDebug;
f.debug_struct("DeltaLayer")
.field("key_range", &RangeDisplayDebug(&self.desc.key_range))
.field("lsn_range", &self.desc.lsn_range)
.field("file_size", &self.desc.file_size)
.field("inner", &self.inner)
.finish()
}
}
/// `DeltaLayerInner` is the in-memory data structure associated with an on-disk delta
/// file.
pub struct DeltaLayerInner {
// values copied from summary
index_start_blk: u32,
index_root_blk: u32,
file: Arc<VirtualFile>,
file_id: FileId,
layer_key_range: Range<Key>,
layer_lsn_range: Range<Lsn>,
max_vectored_read_bytes: Option<MaxVectoredReadBytes>,
}
impl DeltaLayerInner {
pub(crate) fn layer_dbg_info(&self) -> String {
format!(
"delta {}..{} {}..{}",
self.key_range().start,
self.key_range().end,
self.lsn_range().start,
self.lsn_range().end
)
}
}
impl std::fmt::Debug for DeltaLayerInner {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("DeltaLayerInner")
.field("index_start_blk", &self.index_start_blk)
.field("index_root_blk", &self.index_root_blk)
.finish()
}
}
/// Boilerplate to implement the Layer trait, always use layer_desc for persistent layers.
impl std::fmt::Display for DeltaLayer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.layer_desc().short_id())
}
}
impl AsLayerDesc for DeltaLayer {
fn layer_desc(&self) -> &PersistentLayerDesc {
&self.desc
}
}
impl DeltaLayer {
pub async fn dump(&self, verbose: bool, ctx: &RequestContext) -> Result<()> {
self.desc.dump();
if !verbose {
return Ok(());
}
let inner = self.load(ctx).await?;
inner.dump(ctx).await
}
fn temp_path_for(
conf: &PageServerConf,
tenant_shard_id: &TenantShardId,
timeline_id: &TimelineId,
key_start: Key,
lsn_range: &Range<Lsn>,
) -> Utf8PathBuf {
// TempVirtualFile requires us to never reuse a filename while an old
// instance of TempVirtualFile created with that filename is not done dropping yet.
// So, we use a monotonic counter to disambiguate the filenames.
static NEXT_TEMP_DISAMBIGUATOR: AtomicU64 = AtomicU64::new(1);
let filename_disambiguator =
NEXT_TEMP_DISAMBIGUATOR.fetch_add(1, std::sync::atomic::Ordering::Relaxed);
conf.timeline_path(tenant_shard_id, timeline_id)
.join(format!(
"{}-XXX__{:016X}-{:016X}.{:x}.{}",
key_start,
u64::from(lsn_range.start),
u64::from(lsn_range.end),
filename_disambiguator,
TEMP_FILE_SUFFIX,
))
}
///
/// Open the underlying file and read the metadata into memory, if it's
/// not loaded already.
///
async fn load(&self, ctx: &RequestContext) -> Result<&Arc<DeltaLayerInner>> {
// Quick exit if already loaded
self.inner
.get_or_try_init(|| self.load_inner(ctx))
.await
.with_context(|| format!("Failed to load delta layer {}", self.path()))
}
async fn load_inner(&self, ctx: &RequestContext) -> anyhow::Result<Arc<DeltaLayerInner>> {
let path = self.path();
let loaded = DeltaLayerInner::load(&path, None, None, ctx).await?;
// not production code
let actual_layer_name = LayerName::from_str(path.file_name().unwrap()).unwrap();
let expected_layer_name = self.layer_desc().layer_name();
if actual_layer_name != expected_layer_name {
println!("warning: filename does not match what is expected from in-file summary");
println!("actual: {:?}", actual_layer_name.to_string());
println!("expected: {:?}", expected_layer_name.to_string());
}
Ok(Arc::new(loaded))
}
/// Create a DeltaLayer struct representing an existing file on disk.
///
/// This variant is only used for debugging purposes, by the 'pagectl' binary.
pub fn new_for_path(path: &Utf8Path, file: File) -> Result<Self> {
let mut summary_buf = vec![0; PAGE_SZ];
file.read_exact_at(&mut summary_buf, 0)?;
let summary = Summary::des_prefix(&summary_buf)?;
let metadata = file
.metadata()
.context("get file metadata to determine size")?;
// This function is never used for constructing layers in a running pageserver,
// so it does not need an accurate TenantShardId.
let tenant_shard_id = TenantShardId::unsharded(summary.tenant_id);
Ok(DeltaLayer {
path: path.to_path_buf(),
desc: PersistentLayerDesc::new_delta(
tenant_shard_id,
summary.timeline_id,
summary.key_range,
summary.lsn_range,
metadata.len(),
),
inner: OnceCell::new(),
})
}
/// Path to the layer file in pageserver workdir.
fn path(&self) -> Utf8PathBuf {
self.path.clone()
}
}
/// A builder object for constructing a new delta layer.
///
/// Usage:
///
/// 1. Create the DeltaLayerWriter by calling DeltaLayerWriter::new(...)
///
/// 2. Write the contents by calling `put_value` for every page
/// version to store in the layer.
///
/// 3. Call `finish`.
///
struct DeltaLayerWriterInner {
pub path: Utf8PathBuf,
timeline_id: TimelineId,
tenant_shard_id: TenantShardId,
key_start: Key,
lsn_range: Range<Lsn>,
tree: DiskBtreeBuilder<BlockBuf, DELTA_KEY_SIZE>,
blob_writer: BlobWriter<TempVirtualFile>,
// Number of key-lsns in the layer.
num_keys: usize,
}
impl DeltaLayerWriterInner {
///
/// Start building a new delta layer.
///
#[allow(clippy::too_many_arguments)]
async fn new(
conf: &'static PageServerConf,
timeline_id: TimelineId,
tenant_shard_id: TenantShardId,
key_start: Key,
lsn_range: Range<Lsn>,
gate: &utils::sync::gate::Gate,
cancel: CancellationToken,
ctx: &RequestContext,
) -> anyhow::Result<Self> {
// Create the file initially with a temporary filename. We don't know
// the end key yet, so we cannot form the final filename yet. We will
// rename it when we're done.
let path =
DeltaLayer::temp_path_for(conf, &tenant_shard_id, &timeline_id, key_start, &lsn_range);
let file = TempVirtualFile::new(
VirtualFile::open_with_options_v2(
&path,
virtual_file::OpenOptions::new()
.create_new(true)
.write(true),
ctx,
)
.await?,
gate.enter()?,
);
// Start at PAGE_SZ, make room for the header block
let blob_writer = BlobWriter::new(
file,
PAGE_SZ as u64,
gate,
cancel,
ctx,
info_span!(parent: None, "delta_layer_writer_flush_task", tenant_id=%tenant_shard_id.tenant_id, shard_id=%tenant_shard_id.shard_slug(), timeline_id=%timeline_id, path = %path),
)?;
// Initialize the b-tree index builder
let block_buf = BlockBuf::new();
let tree_builder = DiskBtreeBuilder::new(block_buf);
Ok(Self {
path,
timeline_id,
tenant_shard_id,
key_start,
lsn_range,
tree: tree_builder,
blob_writer,
num_keys: 0,
})
}
///
/// Append a key-value pair to the file.
///
/// The values must be appended in key, lsn order.
///
async fn put_value(
&mut self,
key: Key,
lsn: Lsn,
val: Value,
ctx: &RequestContext,
) -> Result<(), PutError> {
let (_, res) = self
.put_value_bytes(
key,
lsn,
Value::ser(&val)
.map_err(anyhow::Error::new)
.map_err(PutError::Other)?
.slice_len(),
val.will_init(),
ctx,
)
.await;
res
}
async fn put_value_bytes<Buf>(
&mut self,
key: Key,
lsn: Lsn,
val: FullSlice<Buf>,
will_init: bool,
ctx: &RequestContext,
) -> (FullSlice<Buf>, Result<(), PutError>)
where
Buf: IoBuf + Send,
{
assert!(
self.lsn_range.start <= lsn,
"lsn_start={}, lsn={}",
self.lsn_range.start,
lsn
);
// We don't want to use compression in delta layer creation
let compression = ImageCompressionAlgorithm::Disabled;
let (val, res) = self
.blob_writer
.write_blob_maybe_compressed(val, ctx, compression)
.await;
let res = res.map_err(PutError::WriteBlob);
let off = match res {
Ok((off, _)) => off,
Err(e) => return (val, Err(e)),
};
let blob_ref = BlobRef::new(off, will_init);
let delta_key = DeltaKey::from_key_lsn(&key, lsn);
let res = self
.tree
.append(&delta_key.0, blob_ref.0)
.map_err(anyhow::Error::new)
.map_err(PutError::Other);
self.num_keys += 1;
(val, res)
}
fn size(&self) -> u64 {
self.blob_writer.size() + self.tree.borrow_writer().size()
}
///
/// Finish writing the delta layer.
///
async fn finish(
self,
key_end: Key,
ctx: &RequestContext,
) -> anyhow::Result<(PersistentLayerDesc, Utf8PathBuf)> {
let index_start_blk = self.blob_writer.size().div_ceil(PAGE_SZ as u64) as u32;
let file = self
.blob_writer
.shutdown(
BufferedWriterShutdownMode::ZeroPadToNextMultiple(PAGE_SZ),
ctx,
)
.await?;
// Write out the index
let (index_root_blk, block_buf) = self.tree.finish()?;
let mut offset = index_start_blk as u64 * PAGE_SZ as u64;
// TODO(yuchen): https://github.com/neondatabase/neon/issues/10092
// Should we just replace BlockBuf::blocks with one big buffer
for buf in block_buf.blocks {
let (_buf, res) = file.write_all_at(buf.slice_len(), offset, ctx).await;
res?;
offset += PAGE_SZ as u64;
}
assert!(self.lsn_range.start < self.lsn_range.end);
// Fill in the summary on blk 0
let summary = Summary {
magic: DELTA_FILE_MAGIC,
format_version: STORAGE_FORMAT_VERSION,
tenant_id: self.tenant_shard_id.tenant_id,
timeline_id: self.timeline_id,
key_range: self.key_start..key_end,
lsn_range: self.lsn_range.clone(),
index_start_blk,
index_root_blk,
};
// Writes summary at the first block (offset 0).
let buf = summary.ser_into_page()?;
let (_buf, res) = file.write_all_at(buf.slice_len(), 0, ctx).await;
res?;
let metadata = file
.metadata()
.await
.context("get file metadata to determine size")?;
// 5GB limit for objects without multipart upload (which we don't want to use)
// Make it a little bit below to account for differing GB units
// https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
ensure!(
metadata.len() <= S3_UPLOAD_LIMIT,
"Created delta layer file at {} of size {} above limit {S3_UPLOAD_LIMIT}!",
file.path(),
metadata.len()
);
// Note: Because we opened the file in write-only mode, we cannot
// reuse the same VirtualFile for reading later. That's why we don't
// set inner.file here. The first read will have to re-open it.
let desc = PersistentLayerDesc::new_delta(
self.tenant_shard_id,
self.timeline_id,
self.key_start..key_end,
self.lsn_range.clone(),
metadata.len(),
);
// fsync the file
file.sync_all()
.await
.maybe_fatal_err("delta_layer sync_all")?;
trace!("created delta layer {}", self.path);
// The gate guard stored in `destination_file` is dropped. Callers (e.g.. flush loop or compaction)
// keep the gate open also, so that it's safe for them to rename the file to its final destination.
file.disarm_into_inner();
Ok((desc, self.path))
}
}
/// A builder object for constructing a new delta layer.
///
/// Usage:
///
/// 1. Create the DeltaLayerWriter by calling DeltaLayerWriter::new(...)
///
/// 2. Write the contents by calling `put_value` for every page
/// version to store in the layer.
///
/// 3. Call `finish`.
///
/// # Note
///
/// As described in <https://github.com/neondatabase/neon/issues/2650>, it's
/// possible for the writer to drop before `finish` is actually called. So this
/// could lead to odd temporary files in the directory, exhausting file system.
/// This structure wraps `DeltaLayerWriterInner` and also contains `Drop`
/// implementation that cleans up the temporary file in failure. It's not
/// possible to do this directly in `DeltaLayerWriterInner` since `finish` moves
/// out some fields, making it impossible to implement `Drop`.
///
#[must_use]
pub struct DeltaLayerWriter {
inner: Option<DeltaLayerWriterInner>,
}
impl DeltaLayerWriter {
///
/// Start building a new delta layer.
///
#[allow(clippy::too_many_arguments)]
pub async fn new(
conf: &'static PageServerConf,
timeline_id: TimelineId,
tenant_shard_id: TenantShardId,
key_start: Key,
lsn_range: Range<Lsn>,
gate: &utils::sync::gate::Gate,
cancel: CancellationToken,
ctx: &RequestContext,
) -> anyhow::Result<Self> {
Ok(Self {
inner: Some(
DeltaLayerWriterInner::new(
conf,
timeline_id,
tenant_shard_id,
key_start,
lsn_range,
gate,
cancel,
ctx,
)
.await?,
),
})
}
pub fn is_empty(&self) -> bool {
self.inner.as_ref().unwrap().num_keys == 0
}
///
/// Append a key-value pair to the file.
///
/// The values must be appended in key, lsn order.
///
pub async fn put_value(
&mut self,
key: Key,
lsn: Lsn,
val: Value,
ctx: &RequestContext,
) -> Result<(), PutError> {
self.inner
.as_mut()
.unwrap()
.put_value(key, lsn, val, ctx)
.await
}
pub async fn put_value_bytes<Buf>(
&mut self,
key: Key,
lsn: Lsn,
val: FullSlice<Buf>,
will_init: bool,
ctx: &RequestContext,
) -> (FullSlice<Buf>, Result<(), PutError>)
where
Buf: IoBuf + Send,
{
self.inner
.as_mut()
.unwrap()
.put_value_bytes(key, lsn, val, will_init, ctx)
.await
}
pub fn size(&self) -> u64 {
self.inner.as_ref().unwrap().size()
}
///
/// Finish writing the delta layer.
///
pub(crate) async fn finish(
mut self,
key_end: Key,
ctx: &RequestContext,
) -> anyhow::Result<(PersistentLayerDesc, Utf8PathBuf)> {
self.inner.take().unwrap().finish(key_end, ctx).await
}
pub(crate) fn num_keys(&self) -> usize {
self.inner.as_ref().unwrap().num_keys
}
pub(crate) fn estimated_size(&self) -> u64 {
let inner = self.inner.as_ref().unwrap();
inner.blob_writer.size() + inner.tree.borrow_writer().size() + PAGE_SZ as u64
}
}
#[derive(thiserror::Error, Debug)]
pub enum RewriteSummaryError {
#[error("magic mismatch")]
MagicMismatch,
#[error(transparent)]
Other(#[from] anyhow::Error),
}
impl From<std::io::Error> for RewriteSummaryError {
fn from(e: std::io::Error) -> Self {
Self::Other(anyhow::anyhow!(e))
}
}
impl DeltaLayer {
pub async fn rewrite_summary<F>(
path: &Utf8Path,
rewrite: F,
ctx: &RequestContext,
) -> Result<(), RewriteSummaryError>
where
F: Fn(Summary) -> Summary,
{
let file = VirtualFile::open_with_options_v2(
path,
virtual_file::OpenOptions::new().read(true).write(true),
ctx,
)
.await
.with_context(|| format!("Failed to open file '{path}'"))?;
let file_id = page_cache::next_file_id();
let block_reader = FileBlockReader::new(&file, file_id);
let summary_blk = block_reader.read_blk(0, ctx).await?;
let actual_summary = Summary::des_prefix(summary_blk.as_ref()).context("deserialize")?;
if actual_summary.magic != DELTA_FILE_MAGIC {
return Err(RewriteSummaryError::MagicMismatch);
}
let new_summary = rewrite(actual_summary);
let buf = new_summary.ser_into_page().context("serialize")?;
let (_buf, res) = file.write_all_at(buf.slice_len(), 0, ctx).await;
res?;
Ok(())
}
}
impl DeltaLayerInner {
pub(crate) fn key_range(&self) -> &Range<Key> {
&self.layer_key_range
}
pub(crate) fn lsn_range(&self) -> &Range<Lsn> {
&self.layer_lsn_range
}
pub(super) async fn load(
path: &Utf8Path,
summary: Option<Summary>,
max_vectored_read_bytes: Option<MaxVectoredReadBytes>,
ctx: &RequestContext,
) -> anyhow::Result<Self> {
let file = Arc::new(
VirtualFile::open_v2(path, ctx)
.await
.context("open layer file")?,
);
let file_id = page_cache::next_file_id();
let block_reader = FileBlockReader::new(&file, file_id);
let summary_blk = block_reader
.read_blk(0, ctx)
.await
.context("read first block")?;
// TODO: this should be an assertion instead; see ImageLayerInner::load
let actual_summary =
Summary::des_prefix(summary_blk.as_ref()).context("deserialize first block")?;
if let Some(mut expected_summary) = summary {
// production code path
expected_summary.index_start_blk = actual_summary.index_start_blk;
expected_summary.index_root_blk = actual_summary.index_root_blk;
// mask out the timeline_id, but still require the layers to be from the same tenant
expected_summary.timeline_id = actual_summary.timeline_id;
if actual_summary != expected_summary {
bail!(
"in-file summary does not match expected summary. actual = {:?} expected = {:?}",
actual_summary,
expected_summary
);
}
}
Ok(DeltaLayerInner {
file,
file_id,
index_start_blk: actual_summary.index_start_blk,
index_root_blk: actual_summary.index_root_blk,
max_vectored_read_bytes,
layer_key_range: actual_summary.key_range,
layer_lsn_range: actual_summary.lsn_range,
})
}
// Look up the keys in the provided keyspace and update
// the reconstruct state with whatever is found.
//
// Currently, the index is visited for each range, but this
// can be further optimised to visit the index only once.
pub(super) async fn get_values_reconstruct_data(
&self,
this: ResidentLayer,
keyspace: KeySpace,
lsn_range: Range<Lsn>,
reconstruct_state: &mut ValuesReconstructState,
ctx: &RequestContext,
) -> Result<(), GetVectoredError> {
let block_reader = FileBlockReader::new(&self.file, self.file_id);
let index_reader = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(
self.index_start_blk,
self.index_root_blk,
block_reader,
);
let planner = VectoredReadPlanner::new(
self.max_vectored_read_bytes
.expect("Layer is loaded with max vectored bytes config")
.0
.into(),
);
let data_end_offset = self.index_start_offset();
let reads = Self::plan_reads(
&keyspace,
lsn_range.clone(),
data_end_offset,
index_reader,
planner,
ctx,
)
.await
.map_err(GetVectoredError::Other)?;
self.do_reads_and_update_state(this, reads, reconstruct_state, ctx)
.await;
Ok(())
}
async fn plan_reads<Reader>(
keyspace: &KeySpace,
lsn_range: Range<Lsn>,
data_end_offset: u64,
index_reader: DiskBtreeReader<Reader, DELTA_KEY_SIZE>,
mut planner: VectoredReadPlanner,
ctx: &RequestContext,
) -> anyhow::Result<Vec<VectoredRead>>
where
Reader: BlockReader + Clone,
{
let ctx = RequestContextBuilder::from(ctx)
.page_content_kind(PageContentKind::DeltaLayerBtreeNode)
.attached_child();
for range in keyspace.ranges.iter() {
let mut range_end_handled = false;
let start_key = DeltaKey::from_key_lsn(&range.start, lsn_range.start);
let index_stream = index_reader.clone().into_stream(&start_key.0, &ctx);
let mut index_stream = std::pin::pin!(index_stream);
while let Some(index_entry) = index_stream.next().await {
let (raw_key, value) = index_entry?;
let key = Key::from_slice(&raw_key[..KEY_SIZE]);
let lsn = DeltaKey::extract_lsn_from_buf(&raw_key);
let blob_ref = BlobRef(value);
// Lsns are not monotonically increasing across keys, so we don't assert on them.
assert!(key >= range.start);
let outside_lsn_range = !lsn_range.contains(&lsn);
let flag = {
if outside_lsn_range {
BlobFlag::Ignore
} else if blob_ref.will_init() {
BlobFlag::ReplaceAll
} else {
// Usual path: add blob to the read
BlobFlag::None
}
};
if key >= range.end || (key.next() == range.end && lsn >= lsn_range.end) {
planner.handle_range_end(blob_ref.pos());
range_end_handled = true;
break;
} else {
planner.handle(key, lsn, blob_ref.pos(), flag);
}
}
if !range_end_handled {
tracing::debug!("Handling range end fallback at {}", data_end_offset);
planner.handle_range_end(data_end_offset);
}
}
Ok(planner.finish())
}
fn get_min_read_buffer_size(
planned_reads: &[VectoredRead],
read_size_soft_max: usize,
) -> usize {
let Some(largest_read) = planned_reads.iter().max_by_key(|read| read.size()) else {
return read_size_soft_max;
};
let largest_read_size = largest_read.size();
if largest_read_size > read_size_soft_max {
// If the read is oversized, it should only contain one key.
let offenders = largest_read
.blobs_at
.as_slice()
.iter()
.filter_map(|(_, blob_meta)| {
if blob_meta.key.is_rel_dir_key()
|| blob_meta.key == DBDIR_KEY
|| blob_meta.key.is_aux_file_key()
{
// The size of values for these keys is unbounded and can
// grow very large in pathological cases.
None
} else {
Some(format!("{}@{}", blob_meta.key, blob_meta.lsn))
}
})
.join(", ");
if !offenders.is_empty() {
tracing::warn!(
"Oversized vectored read ({} > {}) for keys {}",
largest_read_size,
read_size_soft_max,
offenders
);
}
}
largest_read_size
}
async fn do_reads_and_update_state(
&self,
this: ResidentLayer,
reads: Vec<VectoredRead>,
reconstruct_state: &mut ValuesReconstructState,
ctx: &RequestContext,
) {
let max_vectored_read_bytes = self
.max_vectored_read_bytes
.expect("Layer is loaded with max vectored bytes config")
.0
.into();
let buf_size = Self::get_min_read_buffer_size(&reads, max_vectored_read_bytes);
// Note that reads are processed in reverse order (from highest key+lsn).
// This is the order that `ReconstructState` requires such that it can
// track when a key is done.
for read in reads.into_iter().rev() {
let mut ios: HashMap<(Key, Lsn), OnDiskValueIo> = Default::default();
for (_, blob_meta) in read.blobs_at.as_slice().iter().rev() {
let io = reconstruct_state.update_key(
&blob_meta.key,
blob_meta.lsn,
blob_meta.will_init,
);
ios.insert((blob_meta.key, blob_meta.lsn), io);
}
let read_extend_residency = this.clone();
let read_from = self.file.clone();
let read_ctx = ctx.attached_child();
reconstruct_state
.spawn_io(async move {
let vectored_blob_reader = VectoredBlobReader::new(&read_from);
let buf = IoBufferMut::with_capacity(buf_size);
let res = vectored_blob_reader.read_blobs(&read, buf, &read_ctx).await;
match res {
Ok(blobs_buf) => {
let view = BufView::new_slice(&blobs_buf.buf);
for meta in blobs_buf.blobs.iter().rev() {
let io = ios.remove(&(meta.meta.key, meta.meta.lsn)).unwrap();
let blob_read = meta.read(&view).await;
let blob_read = match blob_read {
Ok(buf) => buf,
Err(e) => {
io.complete(Err(e));
continue;
}
};
io.complete(Ok(OnDiskValue::WalRecordOrImage(
blob_read.into_bytes(),
)));
}
assert!(ios.is_empty());
}
Err(err) => {
for (_, sender) in ios {
sender.complete(Err(std::io::Error::new(
err.kind(),
"vec read failed",
)));
}
}
}
// keep layer resident until this IO is done; this spawned IO future generally outlives the
// call to `self` / the `Arc<DownloadedLayer>` / the `ResidentLayer` that guarantees residency
drop(read_extend_residency);
})
.await;
}
}
pub(crate) async fn index_entries<'a>(
&'a self,
ctx: &RequestContext,
) -> Result<Vec<DeltaEntry<'a>>> {
let block_reader = FileBlockReader::new(&self.file, self.file_id);
let tree_reader = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(
self.index_start_blk,
self.index_root_blk,
block_reader,
);
let mut all_keys: Vec<DeltaEntry<'_>> = Vec::new();
tree_reader
.visit(
&[0u8; DELTA_KEY_SIZE],
VisitDirection::Forwards,
|key, value| {
let delta_key = DeltaKey::from_slice(key);
let val_ref = ValueRef {
blob_ref: BlobRef(value),
layer: self,
};
let pos = BlobRef(value).pos();
if let Some(last) = all_keys.last_mut() {
// subtract offset of the current and last entries to get the size
// of the value associated with this (key, lsn) tuple
let first_pos = last.size;
last.size = pos - first_pos;
}
let entry = DeltaEntry {
key: delta_key.key(),
lsn: delta_key.lsn(),
size: pos,
val: val_ref,
};
all_keys.push(entry);
true
},
&RequestContextBuilder::from(ctx)
.page_content_kind(PageContentKind::DeltaLayerBtreeNode)
.attached_child(),
)
.await?;
if let Some(last) = all_keys.last_mut() {
// Last key occupies all space till end of value storage,
// which corresponds to beginning of the index
last.size = self.index_start_offset() - last.size;
}
Ok(all_keys)
}
/// Using the given writer, write out a version which has the earlier Lsns than `until`.
///
/// Return the amount of key value records pushed to the writer.
pub(super) async fn copy_prefix(
&self,
writer: &mut DeltaLayerWriter,
until: Lsn,
ctx: &RequestContext,
) -> anyhow::Result<usize> {
use futures::stream::TryStreamExt;
use crate::tenant::vectored_blob_io::{
BlobMeta, ChunkedVectoredReadBuilder, VectoredReadExtended,
};
#[derive(Debug)]
enum Item {
Actual(Key, Lsn, BlobRef),
Sentinel,
}
impl From<Item> for Option<(Key, Lsn, BlobRef)> {
fn from(value: Item) -> Self {
match value {
Item::Actual(key, lsn, blob) => Some((key, lsn, blob)),
Item::Sentinel => None,
}
}
}
impl Item {
fn offset(&self) -> Option<BlobRef> {
match self {
Item::Actual(_, _, blob) => Some(*blob),
Item::Sentinel => None,
}
}
fn is_last(&self) -> bool {
matches!(self, Item::Sentinel)
}
}
let block_reader = FileBlockReader::new(&self.file, self.file_id);
let tree_reader = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(
self.index_start_blk,
self.index_root_blk,
block_reader,
);
let stream = self.stream_index_forwards(tree_reader, &[0u8; DELTA_KEY_SIZE], ctx);
let stream = stream.map_ok(|(key, lsn, pos)| Item::Actual(key, lsn, pos));
// put in a sentinel value for getting the end offset for last item, and not having to
// repeat the whole read part
let stream = stream.chain(futures::stream::once(futures::future::ready(Ok(
Item::Sentinel,
))));
let mut stream = std::pin::pin!(stream);
let mut prev: Option<(Key, Lsn, BlobRef)> = None;
let mut read_builder: Option<ChunkedVectoredReadBuilder> = None;
let max_read_size = self
.max_vectored_read_bytes
.map(|x| x.0.get())
.unwrap_or(8192);
let mut buffer = Some(IoBufferMut::with_capacity(max_read_size));
// FIXME: buffering of DeltaLayerWriter
let mut per_blob_copy = Vec::new();
let mut records = 0;
while let Some(item) = stream.try_next().await? {
tracing::debug!(?item, "popped");
let offset = item
.offset()
.unwrap_or(BlobRef::new(self.index_start_offset(), false));
let actionable = if let Some((key, lsn, start_offset)) = prev.take() {
let end_offset = offset;
Some((
BlobMeta {
key,
lsn,
will_init: false,
},
start_offset..end_offset,
))
} else {
None
};
let is_last = item.is_last();
prev = Option::from(item);
let actionable = actionable.filter(|x| x.0.lsn < until);
let builder = if let Some((meta, offsets)) = actionable {
// extend or create a new builder
if read_builder
.as_mut()
.map(|x| x.extend(offsets.start.pos(), offsets.end.pos(), meta))
.unwrap_or(VectoredReadExtended::No)
== VectoredReadExtended::Yes
{
None
} else {
read_builder.replace(ChunkedVectoredReadBuilder::new(
offsets.start.pos(),
offsets.end.pos(),
meta,
max_read_size,
))
}
} else {
// nothing to do, except perhaps flush any existing for the last element
None
};
// flush the possible older builder and also the new one if the item was the last one
let builders = builder.into_iter();
let builders = if is_last {
builders.chain(read_builder.take())
} else {
builders.chain(None)
};
for builder in builders {
let read = builder.build();
let reader = VectoredBlobReader::new(&self.file);
let mut buf = buffer.take().unwrap();
buf.clear();
buf.reserve(read.size());
let res = reader.read_blobs(&read, buf, ctx).await?;
let view = BufView::new_slice(&res.buf);
for blob in res.blobs {
let key = blob.meta.key;
let lsn = blob.meta.lsn;
let data = blob.read(&view).await?;
#[cfg(debug_assertions)]
Value::des(&data)
.with_context(|| {
format!(
"blob failed to deserialize for {}: {:?}",
blob,
utils::Hex(&data)
)
})
.unwrap();
// is it an image or will_init walrecord?
// FIXME: this could be handled by threading the BlobRef to the
// VectoredReadBuilder
let will_init = wal_decoder::models::value::ValueBytes::will_init(&data)
.inspect_err(|_e| {
#[cfg(feature = "testing")]
tracing::error!(data=?utils::Hex(&data), err=?_e, %key, %lsn, "failed to parse will_init out of serialized value");
})
.unwrap_or(false);
per_blob_copy.clear();
per_blob_copy.extend_from_slice(&data);
let (tmp, res) = writer
.put_value_bytes(
key,
lsn,
std::mem::take(&mut per_blob_copy).slice_len(),
will_init,
ctx,
)
.await;
per_blob_copy = tmp.into_raw_slice().into_inner();
res?;
records += 1;
}
buffer = Some(res.buf);
}
}
assert!(
read_builder.is_none(),
"with the sentinel above loop should had handled all"
);
Ok(records)
}
pub(super) async fn dump(&self, ctx: &RequestContext) -> anyhow::Result<()> {
println!(
"index_start_blk: {}, root {}",
self.index_start_blk, self.index_root_blk
);
let block_reader = FileBlockReader::new(&self.file, self.file_id);
let tree_reader = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(
self.index_start_blk,
self.index_root_blk,
block_reader,
);
tree_reader.dump(ctx).await?;
let keys = self.index_entries(ctx).await?;
async fn dump_blob(val: &ValueRef<'_>, ctx: &RequestContext) -> anyhow::Result<String> {
let buf = val.load_raw(ctx).await?;
let val = Value::des(&buf)?;
let desc = match val {
Value::Image(img) => {
format!(" img {} bytes", img.len())
}
Value::WalRecord(rec) => {
let wal_desc = wal_decoder::models::record::describe_wal_record(&rec)?;
format!(
" rec {} bytes will_init: {} {}",
buf.len(),
rec.will_init(),
wal_desc
)
}
};
Ok(desc)
}
for entry in keys {
let DeltaEntry { key, lsn, val, .. } = entry;
let desc = match dump_blob(&val, ctx).await {
Ok(desc) => desc,
Err(err) => {
format!("ERROR: {err}")
}
};
println!(" key {key} at {lsn}: {desc}");
// Print more details about CHECKPOINT records. Would be nice to print details
// of many other record types too, but these are particularly interesting, as
// have a lot of special processing for them in walingest.rs.
use pageserver_api::key::CHECKPOINT_KEY;
use postgres_ffi::CheckPoint;
if key == CHECKPOINT_KEY {
let val = val.load(ctx).await?;
match val {
Value::Image(img) => {
let checkpoint = CheckPoint::decode(&img)?;
println!(" CHECKPOINT: {checkpoint:?}");
}
Value::WalRecord(_rec) => {
println!(" unexpected walrecord value for checkpoint key");
}
}
}
}
Ok(())
}
fn stream_index_forwards<'a, R>(
&'a self,
reader: DiskBtreeReader<R, DELTA_KEY_SIZE>,
start: &'a [u8; DELTA_KEY_SIZE],
ctx: &'a RequestContext,
) -> impl futures::stream::Stream<
Item = Result<(Key, Lsn, BlobRef), crate::tenant::disk_btree::DiskBtreeError>,
> + 'a
where
R: BlockReader + 'a,
{
use futures::stream::TryStreamExt;
let stream = reader.into_stream(start, ctx);
stream.map_ok(|(key, value)| {
let key = DeltaKey::from_slice(&key);
let (key, lsn) = (key.key(), key.lsn());
let offset = BlobRef(value);
(key, lsn, offset)
})
}
/// The file offset to the first block of index.
///
/// The file structure is summary, values, and index. We often need this for the size of last blob.
fn index_start_offset(&self) -> u64 {
let offset = self.index_start_blk as u64 * PAGE_SZ as u64;
let bref = BlobRef(offset);
tracing::debug!(
index_start_blk = self.index_start_blk,
offset,
pos = bref.pos(),
"index_start_offset"
);
offset
}
pub fn iter_with_options<'a>(
&'a self,
ctx: &'a RequestContext,
max_read_size: u64,
max_batch_size: usize,
) -> DeltaLayerIterator<'a> {
let block_reader = FileBlockReader::new(&self.file, self.file_id);
let tree_reader =
DiskBtreeReader::new(self.index_start_blk, self.index_root_blk, block_reader);
DeltaLayerIterator {
delta_layer: self,
ctx,
index_iter: tree_reader.iter(&[0; DELTA_KEY_SIZE], ctx),
key_values_batch: std::collections::VecDeque::new(),
is_end: false,
planner: StreamingVectoredReadPlanner::new(max_read_size, max_batch_size),
}
}
/// NB: not super efficient, but not terrible either. Should prob be an iterator.
//
// We're reusing the index traversal logical in plan_reads; would be nice to
// factor that out.
pub(crate) async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<Key>> {
self.index_entries(ctx)
.await
.map(|entries| entries.into_iter().map(|entry| entry.key).collect())
}
}
/// A set of data associated with a delta layer key and its value
pub struct DeltaEntry<'a> {
pub key: Key,
pub lsn: Lsn,
/// Size of the stored value
pub size: u64,
/// Reference to the on-disk value
pub val: ValueRef<'a>,
}
/// Reference to an on-disk value
pub struct ValueRef<'a> {
blob_ref: BlobRef,
layer: &'a DeltaLayerInner,
}
impl ValueRef<'_> {
/// Loads the value from disk
pub async fn load(&self, ctx: &RequestContext) -> Result<Value> {
let buf = self.load_raw(ctx).await?;
let val = Value::des(&buf)?;
Ok(val)
}
async fn load_raw(&self, ctx: &RequestContext) -> Result<Vec<u8>> {
let reader = BlockCursor::new(crate::tenant::block_io::BlockReaderRef::Adapter(Adapter(
self.layer,
)));
let buf = reader.read_blob(self.blob_ref.pos(), ctx).await?;
Ok(buf)
}
}
pub(crate) struct Adapter<T>(T);
impl<T: AsRef<DeltaLayerInner>> Adapter<T> {
pub(crate) async fn read_blk(
&self,
blknum: u32,
ctx: &RequestContext,
) -> Result<BlockLease, std::io::Error> {
let block_reader = FileBlockReader::new(&self.0.as_ref().file, self.0.as_ref().file_id);
block_reader.read_blk(blknum, ctx).await
}
}
impl AsRef<DeltaLayerInner> for DeltaLayerInner {
fn as_ref(&self) -> &DeltaLayerInner {
self
}
}
impl<'a> pageserver_compaction::interface::CompactionDeltaEntry<'a, Key> for DeltaEntry<'a> {
fn key(&self) -> Key {
self.key
}
fn lsn(&self) -> Lsn {
self.lsn
}
fn size(&self) -> u64 {
self.size
}
}
pub struct DeltaLayerIterator<'a> {
delta_layer: &'a DeltaLayerInner,
ctx: &'a RequestContext,
planner: StreamingVectoredReadPlanner,
index_iter: DiskBtreeIterator<'a>,
key_values_batch: VecDeque<(Key, Lsn, Value)>,
is_end: bool,
}
impl DeltaLayerIterator<'_> {
pub(crate) fn layer_dbg_info(&self) -> String {
self.delta_layer.layer_dbg_info()
}
/// Retrieve a batch of key-value pairs into the iterator buffer.
async fn next_batch(&mut self) -> anyhow::Result<()> {
assert!(self.key_values_batch.is_empty());
assert!(!self.is_end);
let plan = loop {
if let Some(res) = self.index_iter.next().await {
let (raw_key, value) = res?;
let key = Key::from_slice(&raw_key[..KEY_SIZE]);
let lsn = DeltaKey::extract_lsn_from_buf(&raw_key);
let blob_ref = BlobRef(value);
let offset = blob_ref.pos();
if let Some(batch_plan) =
self.planner.handle(key, lsn, offset, blob_ref.will_init())
{
break batch_plan;
}
} else {
self.is_end = true;
let data_end_offset = self.delta_layer.index_start_offset();
if let Some(item) = self.planner.handle_range_end(data_end_offset) {
break item;
} else {
return Ok(()); // TODO: test empty iterator
}
}
};
let vectored_blob_reader = VectoredBlobReader::new(&self.delta_layer.file);
let mut next_batch = std::collections::VecDeque::new();
let buf_size = plan.size();
let buf = IoBufferMut::with_capacity(buf_size);
let blobs_buf = vectored_blob_reader
.read_blobs(&plan, buf, self.ctx)
.await?;
let view = BufView::new_slice(&blobs_buf.buf);
for meta in blobs_buf.blobs.iter() {
let blob_read = meta.read(&view).await?;
let value = Value::des(&blob_read)?;
next_batch.push_back((meta.meta.key, meta.meta.lsn, value));
}
self.key_values_batch = next_batch;
Ok(())
}
pub async fn next(&mut self) -> anyhow::Result<Option<(Key, Lsn, Value)>> {
if self.key_values_batch.is_empty() {
if self.is_end {
return Ok(None);
}
self.next_batch().await?;
}
Ok(Some(
self.key_values_batch
.pop_front()
.expect("should not be empty"),
))
}
}
#[cfg(test)]
pub(crate) mod test {
use std::collections::BTreeMap;
use super::*;
use crate::DEFAULT_PG_VERSION;
use crate::context::DownloadBehavior;
use crate::task_mgr::TaskKind;
use crate::tenant::disk_btree::tests::TestDisk;
use crate::tenant::harness::{TIMELINE_ID, TenantHarness};
use crate::tenant::storage_layer::{Layer, ResidentLayer};
use crate::tenant::timeline::layer_manager::LayerManagerLockHolder;
use crate::tenant::{TenantShard, Timeline};
use bytes::Bytes;
use itertools::MinMaxResult;
use postgres_ffi::PgMajorVersion;
use rand::prelude::{SeedableRng, StdRng};
use rand::seq::IndexedRandom;
use rand::{Rng, RngCore};
/// Construct an index for a fictional delta layer and and then
/// traverse in order to plan vectored reads for a query. Finally,
/// verify that the traversal fed the right index key and value
/// pairs into the planner.
#[tokio::test]
async fn test_delta_layer_index_traversal() {
let base_key = Key {
field1: 0,
field2: 1663,
field3: 12972,
field4: 16396,
field5: 0,
field6: 246080,
};
// Populate the index with some entries
let entries: BTreeMap<Key, Vec<Lsn>> = BTreeMap::from([
(base_key, vec![Lsn(1), Lsn(5), Lsn(25), Lsn(26), Lsn(28)]),
(base_key.add(1), vec![Lsn(2), Lsn(5), Lsn(10), Lsn(50)]),
(base_key.add(2), vec![Lsn(2), Lsn(5), Lsn(10), Lsn(50)]),
(base_key.add(5), vec![Lsn(10), Lsn(15), Lsn(16), Lsn(20)]),
]);
let mut disk = TestDisk::default();
let mut writer = DiskBtreeBuilder::<_, DELTA_KEY_SIZE>::new(&mut disk);
let mut disk_offset = 0;
for (key, lsns) in &entries {
for lsn in lsns {
let index_key = DeltaKey::from_key_lsn(key, *lsn);
let blob_ref = BlobRef::new(disk_offset, false);
writer
.append(&index_key.0, blob_ref.0)
.expect("In memory disk append should never fail");
disk_offset += 1;
}
}
// Prepare all the arguments for the call into `plan_reads` below
let (root_offset, _writer) = writer
.finish()
.expect("In memory disk finish should never fail");
let reader = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(0, root_offset, disk);
let planner = VectoredReadPlanner::new(100);
let ctx = RequestContext::new(TaskKind::UnitTest, DownloadBehavior::Error);
let keyspace = KeySpace {
ranges: vec![
base_key..base_key.add(3),
base_key.add(3)..base_key.add(100),
],
};
let lsn_range = Lsn(2)..Lsn(40);
// Plan and validate
let vectored_reads = DeltaLayerInner::plan_reads(
&keyspace,
lsn_range.clone(),
disk_offset,
reader,
planner,
&ctx,
)
.await
.expect("Read planning should not fail");
validate(keyspace, lsn_range, vectored_reads, entries);
}
fn validate(
keyspace: KeySpace,
lsn_range: Range<Lsn>,
vectored_reads: Vec<VectoredRead>,
index_entries: BTreeMap<Key, Vec<Lsn>>,
) {
#[derive(Debug, PartialEq, Eq)]
struct BlobSpec {
key: Key,
lsn: Lsn,
at: u64,
}
let mut planned_blobs = Vec::new();
for read in vectored_reads {
for (at, meta) in read.blobs_at.as_slice() {
planned_blobs.push(BlobSpec {
key: meta.key,
lsn: meta.lsn,
at: *at,
});
}
}
let mut expected_blobs = Vec::new();
let mut disk_offset = 0;
for (key, lsns) in index_entries {
for lsn in lsns {
let key_included = keyspace.ranges.iter().any(|range| range.contains(&key));
let lsn_included = lsn_range.contains(&lsn);
if key_included && lsn_included {
expected_blobs.push(BlobSpec {
key,
lsn,
at: disk_offset,
});
}
disk_offset += 1;
}
}
assert_eq!(planned_blobs, expected_blobs);
}
mod constants {
use utils::lsn::Lsn;
/// Offset used by all lsns in this test
pub(super) const LSN_OFFSET: Lsn = Lsn(0x08);
/// Number of unique keys including in the test data
pub(super) const KEY_COUNT: u8 = 60;
/// Max number of different lsns for each key
pub(super) const MAX_ENTRIES_PER_KEY: u8 = 20;
/// Possible value sizes for each key along with a probability weight
pub(super) const VALUE_SIZES: [(usize, u8); 3] = [(100, 2), (1024, 2), (1024 * 1024, 1)];
/// Probability that there will be a gap between the current key and the next one (33.3%)
pub(super) const KEY_GAP_CHANGES: [(bool, u8); 2] = [(true, 1), (false, 2)];
/// The minimum size of a key range in all the generated reads
pub(super) const MIN_RANGE_SIZE: i128 = 10;
/// The number of ranges included in each vectored read
pub(super) const RANGES_COUNT: u8 = 2;
/// The number of vectored reads performed
pub(super) const READS_COUNT: u8 = 100;
/// Soft max size of a vectored read. Will be violated if we have to read keys
/// with values larger than the limit
pub(super) const MAX_VECTORED_READ_BYTES: usize = 64 * 1024;
}
struct Entry {
key: Key,
lsn: Lsn,
value: Vec<u8>,
}
fn generate_entries(rng: &mut StdRng) -> Vec<Entry> {
let mut current_key = Key::MIN;
let mut entries = Vec::new();
for _ in 0..constants::KEY_COUNT {
let count = rng.random_range(1..constants::MAX_ENTRIES_PER_KEY);
let mut lsns_iter =
std::iter::successors(Some(Lsn(constants::LSN_OFFSET.0 + 0x08)), |lsn| {
Some(Lsn(lsn.0 + 0x08))
});
let mut lsns = Vec::new();
while lsns.len() < count as usize {
let take = rng.random_bool(0.5);
let lsn = lsns_iter.next().unwrap();
if take {
lsns.push(lsn);
}
}
for lsn in lsns {
let size = constants::VALUE_SIZES
.choose_weighted(rng, |item| item.1)
.unwrap()
.0;
let mut buf = vec![0; size];
rng.fill_bytes(&mut buf);
entries.push(Entry {
key: current_key,
lsn,
value: buf,
})
}
let gap = constants::KEY_GAP_CHANGES
.choose_weighted(rng, |item| item.1)
.unwrap()
.0;
if gap {
current_key = current_key.add(2);
} else {
current_key = current_key.add(1);
}
}
entries
}
struct EntriesMeta {
key_range: Range<Key>,
lsn_range: Range<Lsn>,
index: BTreeMap<(Key, Lsn), Vec<u8>>,
}
fn get_entries_meta(entries: &[Entry]) -> EntriesMeta {
let key_range = match entries.iter().minmax_by_key(|e| e.key) {
MinMaxResult::MinMax(min, max) => min.key..max.key.next(),
_ => panic!("More than one entry is always expected"),
};
let lsn_range = match entries.iter().minmax_by_key(|e| e.lsn) {
MinMaxResult::MinMax(min, max) => min.lsn..Lsn(max.lsn.0 + 1),
_ => panic!("More than one entry is always expected"),
};
let mut index = BTreeMap::new();
for entry in entries.iter() {
index.insert((entry.key, entry.lsn), entry.value.clone());
}
EntriesMeta {
key_range,
lsn_range,
index,
}
}
fn pick_random_keyspace(rng: &mut StdRng, key_range: &Range<Key>) -> KeySpace {
let start = key_range.start.to_i128();
let end = key_range.end.to_i128();
let mut keyspace = KeySpace::default();
for _ in 0..constants::RANGES_COUNT {
let mut range: Option<Range<Key>> = Option::default();
while range.is_none() || keyspace.overlaps(range.as_ref().unwrap()) {
let range_start = rng.random_range(start..end);
let range_end_offset = range_start + constants::MIN_RANGE_SIZE;
if range_end_offset >= end {
range = Some(Key::from_i128(range_start)..Key::from_i128(end));
} else {
let range_end =
rng.random_range((range_start + constants::MIN_RANGE_SIZE)..end);
range = Some(Key::from_i128(range_start)..Key::from_i128(range_end));
}
}
keyspace.ranges.push(range.unwrap());
}
keyspace
}
#[tokio::test]
async fn test_delta_layer_vectored_read_end_to_end() -> anyhow::Result<()> {
let harness = TenantHarness::create("test_delta_layer_oversized_vectored_read").await?;
let (tenant, ctx) = harness.load().await;
let timeline_id = TimelineId::generate();
let timeline = tenant
.create_test_timeline(timeline_id, constants::LSN_OFFSET, DEFAULT_PG_VERSION, &ctx)
.await?;
tracing::info!("Generating test data ...");
let rng = &mut StdRng::seed_from_u64(0);
let entries = generate_entries(rng);
let entries_meta = get_entries_meta(&entries);
tracing::info!("Done generating {} entries", entries.len());
tracing::info!("Writing test data to delta layer ...");
let mut writer = DeltaLayerWriter::new(
harness.conf,
timeline_id,
harness.tenant_shard_id,
entries_meta.key_range.start,
entries_meta.lsn_range.clone(),
&timeline.gate,
timeline.cancel.clone(),
&ctx,
)
.await?;
for entry in entries {
let (_, res) = writer
.put_value_bytes(entry.key, entry.lsn, entry.value.slice_len(), false, &ctx)
.await;
res?;
}
let (desc, path) = writer.finish(entries_meta.key_range.end, &ctx).await?;
let resident = Layer::finish_creating(harness.conf, &timeline, desc, &path)?;
let inner = resident.get_as_delta(&ctx).await?;
let file_size = inner.file.metadata().await?.len();
tracing::info!(
"Done writing test data to delta layer. Resulting file size is: {}",
file_size
);
for i in 0..constants::READS_COUNT {
tracing::info!("Doing vectored read {}/{}", i + 1, constants::READS_COUNT);
let block_reader = FileBlockReader::new(&inner.file, inner.file_id);
let index_reader = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(
inner.index_start_blk,
inner.index_root_blk,
block_reader,
);
let planner = VectoredReadPlanner::new(constants::MAX_VECTORED_READ_BYTES);
let keyspace = pick_random_keyspace(rng, &entries_meta.key_range);
let data_end_offset = inner.index_start_blk as u64 * PAGE_SZ as u64;
let vectored_reads = DeltaLayerInner::plan_reads(
&keyspace,
entries_meta.lsn_range.clone(),
data_end_offset,
index_reader,
planner,
&ctx,
)
.await?;
let vectored_blob_reader = VectoredBlobReader::new(&inner.file);
let buf_size = DeltaLayerInner::get_min_read_buffer_size(
&vectored_reads,
constants::MAX_VECTORED_READ_BYTES,
);
let mut buf = Some(IoBufferMut::with_capacity(buf_size));
for read in vectored_reads {
let blobs_buf = vectored_blob_reader
.read_blobs(&read, buf.take().expect("Should have a buffer"), &ctx)
.await?;
let view = BufView::new_slice(&blobs_buf.buf);
for meta in blobs_buf.blobs.iter() {
let value = meta.read(&view).await?;
assert_eq!(
&value[..],
&entries_meta.index[&(meta.meta.key, meta.meta.lsn)]
);
}
buf = Some(blobs_buf.buf);
}
}
Ok(())
}
#[tokio::test]
async fn copy_delta_prefix_smoke() {
use bytes::Bytes;
use wal_decoder::models::record::NeonWalRecord;
let h = crate::tenant::harness::TenantHarness::create("truncate_delta_smoke")
.await
.unwrap();
let (tenant, ctx) = h.load().await;
let ctx = &ctx;
let timeline = tenant
.create_test_timeline(TimelineId::generate(), Lsn(0x10), PgMajorVersion::PG14, ctx)
.await
.unwrap();
let ctx = &ctx.with_scope_timeline(&timeline);
let initdb_layer = timeline
.layers
.read(crate::tenant::timeline::layer_manager::LayerManagerLockHolder::Testing)
.await
.likely_resident_layers()
.next()
.cloned()
.unwrap();
{
let mut writer = timeline.writer().await;
let data = [
(0x20, 12, Value::Image(Bytes::from_static(b"foobar"))),
(
0x30,
12,
Value::WalRecord(NeonWalRecord::Postgres {
will_init: false,
rec: Bytes::from_static(b"1"),
}),
),
(
0x40,
12,
Value::WalRecord(NeonWalRecord::Postgres {
will_init: true,
rec: Bytes::from_static(b"2"),
}),
),
// build an oversized value so we cannot extend and existing read over
// this
(
0x50,
12,
Value::WalRecord(NeonWalRecord::Postgres {
will_init: true,
rec: {
let mut buf =
vec![0u8; tenant.conf.max_vectored_read_bytes.0.get() + 1024];
buf.iter_mut()
.enumerate()
.for_each(|(i, slot)| *slot = (i % 256) as u8);
Bytes::from(buf)
},
}),
),
// because the oversized read cannot be extended further, we are sure to exercise the
// builder created on the last round with this:
(
0x60,
12,
Value::WalRecord(NeonWalRecord::Postgres {
will_init: true,
rec: Bytes::from_static(b"3"),
}),
),
(
0x60,
9,
Value::Image(Bytes::from_static(b"something for a different key")),
),
];
let mut last_lsn = None;
for (lsn, key, value) in data {
let key = Key::from_i128(key);
writer.put(key, Lsn(lsn), &value, ctx).await.unwrap();
last_lsn = Some(lsn);
}
writer.finish_write(Lsn(last_lsn.unwrap()));
}
timeline.freeze_and_flush().await.unwrap();
let new_layer = timeline
.layers
.read(LayerManagerLockHolder::Testing)
.await
.likely_resident_layers()
.find(|&x| x != &initdb_layer)
.cloned()
.unwrap();
// create a copy for the timeline, so we don't overwrite the file
let branch = tenant
.branch_timeline_test(&timeline, TimelineId::generate(), None, ctx)
.await
.unwrap();
assert_eq!(branch.get_ancestor_lsn(), Lsn(0x60));
// truncating at 0x61 gives us a full copy, otherwise just go backwards until there's just
// a single key
for truncate_at in [0x61, 0x51, 0x41, 0x31, 0x21] {
let truncate_at = Lsn(truncate_at);
let mut writer = DeltaLayerWriter::new(
tenant.conf,
branch.timeline_id,
tenant.tenant_shard_id,
Key::MIN,
Lsn(0x11)..truncate_at,
&branch.gate,
branch.cancel.clone(),
ctx,
)
.await
.unwrap();
let new_layer = new_layer.download_and_keep_resident(ctx).await.unwrap();
new_layer
.copy_delta_prefix(&mut writer, truncate_at, ctx)
.await
.unwrap();
let (desc, path) = writer.finish(Key::MAX, ctx).await.unwrap();
let copied_layer = Layer::finish_creating(tenant.conf, &branch, desc, &path).unwrap();
copied_layer.get_as_delta(ctx).await.unwrap();
assert_keys_and_values_eq(
new_layer.get_as_delta(ctx).await.unwrap(),
copied_layer.get_as_delta(ctx).await.unwrap(),
truncate_at,
ctx,
)
.await;
}
}
async fn assert_keys_and_values_eq(
source: &DeltaLayerInner,
truncated: &DeltaLayerInner,
truncated_at: Lsn,
ctx: &RequestContext,
) {
use futures::future::ready;
use futures::stream::TryStreamExt;
let start_key = [0u8; DELTA_KEY_SIZE];
let source_reader = FileBlockReader::new(&source.file, source.file_id);
let source_tree = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(
source.index_start_blk,
source.index_root_blk,
&source_reader,
);
let source_stream = source.stream_index_forwards(source_tree, &start_key, ctx);
let source_stream = source_stream.filter(|res| match res {
Ok((_, lsn, _)) => ready(lsn < &truncated_at),
_ => ready(true),
});
let mut source_stream = std::pin::pin!(source_stream);
let truncated_reader = FileBlockReader::new(&truncated.file, truncated.file_id);
let truncated_tree = DiskBtreeReader::<_, DELTA_KEY_SIZE>::new(
truncated.index_start_blk,
truncated.index_root_blk,
&truncated_reader,
);
let truncated_stream = truncated.stream_index_forwards(truncated_tree, &start_key, ctx);
let mut truncated_stream = std::pin::pin!(truncated_stream);
let mut scratch_left = Vec::new();
let mut scratch_right = Vec::new();
loop {
let (src, truncated) = (source_stream.try_next(), truncated_stream.try_next());
let (src, truncated) = tokio::try_join!(src, truncated).unwrap();
if src.is_none() {
assert!(truncated.is_none());
break;
}
let (src, truncated) = (src.unwrap(), truncated.unwrap());
// because we've filtered the source with Lsn, we should always have the same keys from both.
assert_eq!(src.0, truncated.0);
assert_eq!(src.1, truncated.1);
// if this is needed for something else, just drop this assert.
assert!(
src.2.pos() >= truncated.2.pos(),
"value position should not go backwards {} vs. {}",
src.2.pos(),
truncated.2.pos()
);
scratch_left.clear();
let src_cursor = source_reader.block_cursor();
let left = src_cursor.read_blob_into_buf(src.2.pos(), &mut scratch_left, ctx);
scratch_right.clear();
let trunc_cursor = truncated_reader.block_cursor();
let right = trunc_cursor.read_blob_into_buf(truncated.2.pos(), &mut scratch_right, ctx);
tokio::try_join!(left, right).unwrap();
assert_eq!(utils::Hex(&scratch_left), utils::Hex(&scratch_right));
}
}
pub(crate) fn sort_delta(
(k1, l1, _): &(Key, Lsn, Value),
(k2, l2, _): &(Key, Lsn, Value),
) -> std::cmp::Ordering {
(k1, l1).cmp(&(k2, l2))
}
#[cfg(feature = "testing")]
pub(crate) fn sort_delta_value(
(k1, l1, v1): &(Key, Lsn, Value),
(k2, l2, v2): &(Key, Lsn, Value),
) -> std::cmp::Ordering {
let order_1 = if v1.is_image() { 0 } else { 1 };
let order_2 = if v2.is_image() { 0 } else { 1 };
(k1, l1, order_1).cmp(&(k2, l2, order_2))
}
pub(crate) async fn produce_delta_layer(
tenant: &TenantShard,
tline: &Arc<Timeline>,
mut deltas: Vec<(Key, Lsn, Value)>,
ctx: &RequestContext,
) -> anyhow::Result<ResidentLayer> {
deltas.sort_by(sort_delta);
let (key_start, _, _) = deltas.first().unwrap();
let (key_max, _, _) = deltas.last().unwrap();
let lsn_min = deltas.iter().map(|(_, lsn, _)| lsn).min().unwrap();
let lsn_max = deltas.iter().map(|(_, lsn, _)| lsn).max().unwrap();
let lsn_end = Lsn(lsn_max.0 + 1);
let mut writer = DeltaLayerWriter::new(
tenant.conf,
tline.timeline_id,
tenant.tenant_shard_id,
*key_start,
(*lsn_min)..lsn_end,
&tline.gate,
tline.cancel.clone(),
ctx,
)
.await?;
let key_end = key_max.next();
for (key, lsn, value) in deltas {
writer.put_value(key, lsn, value, ctx).await?;
}
let (desc, path) = writer.finish(key_end, ctx).await?;
let delta_layer = Layer::finish_creating(tenant.conf, tline, desc, &path)?;
Ok::<_, anyhow::Error>(delta_layer)
}
async fn assert_delta_iter_equal(
delta_iter: &mut DeltaLayerIterator<'_>,
expect: &[(Key, Lsn, Value)],
) {
let mut expect_iter = expect.iter();
loop {
let o1 = delta_iter.next().await.unwrap();
let o2 = expect_iter.next();
assert_eq!(o1.is_some(), o2.is_some());
if o1.is_none() && o2.is_none() {
break;
}
let (k1, l1, v1) = o1.unwrap();
let (k2, l2, v2) = o2.unwrap();
assert_eq!(&k1, k2);
assert_eq!(l1, *l2);
assert_eq!(&v1, v2);
}
}
#[tokio::test]
async fn delta_layer_iterator() {
let harness = TenantHarness::create("delta_layer_iterator").await.unwrap();
let (tenant, ctx) = harness.load().await;
let tline = tenant
.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
.await
.unwrap();
fn get_key(id: u32) -> Key {
let mut key = Key::from_hex("000000000033333333444444445500000000").unwrap();
key.field6 = id;
key
}
const N: usize = 1000;
let test_deltas = (0..N)
.map(|idx| {
(
get_key(idx as u32 / 10),
Lsn(0x10 * ((idx as u64) % 10 + 1)),
Value::Image(Bytes::from(format!("img{idx:05}"))),
)
})
.collect_vec();
let resident_layer = produce_delta_layer(&tenant, &tline, test_deltas.clone(), &ctx)
.await
.unwrap();
let delta_layer = resident_layer.get_as_delta(&ctx).await.unwrap();
for max_read_size in [1, 1024] {
for batch_size in [1, 2, 4, 8, 3, 7, 13] {
println!("running with batch_size={batch_size} max_read_size={max_read_size}");
// Test if the batch size is correctly determined
let mut iter = delta_layer.iter_with_options(&ctx, max_read_size, batch_size);
let mut num_items = 0;
for _ in 0..3 {
iter.next_batch().await.unwrap();
num_items += iter.key_values_batch.len();
if max_read_size == 1 {
// every key should be a batch b/c the value is larger than max_read_size
assert_eq!(iter.key_values_batch.len(), 1);
} else {
assert!(iter.key_values_batch.len() <= batch_size);
}
if num_items >= N {
break;
}
iter.key_values_batch.clear();
}
// Test if the result is correct
let mut iter = delta_layer.iter_with_options(&ctx, max_read_size, batch_size);
assert_delta_iter_equal(&mut iter, &test_deltas).await;
}
}
}
}