mirror of
https://github.com/neondatabase/neon.git
synced 2025-12-22 21:59:59 +00:00
1482 lines
52 KiB
Rust
1482 lines
52 KiB
Rust
//! VirtualFile is like a normal File, but it's not bound directly to
|
|
//! a file descriptor.
|
|
//!
|
|
//! Instead, the file is opened when it's read from,
|
|
//! and if too many files are open globally in the system, least-recently
|
|
//! used ones are closed.
|
|
//!
|
|
//! To track which files have been recently used, we use the clock algorithm
|
|
//! with a 'recently_used' flag on each slot.
|
|
//!
|
|
//! This is similar to PostgreSQL's virtual file descriptor facility in
|
|
//! src/backend/storage/file/fd.c
|
|
//!
|
|
use std::fs::File;
|
|
use std::io::{Error, ErrorKind};
|
|
use std::os::fd::{AsRawFd, FromRawFd, IntoRawFd, OwnedFd, RawFd};
|
|
use std::sync::LazyLock;
|
|
use std::sync::atomic::{AtomicBool, AtomicU8, AtomicUsize, Ordering};
|
|
|
|
use camino::{Utf8Path, Utf8PathBuf};
|
|
use once_cell::sync::OnceCell;
|
|
use owned_buffers_io::aligned_buffer::buffer::AlignedBuffer;
|
|
use owned_buffers_io::aligned_buffer::{AlignedBufferMut, AlignedSlice, ConstAlign};
|
|
use owned_buffers_io::io_buf_aligned::{IoBufAligned, IoBufAlignedMut};
|
|
use owned_buffers_io::io_buf_ext::FullSlice;
|
|
use pageserver_api::config::defaults::DEFAULT_IO_BUFFER_ALIGNMENT;
|
|
use tokio::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};
|
|
use tokio::time::Instant;
|
|
use tokio_epoll_uring::{BoundedBuf, IoBuf, IoBufMut, Slice};
|
|
|
|
use self::owned_buffers_io::write::OwnedAsyncWriter;
|
|
use crate::assert_u64_eq_usize::UsizeIsU64;
|
|
use crate::context::RequestContext;
|
|
use crate::metrics::{STORAGE_IO_TIME_METRIC, StorageIoOperation};
|
|
use crate::page_cache::{PAGE_SZ, PageWriteGuard};
|
|
|
|
pub(crate) use api::IoMode;
|
|
pub(crate) use io_engine::IoEngineKind;
|
|
pub use io_engine::{
|
|
FeatureTestResult as IoEngineFeatureTestResult, feature_test as io_engine_feature_test,
|
|
io_engine_for_bench,
|
|
};
|
|
pub(crate) use metadata::Metadata;
|
|
pub(crate) use open_options::*;
|
|
pub use pageserver_api::models::virtual_file as api;
|
|
pub use temporary::TempVirtualFile;
|
|
|
|
pub(crate) mod io_engine;
|
|
mod metadata;
|
|
mod open_options;
|
|
mod temporary;
|
|
pub(crate) mod owned_buffers_io {
|
|
//! Abstractions for IO with owned buffers.
|
|
//!
|
|
//! Not actually tied to [`crate::virtual_file`] specifically, but, it's the primary
|
|
//! reason we need this abstraction.
|
|
//!
|
|
//! Over time, this could move into the `tokio-epoll-uring` crate, maybe `uring-common`,
|
|
//! but for the time being we're proving out the primitives in the neon.git repo
|
|
//! for faster iteration.
|
|
|
|
pub(crate) mod aligned_buffer;
|
|
pub(crate) mod io_buf_aligned;
|
|
pub(crate) mod io_buf_ext;
|
|
pub(crate) mod slice;
|
|
pub(crate) mod write;
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct VirtualFile {
|
|
inner: VirtualFileInner,
|
|
_mode: IoMode,
|
|
}
|
|
|
|
impl VirtualFile {
|
|
/// Open a file in read-only mode. Like File::open.
|
|
///
|
|
/// Insensitive to `virtual_file_io_mode` setting.
|
|
pub async fn open<P: AsRef<Utf8Path>>(
|
|
path: P,
|
|
ctx: &RequestContext,
|
|
) -> Result<Self, std::io::Error> {
|
|
let inner = VirtualFileInner::open(path, ctx).await?;
|
|
Ok(VirtualFile {
|
|
inner,
|
|
_mode: IoMode::Buffered,
|
|
})
|
|
}
|
|
|
|
/// Open a file in read-only mode. Like File::open.
|
|
///
|
|
/// `O_DIRECT` will be enabled base on `virtual_file_io_mode`.
|
|
pub async fn open_v2<P: AsRef<Utf8Path>>(
|
|
path: P,
|
|
ctx: &RequestContext,
|
|
) -> Result<Self, std::io::Error> {
|
|
Self::open_with_options_v2(path.as_ref(), OpenOptions::new().read(true), ctx).await
|
|
}
|
|
|
|
/// `O_DIRECT` will be enabled base on `virtual_file_io_mode`.
|
|
pub async fn open_with_options_v2<P: AsRef<Utf8Path>>(
|
|
path: P,
|
|
mut open_options: OpenOptions,
|
|
ctx: &RequestContext,
|
|
) -> Result<Self, std::io::Error> {
|
|
let mode = get_io_mode();
|
|
let direct = match (mode, open_options.is_write()) {
|
|
(IoMode::Buffered, _) => false,
|
|
(IoMode::Direct, false) => true,
|
|
(IoMode::Direct, true) => false,
|
|
(IoMode::DirectRw, _) => true,
|
|
};
|
|
open_options = open_options.direct(direct);
|
|
let inner = VirtualFileInner::open_with_options(path, open_options, ctx).await?;
|
|
Ok(VirtualFile { inner, _mode: mode })
|
|
}
|
|
|
|
pub fn path(&self) -> &Utf8Path {
|
|
self.inner.path.as_path()
|
|
}
|
|
|
|
pub async fn crashsafe_overwrite<B: BoundedBuf<Buf = Buf> + Send, Buf: IoBuf + Send>(
|
|
final_path: Utf8PathBuf,
|
|
tmp_path: Utf8PathBuf,
|
|
content: B,
|
|
) -> std::io::Result<()> {
|
|
VirtualFileInner::crashsafe_overwrite(final_path, tmp_path, content).await
|
|
}
|
|
|
|
pub async fn sync_all(&self) -> Result<(), Error> {
|
|
if SYNC_MODE.load(std::sync::atomic::Ordering::Relaxed) == SyncMode::UnsafeNoSync as u8 {
|
|
return Ok(());
|
|
}
|
|
self.inner.sync_all().await
|
|
}
|
|
|
|
pub async fn sync_data(&self) -> Result<(), Error> {
|
|
if SYNC_MODE.load(std::sync::atomic::Ordering::Relaxed) == SyncMode::UnsafeNoSync as u8 {
|
|
return Ok(());
|
|
}
|
|
self.inner.sync_data().await
|
|
}
|
|
|
|
pub async fn set_len(&self, len: u64, ctx: &RequestContext) -> Result<(), Error> {
|
|
self.inner.set_len(len, ctx).await
|
|
}
|
|
|
|
pub async fn metadata(&self) -> Result<Metadata, Error> {
|
|
self.inner.metadata().await
|
|
}
|
|
|
|
pub async fn read_exact_at<Buf>(
|
|
&self,
|
|
slice: Slice<Buf>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> Result<Slice<Buf>, Error>
|
|
where
|
|
Buf: IoBufAlignedMut + Send,
|
|
{
|
|
self.inner.read_exact_at(slice, offset, ctx).await
|
|
}
|
|
|
|
pub async fn read_exact_at_page(
|
|
&self,
|
|
page: PageWriteGuard<'static>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> Result<PageWriteGuard<'static>, Error> {
|
|
self.inner.read_exact_at_page(page, offset, ctx).await
|
|
}
|
|
|
|
pub async fn write_all_at<Buf: IoBufAligned + Send>(
|
|
&self,
|
|
buf: FullSlice<Buf>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> (FullSlice<Buf>, Result<(), Error>) {
|
|
self.inner.write_all_at(buf, offset, ctx).await
|
|
}
|
|
|
|
pub(crate) async fn read_to_string<P: AsRef<Utf8Path>>(
|
|
path: P,
|
|
ctx: &RequestContext,
|
|
) -> std::io::Result<String> {
|
|
let file = VirtualFile::open(path, ctx).await?; // TODO: open_v2
|
|
let mut buf = Vec::new();
|
|
let mut tmp = vec![0; 128];
|
|
let mut pos: u64 = 0;
|
|
loop {
|
|
let slice = tmp.slice(..128);
|
|
let (slice, res) = file.inner.read_at(slice, pos, ctx).await;
|
|
match res {
|
|
Ok(0) => break,
|
|
Ok(n) => {
|
|
pos += n as u64;
|
|
buf.extend_from_slice(&slice[..n]);
|
|
}
|
|
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
|
|
Err(e) => return Err(e),
|
|
}
|
|
tmp = slice.into_inner();
|
|
}
|
|
String::from_utf8(buf).map_err(|_| {
|
|
std::io::Error::new(ErrorKind::InvalidData, "file contents are not valid UTF-8")
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Indicates whether to enable fsync, fdatasync, or O_SYNC/O_DSYNC when writing
|
|
/// files. Switching this off is unsafe and only used for testing on machines
|
|
/// with slow drives.
|
|
#[repr(u8)]
|
|
pub enum SyncMode {
|
|
Sync,
|
|
UnsafeNoSync,
|
|
}
|
|
|
|
impl TryFrom<u8> for SyncMode {
|
|
type Error = u8;
|
|
|
|
fn try_from(value: u8) -> Result<Self, Self::Error> {
|
|
Ok(match value {
|
|
v if v == (SyncMode::Sync as u8) => SyncMode::Sync,
|
|
v if v == (SyncMode::UnsafeNoSync as u8) => SyncMode::UnsafeNoSync,
|
|
x => return Err(x),
|
|
})
|
|
}
|
|
}
|
|
|
|
///
|
|
/// A virtual file descriptor. You can use this just like std::fs::File, but internally
|
|
/// the underlying file is closed if the system is low on file descriptors,
|
|
/// and re-opened when it's accessed again.
|
|
///
|
|
/// Like with std::fs::File, multiple threads can read/write the file concurrently,
|
|
/// holding just a shared reference the same VirtualFile, using the read_at() / write_at()
|
|
/// functions from the FileExt trait. But the functions from the Read/Write/Seek traits
|
|
/// require a mutable reference, because they modify the "current position".
|
|
///
|
|
/// Each VirtualFile has a physical file descriptor in the global OPEN_FILES array, at the
|
|
/// slot that 'handle points to, if the underlying file is currently open. If it's not
|
|
/// currently open, the 'handle' can still point to the slot where it was last kept. The
|
|
/// 'tag' field is used to detect whether the handle still is valid or not.
|
|
///
|
|
#[derive(Debug)]
|
|
pub struct VirtualFileInner {
|
|
/// Lazy handle to the global file descriptor cache. The slot that this points to
|
|
/// might contain our File, or it may be empty, or it may contain a File that
|
|
/// belongs to a different VirtualFile.
|
|
handle: RwLock<SlotHandle>,
|
|
|
|
/// File path and options to use to open it.
|
|
///
|
|
/// Note: this only contains the options needed to re-open it. For example,
|
|
/// if a new file is created, we only pass the create flag when it's initially
|
|
/// opened, in the VirtualFile::create() function, and strip the flag before
|
|
/// storing it here.
|
|
pub path: Utf8PathBuf,
|
|
open_options: OpenOptions,
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Clone, Copy)]
|
|
struct SlotHandle {
|
|
/// Index into OPEN_FILES.slots
|
|
index: usize,
|
|
|
|
/// Value of 'tag' in the slot. If slot's tag doesn't match, then the slot has
|
|
/// been recycled and no longer contains the FD for this virtual file.
|
|
tag: u64,
|
|
}
|
|
|
|
/// OPEN_FILES is the global array that holds the physical file descriptors that
|
|
/// are currently open. Each slot in the array is protected by a separate lock,
|
|
/// so that different files can be accessed independently. The lock must be held
|
|
/// in write mode to replace the slot with a different file, but a read mode
|
|
/// is enough to operate on the file, whether you're reading or writing to it.
|
|
///
|
|
/// OPEN_FILES starts in uninitialized state, and it's initialized by
|
|
/// the virtual_file::init() function. It must be called exactly once at page
|
|
/// server startup.
|
|
static OPEN_FILES: OnceCell<OpenFiles> = OnceCell::new();
|
|
|
|
struct OpenFiles {
|
|
slots: &'static [Slot],
|
|
|
|
/// clock arm for the clock algorithm
|
|
next: AtomicUsize,
|
|
}
|
|
|
|
struct Slot {
|
|
inner: RwLock<SlotInner>,
|
|
|
|
/// has this file been used since last clock sweep?
|
|
recently_used: AtomicBool,
|
|
}
|
|
|
|
struct SlotInner {
|
|
/// Counter that's incremented every time a different file is stored here.
|
|
/// To avoid the ABA problem.
|
|
tag: u64,
|
|
|
|
/// the underlying file
|
|
file: Option<OwnedFd>,
|
|
}
|
|
|
|
/// Impl of [`tokio_epoll_uring::IoBuf`] and [`tokio_epoll_uring::IoBufMut`] for [`PageWriteGuard`].
|
|
struct PageWriteGuardBuf {
|
|
page: PageWriteGuard<'static>,
|
|
}
|
|
// Safety: the [`PageWriteGuard`] gives us exclusive ownership of the page cache slot,
|
|
// and the location remains stable even if [`Self`] or the [`PageWriteGuard`] is moved.
|
|
// Page cache pages are zero-initialized, so, wrt uninitialized memory we're good.
|
|
// (Page cache tracks separately whether the contents are valid, see `PageWriteGuard::mark_valid`.)
|
|
unsafe impl tokio_epoll_uring::IoBuf for PageWriteGuardBuf {
|
|
fn stable_ptr(&self) -> *const u8 {
|
|
self.page.as_ptr()
|
|
}
|
|
fn bytes_init(&self) -> usize {
|
|
self.page.len()
|
|
}
|
|
fn bytes_total(&self) -> usize {
|
|
self.page.len()
|
|
}
|
|
}
|
|
// Safety: see above, plus: the ownership of [`PageWriteGuard`] means exclusive access,
|
|
// hence it's safe to hand out the `stable_mut_ptr()`.
|
|
unsafe impl tokio_epoll_uring::IoBufMut for PageWriteGuardBuf {
|
|
fn stable_mut_ptr(&mut self) -> *mut u8 {
|
|
self.page.as_mut_ptr()
|
|
}
|
|
|
|
unsafe fn set_init(&mut self, pos: usize) {
|
|
// There shouldn't really be any reason to call this API since bytes_init() == bytes_total().
|
|
assert!(pos <= self.page.len());
|
|
}
|
|
}
|
|
|
|
impl OpenFiles {
|
|
/// Find a slot to use, evicting an existing file descriptor if needed.
|
|
///
|
|
/// On return, we hold a lock on the slot, and its 'tag' has been updated
|
|
/// recently_used has been set. It's all ready for reuse.
|
|
async fn find_victim_slot(&self) -> (SlotHandle, RwLockWriteGuard<SlotInner>) {
|
|
//
|
|
// Run the clock algorithm to find a slot to replace.
|
|
//
|
|
let num_slots = self.slots.len();
|
|
let mut retries = 0;
|
|
let mut slot;
|
|
let mut slot_guard;
|
|
let index;
|
|
loop {
|
|
let next = self.next.fetch_add(1, Ordering::AcqRel) % num_slots;
|
|
slot = &self.slots[next];
|
|
|
|
// If the recently_used flag on this slot is set, continue the clock
|
|
// sweep. Otherwise try to use this slot. If we cannot acquire the
|
|
// lock, also continue the clock sweep.
|
|
//
|
|
// We only continue in this manner for a while, though. If we loop
|
|
// through the array twice without finding a victim, just pick the
|
|
// next slot and wait until we can reuse it. This way, we avoid
|
|
// spinning in the extreme case that all the slots are busy with an
|
|
// I/O operation.
|
|
if retries < num_slots * 2 {
|
|
if !slot.recently_used.swap(false, Ordering::Release) {
|
|
if let Ok(guard) = slot.inner.try_write() {
|
|
slot_guard = guard;
|
|
index = next;
|
|
break;
|
|
}
|
|
}
|
|
retries += 1;
|
|
} else {
|
|
slot_guard = slot.inner.write().await;
|
|
index = next;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// We now have the victim slot locked. If it was in use previously, close the
|
|
// old file.
|
|
//
|
|
if let Some(old_file) = slot_guard.file.take() {
|
|
// the normal path of dropping VirtualFile uses "close", use "close-by-replace" here to
|
|
// distinguish the two.
|
|
STORAGE_IO_TIME_METRIC
|
|
.get(StorageIoOperation::CloseByReplace)
|
|
.observe_closure_duration(|| drop(old_file));
|
|
}
|
|
|
|
// Prepare the slot for reuse and return it
|
|
slot_guard.tag += 1;
|
|
slot.recently_used.store(true, Ordering::Relaxed);
|
|
(
|
|
SlotHandle {
|
|
index,
|
|
tag: slot_guard.tag,
|
|
},
|
|
slot_guard,
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Identify error types that should alwways terminate the process. Other
|
|
/// error types may be elegible for retry.
|
|
pub(crate) fn is_fatal_io_error(e: &std::io::Error) -> bool {
|
|
use nix::errno::Errno::*;
|
|
match e.raw_os_error().map(nix::errno::Errno::from_raw) {
|
|
Some(EIO) => {
|
|
// Terminate on EIO because we no longer trust the device to store
|
|
// data safely, or to uphold persistence guarantees on fsync.
|
|
true
|
|
}
|
|
Some(EROFS) => {
|
|
// Terminate on EROFS because a filesystem is usually remounted
|
|
// readonly when it has experienced some critical issue, so the same
|
|
// logic as EIO applies.
|
|
true
|
|
}
|
|
Some(EACCES) => {
|
|
// Terminate on EACCESS because we should always have permissions
|
|
// for our own data dir: if we don't, then we can't do our job and
|
|
// need administrative intervention to fix permissions. Terminating
|
|
// is the best way to make sure we stop cleanly rather than going
|
|
// into infinite retry loops, and will make it clear to the outside
|
|
// world that we need help.
|
|
true
|
|
}
|
|
_ => {
|
|
// Treat all other local file I/O errors are retryable. This includes:
|
|
// - ENOSPC: we stay up and wait for eviction to free some space
|
|
// - EINVAL, EBADF, EBADFD: this is a code bug, not a filesystem/hardware issue
|
|
// - WriteZero, Interrupted: these are used internally VirtualFile
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Call this when the local filesystem gives us an error with an external
|
|
/// cause: this includes EIO, EROFS, and EACCESS: all these indicate either
|
|
/// bad storage or bad configuration, and we can't fix that from inside
|
|
/// a running process.
|
|
pub(crate) fn on_fatal_io_error(e: &std::io::Error, context: &str) -> ! {
|
|
let backtrace = std::backtrace::Backtrace::force_capture();
|
|
tracing::error!("Fatal I/O error: {e}: {context})\n{backtrace}");
|
|
std::process::abort();
|
|
}
|
|
|
|
pub(crate) trait MaybeFatalIo<T> {
|
|
fn maybe_fatal_err(self, context: &str) -> std::io::Result<T>;
|
|
fn fatal_err(self, context: &str) -> T;
|
|
}
|
|
|
|
impl<T> MaybeFatalIo<T> for std::io::Result<T> {
|
|
/// Terminate the process if the result is an error of a fatal type, else pass it through
|
|
///
|
|
/// This is appropriate for writes, where we typically want to die on EIO/ACCES etc, but
|
|
/// not on ENOSPC.
|
|
fn maybe_fatal_err(self, context: &str) -> std::io::Result<T> {
|
|
if let Err(e) = &self {
|
|
if is_fatal_io_error(e) {
|
|
on_fatal_io_error(e, context);
|
|
}
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Terminate the process on any I/O error.
|
|
///
|
|
/// This is appropriate for reads on files that we know exist: they should always work.
|
|
fn fatal_err(self, context: &str) -> T {
|
|
match self {
|
|
Ok(v) => v,
|
|
Err(e) => {
|
|
on_fatal_io_error(&e, context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Observe duration for the given storage I/O operation
|
|
///
|
|
/// Unlike `observe_closure_duration`, this supports async,
|
|
/// where "support" means that we measure wall clock time.
|
|
macro_rules! observe_duration {
|
|
($op:expr, $($body:tt)*) => {{
|
|
let instant = Instant::now();
|
|
let result = $($body)*;
|
|
let elapsed = instant.elapsed().as_secs_f64();
|
|
STORAGE_IO_TIME_METRIC
|
|
.get($op)
|
|
.observe(elapsed);
|
|
result
|
|
}}
|
|
}
|
|
|
|
macro_rules! with_file {
|
|
($this:expr, $op:expr, | $ident:ident | $($body:tt)*) => {{
|
|
let $ident = $this.lock_file().await?;
|
|
observe_duration!($op, $($body)*)
|
|
}};
|
|
($this:expr, $op:expr, | mut $ident:ident | $($body:tt)*) => {{
|
|
let mut $ident = $this.lock_file().await?;
|
|
observe_duration!($op, $($body)*)
|
|
}};
|
|
}
|
|
|
|
impl VirtualFileInner {
|
|
/// Open a file in read-only mode. Like File::open.
|
|
pub async fn open<P: AsRef<Utf8Path>>(
|
|
path: P,
|
|
ctx: &RequestContext,
|
|
) -> Result<VirtualFileInner, std::io::Error> {
|
|
Self::open_with_options(path.as_ref(), OpenOptions::new().read(true), ctx).await
|
|
}
|
|
|
|
/// Open a file with given options.
|
|
///
|
|
/// Note: If any custom flags were set in 'open_options' through OpenOptionsExt,
|
|
/// they will be applied also when the file is subsequently re-opened, not only
|
|
/// on the first time. Make sure that's sane!
|
|
pub async fn open_with_options<P: AsRef<Utf8Path>>(
|
|
path: P,
|
|
open_options: OpenOptions,
|
|
_ctx: &RequestContext,
|
|
) -> Result<VirtualFileInner, std::io::Error> {
|
|
let path = path.as_ref();
|
|
let (handle, mut slot_guard) = get_open_files().find_victim_slot().await;
|
|
|
|
// NB: there is also StorageIoOperation::OpenAfterReplace which is for the case
|
|
// where our caller doesn't get to use the returned VirtualFile before its
|
|
// slot gets re-used by someone else.
|
|
let file = observe_duration!(StorageIoOperation::Open, {
|
|
open_options.open(path.as_std_path()).await?
|
|
});
|
|
|
|
// Strip all options other than read and write.
|
|
//
|
|
// It would perhaps be nicer to check just for the read and write flags
|
|
// explicitly, but OpenOptions doesn't contain any functions to read flags,
|
|
// only to set them.
|
|
let reopen_options = open_options
|
|
.clone()
|
|
.create(false)
|
|
.create_new(false)
|
|
.truncate(false);
|
|
|
|
let vfile = VirtualFileInner {
|
|
handle: RwLock::new(handle),
|
|
path: path.to_owned(),
|
|
open_options: reopen_options,
|
|
};
|
|
|
|
// TODO: Under pressure, it's likely the slot will get re-used and
|
|
// the underlying file closed before they get around to using it.
|
|
// => https://github.com/neondatabase/neon/issues/6065
|
|
slot_guard.file.replace(file);
|
|
|
|
Ok(vfile)
|
|
}
|
|
|
|
/// Async version of [`::utils::crashsafe::overwrite`].
|
|
///
|
|
/// # NB:
|
|
///
|
|
/// Doesn't actually use the [`VirtualFile`] file descriptor cache, but,
|
|
/// it did at an earlier time.
|
|
/// And it will use this module's [`io_engine`] in the near future, so, leaving it here.
|
|
pub async fn crashsafe_overwrite<B: BoundedBuf<Buf = Buf> + Send, Buf: IoBuf + Send>(
|
|
final_path: Utf8PathBuf,
|
|
tmp_path: Utf8PathBuf,
|
|
content: B,
|
|
) -> std::io::Result<()> {
|
|
// TODO: use tokio_epoll_uring if configured as `io_engine`.
|
|
// See https://github.com/neondatabase/neon/issues/6663
|
|
|
|
tokio::task::spawn_blocking(move || {
|
|
let slice_storage;
|
|
let content_len = content.bytes_init();
|
|
let content = if content.bytes_init() > 0 {
|
|
slice_storage = Some(content.slice(0..content_len));
|
|
slice_storage.as_deref().expect("just set it to Some()")
|
|
} else {
|
|
&[]
|
|
};
|
|
utils::crashsafe::overwrite(&final_path, &tmp_path, content)
|
|
.maybe_fatal_err("crashsafe_overwrite")
|
|
})
|
|
.await
|
|
.expect("blocking task is never aborted")
|
|
}
|
|
|
|
/// Call File::sync_all() on the underlying File.
|
|
pub async fn sync_all(&self) -> Result<(), Error> {
|
|
with_file!(self, StorageIoOperation::Fsync, |file_guard| {
|
|
let (_file_guard, res) = io_engine::get().sync_all(file_guard).await;
|
|
res.maybe_fatal_err("sync_all")
|
|
})
|
|
}
|
|
|
|
/// Call File::sync_data() on the underlying File.
|
|
pub async fn sync_data(&self) -> Result<(), Error> {
|
|
with_file!(self, StorageIoOperation::Fsync, |file_guard| {
|
|
let (_file_guard, res) = io_engine::get().sync_data(file_guard).await;
|
|
res.maybe_fatal_err("sync_data")
|
|
})
|
|
}
|
|
|
|
pub async fn metadata(&self) -> Result<Metadata, Error> {
|
|
with_file!(self, StorageIoOperation::Metadata, |file_guard| {
|
|
let (_file_guard, res) = io_engine::get().metadata(file_guard).await;
|
|
res
|
|
})
|
|
}
|
|
|
|
pub async fn set_len(&self, len: u64, _ctx: &RequestContext) -> Result<(), Error> {
|
|
with_file!(self, StorageIoOperation::SetLen, |file_guard| {
|
|
let (_file_guard, res) = io_engine::get().set_len(file_guard, len).await;
|
|
res.maybe_fatal_err("set_len")
|
|
})
|
|
}
|
|
|
|
/// Helper function internal to `VirtualFile` that looks up the underlying File,
|
|
/// opens it and evicts some other File if necessary. The passed parameter is
|
|
/// assumed to be a function available for the physical `File`.
|
|
///
|
|
/// We are doing it via a macro as Rust doesn't support async closures that
|
|
/// take on parameters with lifetimes.
|
|
async fn lock_file(&self) -> Result<FileGuard, Error> {
|
|
let open_files = get_open_files();
|
|
|
|
let mut handle_guard = {
|
|
// Read the cached slot handle, and see if the slot that it points to still
|
|
// contains our File.
|
|
//
|
|
// We only need to hold the handle lock while we read the current handle. If
|
|
// another thread closes the file and recycles the slot for a different file,
|
|
// we will notice that the handle we read is no longer valid and retry.
|
|
let mut handle = *self.handle.read().await;
|
|
loop {
|
|
// Check if the slot contains our File
|
|
{
|
|
let slot = &open_files.slots[handle.index];
|
|
let slot_guard = slot.inner.read().await;
|
|
if slot_guard.tag == handle.tag && slot_guard.file.is_some() {
|
|
// Found a cached file descriptor.
|
|
slot.recently_used.store(true, Ordering::Relaxed);
|
|
return Ok(FileGuard { slot_guard });
|
|
}
|
|
}
|
|
|
|
// The slot didn't contain our File. We will have to open it ourselves,
|
|
// but before that, grab a write lock on handle in the VirtualFile, so
|
|
// that no other thread will try to concurrently open the same file.
|
|
let handle_guard = self.handle.write().await;
|
|
|
|
// If another thread changed the handle while we were not holding the lock,
|
|
// then the handle might now be valid again. Loop back to retry.
|
|
if *handle_guard != handle {
|
|
handle = *handle_guard;
|
|
continue;
|
|
}
|
|
break handle_guard;
|
|
}
|
|
};
|
|
|
|
// We need to open the file ourselves. The handle in the VirtualFile is
|
|
// now locked in write-mode. Find a free slot to put it in.
|
|
let (handle, mut slot_guard) = open_files.find_victim_slot().await;
|
|
|
|
// Re-open the physical file.
|
|
// NB: we use StorageIoOperation::OpenAferReplace for this to distinguish this
|
|
// case from StorageIoOperation::Open. This helps with identifying thrashing
|
|
// of the virtual file descriptor cache.
|
|
let file = observe_duration!(StorageIoOperation::OpenAfterReplace, {
|
|
self.open_options.open(self.path.as_std_path()).await?
|
|
});
|
|
|
|
// Store the File in the slot and update the handle in the VirtualFile
|
|
// to point to it.
|
|
slot_guard.file.replace(file);
|
|
|
|
*handle_guard = handle;
|
|
|
|
Ok(FileGuard {
|
|
slot_guard: slot_guard.downgrade(),
|
|
})
|
|
}
|
|
|
|
/// Read the file contents in range `offset..(offset + slice.bytes_total())` into `slice[0..slice.bytes_total()]`.
|
|
///
|
|
/// The returned `Slice<Buf>` is equivalent to the input `slice`, i.e., it's the same view into the same buffer.
|
|
pub async fn read_exact_at<Buf>(
|
|
&self,
|
|
slice: Slice<Buf>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> Result<Slice<Buf>, Error>
|
|
where
|
|
Buf: IoBufAlignedMut + Send,
|
|
{
|
|
let assert_we_return_original_bounds = if cfg!(debug_assertions) {
|
|
Some((slice.stable_ptr() as usize, slice.bytes_total()))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let original_bounds = slice.bounds();
|
|
let (buf, res) =
|
|
read_exact_at_impl(slice, offset, |buf, offset| self.read_at(buf, offset, ctx)).await;
|
|
let res = res.map(|_| buf.slice(original_bounds));
|
|
|
|
if let Some(original_bounds) = assert_we_return_original_bounds {
|
|
if let Ok(slice) = &res {
|
|
let returned_bounds = (slice.stable_ptr() as usize, slice.bytes_total());
|
|
assert_eq!(original_bounds, returned_bounds);
|
|
}
|
|
}
|
|
|
|
res
|
|
}
|
|
|
|
/// Like [`Self::read_exact_at`] but for [`PageWriteGuard`].
|
|
pub async fn read_exact_at_page(
|
|
&self,
|
|
page: PageWriteGuard<'static>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> Result<PageWriteGuard<'static>, Error> {
|
|
let buf = PageWriteGuardBuf { page }.slice_full();
|
|
debug_assert_eq!(buf.bytes_total(), PAGE_SZ);
|
|
self.read_exact_at(buf, offset, ctx)
|
|
.await
|
|
.map(|slice| slice.into_inner().page)
|
|
}
|
|
|
|
// Copied from https://doc.rust-lang.org/1.72.0/src/std/os/unix/fs.rs.html#219-235
|
|
pub async fn write_all_at<Buf: IoBuf + Send>(
|
|
&self,
|
|
buf: FullSlice<Buf>,
|
|
mut offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> (FullSlice<Buf>, Result<(), Error>) {
|
|
let buf = buf.into_raw_slice();
|
|
let bounds = buf.bounds();
|
|
let restore =
|
|
|buf: Slice<_>| FullSlice::must_new(Slice::from_buf_bounds(buf.into_inner(), bounds));
|
|
let mut buf = buf;
|
|
while !buf.is_empty() {
|
|
let (tmp, res) = self.write_at(FullSlice::must_new(buf), offset, ctx).await;
|
|
buf = tmp.into_raw_slice();
|
|
match res {
|
|
Ok(0) => {
|
|
return (
|
|
restore(buf),
|
|
Err(Error::new(
|
|
std::io::ErrorKind::WriteZero,
|
|
"failed to write whole buffer",
|
|
)),
|
|
);
|
|
}
|
|
Ok(n) => {
|
|
buf = buf.slice(n..);
|
|
offset += n as u64;
|
|
}
|
|
Err(e) if e.kind() == std::io::ErrorKind::Interrupted => {}
|
|
Err(e) => return (restore(buf), Err(e)),
|
|
}
|
|
}
|
|
(restore(buf), Ok(()))
|
|
}
|
|
|
|
pub(super) async fn read_at<Buf>(
|
|
&self,
|
|
buf: tokio_epoll_uring::Slice<Buf>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> (tokio_epoll_uring::Slice<Buf>, Result<usize, Error>)
|
|
where
|
|
Buf: tokio_epoll_uring::IoBufMut + Send,
|
|
{
|
|
self.validate_direct_io(
|
|
Slice::stable_ptr(&buf).addr(),
|
|
Slice::bytes_total(&buf),
|
|
offset,
|
|
);
|
|
|
|
let file_guard = match self
|
|
.lock_file()
|
|
.await
|
|
.maybe_fatal_err("lock_file inside VirtualFileInner::read_at")
|
|
{
|
|
Ok(file_guard) => file_guard,
|
|
Err(e) => return (buf, Err(e)),
|
|
};
|
|
|
|
observe_duration!(StorageIoOperation::Read, {
|
|
let ((_file_guard, buf), res) = io_engine::get().read_at(file_guard, offset, buf).await;
|
|
let res = res.maybe_fatal_err("io_engine read_at inside VirtualFileInner::read_at");
|
|
if let Ok(size) = res {
|
|
ctx.io_size_metrics().read.add(size.into_u64());
|
|
}
|
|
(buf, res)
|
|
})
|
|
}
|
|
|
|
async fn write_at<B: IoBuf + Send>(
|
|
&self,
|
|
buf: FullSlice<B>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> (FullSlice<B>, Result<usize, Error>) {
|
|
self.validate_direct_io(buf.as_ptr().addr(), buf.len(), offset);
|
|
|
|
let file_guard = match self.lock_file().await {
|
|
Ok(file_guard) => file_guard,
|
|
Err(e) => return (buf, Err(e)),
|
|
};
|
|
observe_duration!(StorageIoOperation::Write, {
|
|
let ((_file_guard, buf), result) =
|
|
io_engine::get().write_at(file_guard, offset, buf).await;
|
|
let result = result.maybe_fatal_err("write_at");
|
|
if let Ok(size) = result {
|
|
ctx.io_size_metrics().write.add(size.into_u64());
|
|
}
|
|
(buf, result)
|
|
})
|
|
}
|
|
|
|
/// Validate all reads and writes to adhere to the O_DIRECT requirements of our production systems.
|
|
///
|
|
/// Validating it iin userspace sets a consistent bar, independent of what actual OS/filesystem/block device is in use.
|
|
fn validate_direct_io(&self, addr: usize, size: usize, offset: u64) {
|
|
// TODO: eventually enable validation in the builds we use in real environments like staging, preprod, and prod.
|
|
if !(cfg!(feature = "testing") || cfg!(test)) {
|
|
return;
|
|
}
|
|
if !self.open_options.is_direct() {
|
|
return;
|
|
}
|
|
|
|
// Validate buffer memory alignment.
|
|
//
|
|
// What practically matters as of Linux 6.1 is bdev_dma_alignment()
|
|
// which is practically between 512 and 4096.
|
|
// On our production systems, the value is 512.
|
|
// The IoBuffer/IoBufferMut hard-code that value.
|
|
//
|
|
// Because the alloctor might return _more_ aligned addresses than requested,
|
|
// there is a chance that testing would not catch violations of a runtime requirement stricter than 512.
|
|
{
|
|
let requirement = 512;
|
|
let remainder = addr % requirement;
|
|
assert!(
|
|
remainder == 0,
|
|
"Direct I/O buffer must be aligned: buffer_addr=0x{addr:x} % 0x{requirement:x} = 0x{remainder:x}"
|
|
);
|
|
}
|
|
|
|
// Validate offset alignment.
|
|
//
|
|
// We hard-code 512 throughout the code base.
|
|
// So enforce just that and not anything more restrictive.
|
|
// Even the shallowest testing will expose more restrictive requirements if those ever arise.
|
|
{
|
|
let requirement = 512;
|
|
let remainder = offset % requirement;
|
|
assert!(
|
|
remainder == 0,
|
|
"Direct I/O offset must be aligned: offset=0x{offset:x} % 0x{requirement:x} = 0x{remainder:x}"
|
|
);
|
|
}
|
|
|
|
// Validate buffer size multiple requirement.
|
|
//
|
|
// The requirement in Linux 6.1 is bdev_logical_block_size().
|
|
// On our production systems, that is 512.
|
|
{
|
|
let requirement = 512;
|
|
let remainder = size % requirement;
|
|
assert!(
|
|
remainder == 0,
|
|
"Direct I/O buffer size must be a multiple of {requirement}: size=0x{size:x} % 0x{requirement:x} = 0x{remainder:x}"
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adapted from https://doc.rust-lang.org/1.72.0/src/std/os/unix/fs.rs.html#117-135
|
|
pub async fn read_exact_at_impl<Buf, F, Fut>(
|
|
mut buf: tokio_epoll_uring::Slice<Buf>,
|
|
mut offset: u64,
|
|
mut read_at: F,
|
|
) -> (Buf, std::io::Result<()>)
|
|
where
|
|
Buf: IoBufMut + Send,
|
|
F: FnMut(tokio_epoll_uring::Slice<Buf>, u64) -> Fut,
|
|
Fut: std::future::Future<Output = (tokio_epoll_uring::Slice<Buf>, std::io::Result<usize>)>,
|
|
{
|
|
while buf.bytes_total() != 0 {
|
|
let res;
|
|
(buf, res) = read_at(buf, offset).await;
|
|
match res {
|
|
Ok(0) => break,
|
|
Ok(n) => {
|
|
buf = buf.slice(n..);
|
|
offset += n as u64;
|
|
}
|
|
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
|
|
Err(e) => return (buf.into_inner(), Err(e)),
|
|
}
|
|
}
|
|
// NB: don't use `buf.is_empty()` here; it is from the
|
|
// `impl Deref for Slice { Target = [u8] }`; the &[u8]
|
|
// returned by it only covers the initialized portion of `buf`.
|
|
// Whereas we're interested in ensuring that we filled the entire
|
|
// buffer that the user passed in.
|
|
if buf.bytes_total() != 0 {
|
|
(
|
|
buf.into_inner(),
|
|
Err(std::io::Error::new(
|
|
std::io::ErrorKind::UnexpectedEof,
|
|
"failed to fill whole buffer",
|
|
)),
|
|
)
|
|
} else {
|
|
assert_eq!(buf.len(), buf.bytes_total());
|
|
(buf.into_inner(), Ok(()))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test_read_exact_at_impl {
|
|
|
|
use std::collections::VecDeque;
|
|
use std::sync::Arc;
|
|
|
|
use tokio_epoll_uring::{BoundedBuf, BoundedBufMut};
|
|
|
|
use super::read_exact_at_impl;
|
|
|
|
struct Expectation {
|
|
offset: u64,
|
|
bytes_total: usize,
|
|
result: std::io::Result<Vec<u8>>,
|
|
}
|
|
struct MockReadAt {
|
|
expectations: VecDeque<Expectation>,
|
|
}
|
|
|
|
impl MockReadAt {
|
|
async fn read_at(
|
|
&mut self,
|
|
mut buf: tokio_epoll_uring::Slice<Vec<u8>>,
|
|
offset: u64,
|
|
) -> (tokio_epoll_uring::Slice<Vec<u8>>, std::io::Result<usize>) {
|
|
let exp = self
|
|
.expectations
|
|
.pop_front()
|
|
.expect("read_at called but we have no expectations left");
|
|
assert_eq!(exp.offset, offset);
|
|
assert_eq!(exp.bytes_total, buf.bytes_total());
|
|
match exp.result {
|
|
Ok(bytes) => {
|
|
assert!(bytes.len() <= buf.bytes_total());
|
|
buf.put_slice(&bytes);
|
|
(buf, Ok(bytes.len()))
|
|
}
|
|
Err(e) => (buf, Err(e)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Drop for MockReadAt {
|
|
fn drop(&mut self) {
|
|
assert_eq!(self.expectations.len(), 0);
|
|
}
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_basic() {
|
|
let buf = Vec::with_capacity(5).slice_full();
|
|
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
|
|
expectations: VecDeque::from(vec![Expectation {
|
|
offset: 0,
|
|
bytes_total: 5,
|
|
result: Ok(vec![b'a', b'b', b'c', b'd', b'e']),
|
|
}]),
|
|
}));
|
|
let (buf, res) = read_exact_at_impl(buf, 0, |buf, offset| {
|
|
let mock_read_at = Arc::clone(&mock_read_at);
|
|
async move { mock_read_at.lock().await.read_at(buf, offset).await }
|
|
})
|
|
.await;
|
|
assert!(res.is_ok());
|
|
assert_eq!(buf, vec![b'a', b'b', b'c', b'd', b'e']);
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_empty_buf_issues_no_syscall() {
|
|
let buf = Vec::new().slice_full();
|
|
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
|
|
expectations: VecDeque::new(),
|
|
}));
|
|
let (_buf, res) = read_exact_at_impl(buf, 0, |buf, offset| {
|
|
let mock_read_at = Arc::clone(&mock_read_at);
|
|
async move { mock_read_at.lock().await.read_at(buf, offset).await }
|
|
})
|
|
.await;
|
|
assert!(res.is_ok());
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_two_read_at_calls_needed_until_buf_filled() {
|
|
let buf = Vec::with_capacity(4).slice_full();
|
|
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
|
|
expectations: VecDeque::from(vec![
|
|
Expectation {
|
|
offset: 0,
|
|
bytes_total: 4,
|
|
result: Ok(vec![b'a', b'b']),
|
|
},
|
|
Expectation {
|
|
offset: 2,
|
|
bytes_total: 2,
|
|
result: Ok(vec![b'c', b'd']),
|
|
},
|
|
]),
|
|
}));
|
|
let (buf, res) = read_exact_at_impl(buf, 0, |buf, offset| {
|
|
let mock_read_at = Arc::clone(&mock_read_at);
|
|
async move { mock_read_at.lock().await.read_at(buf, offset).await }
|
|
})
|
|
.await;
|
|
assert!(res.is_ok());
|
|
assert_eq!(buf, vec![b'a', b'b', b'c', b'd']);
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_eof_before_buffer_full() {
|
|
let buf = Vec::with_capacity(3).slice_full();
|
|
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
|
|
expectations: VecDeque::from(vec![
|
|
Expectation {
|
|
offset: 0,
|
|
bytes_total: 3,
|
|
result: Ok(vec![b'a']),
|
|
},
|
|
Expectation {
|
|
offset: 1,
|
|
bytes_total: 2,
|
|
result: Ok(vec![b'b']),
|
|
},
|
|
Expectation {
|
|
offset: 2,
|
|
bytes_total: 1,
|
|
result: Ok(vec![]),
|
|
},
|
|
]),
|
|
}));
|
|
let (_buf, res) = read_exact_at_impl(buf, 0, |buf, offset| {
|
|
let mock_read_at = Arc::clone(&mock_read_at);
|
|
async move { mock_read_at.lock().await.read_at(buf, offset).await }
|
|
})
|
|
.await;
|
|
let Err(err) = res else {
|
|
panic!("should return an error");
|
|
};
|
|
assert_eq!(err.kind(), std::io::ErrorKind::UnexpectedEof);
|
|
assert_eq!(format!("{err}"), "failed to fill whole buffer");
|
|
// buffer contents on error are unspecified
|
|
}
|
|
}
|
|
|
|
struct FileGuard {
|
|
slot_guard: RwLockReadGuard<'static, SlotInner>,
|
|
}
|
|
|
|
impl AsRef<OwnedFd> for FileGuard {
|
|
fn as_ref(&self) -> &OwnedFd {
|
|
// This unwrap is safe because we only create `FileGuard`s
|
|
// if we know that the file is Some.
|
|
self.slot_guard.file.as_ref().unwrap()
|
|
}
|
|
}
|
|
|
|
impl FileGuard {
|
|
/// Soft deprecation: we'll move VirtualFile to async APIs and remove this function eventually.
|
|
fn with_std_file<F, R>(&self, with: F) -> R
|
|
where
|
|
F: FnOnce(&File) -> R,
|
|
{
|
|
// SAFETY:
|
|
// - lifetime of the fd: `file` doesn't outlive the OwnedFd stored in `self`.
|
|
// - `&` usage below: `self` is `&`, hence Rust typesystem guarantees there are is no `&mut`
|
|
let file = unsafe { File::from_raw_fd(self.as_ref().as_raw_fd()) };
|
|
let res = with(&file);
|
|
let _ = file.into_raw_fd();
|
|
res
|
|
}
|
|
}
|
|
|
|
impl tokio_epoll_uring::IoFd for FileGuard {
|
|
unsafe fn as_fd(&self) -> RawFd {
|
|
let owned_fd: &OwnedFd = self.as_ref();
|
|
owned_fd.as_raw_fd()
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
impl VirtualFile {
|
|
pub(crate) async fn read_blk(
|
|
&self,
|
|
blknum: u32,
|
|
ctx: &RequestContext,
|
|
) -> Result<crate::tenant::block_io::BlockLease<'_>, std::io::Error> {
|
|
self.inner.read_blk(blknum, ctx).await
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
impl VirtualFileInner {
|
|
pub(crate) async fn read_blk(
|
|
&self,
|
|
blknum: u32,
|
|
ctx: &RequestContext,
|
|
) -> Result<crate::tenant::block_io::BlockLease<'_>, std::io::Error> {
|
|
use crate::page_cache::PAGE_SZ;
|
|
let slice = IoBufferMut::with_capacity(PAGE_SZ).slice_full();
|
|
assert_eq!(slice.bytes_total(), PAGE_SZ);
|
|
let slice = self
|
|
.read_exact_at(slice, blknum as u64 * (PAGE_SZ as u64), ctx)
|
|
.await?;
|
|
Ok(crate::tenant::block_io::BlockLease::IoBufferMut(
|
|
slice.into_inner(),
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Drop for VirtualFileInner {
|
|
/// If a VirtualFile is dropped, close the underlying file if it was open.
|
|
fn drop(&mut self) {
|
|
let handle = self.handle.get_mut();
|
|
|
|
fn clean_slot(slot: &Slot, mut slot_guard: RwLockWriteGuard<'_, SlotInner>, tag: u64) {
|
|
if slot_guard.tag == tag {
|
|
slot.recently_used.store(false, Ordering::Relaxed);
|
|
// there is also operation "close-by-replace" for closes done on eviction for
|
|
// comparison.
|
|
if let Some(fd) = slot_guard.file.take() {
|
|
STORAGE_IO_TIME_METRIC
|
|
.get(StorageIoOperation::Close)
|
|
.observe_closure_duration(|| drop(fd));
|
|
}
|
|
}
|
|
}
|
|
|
|
// We don't have async drop so we cannot directly await the lock here.
|
|
// Instead, first do a best-effort attempt at closing the underlying
|
|
// file descriptor by using `try_write`, and if that fails, spawn
|
|
// a tokio task to do it asynchronously: we just want it to be
|
|
// cleaned up eventually.
|
|
// Most of the time, the `try_lock` should succeed though,
|
|
// as we have `&mut self` access. In other words, if the slot
|
|
// is still occupied by our file, there should be no access from
|
|
// other I/O operations; the only other possible place to lock
|
|
// the slot is the lock algorithm looking for free slots.
|
|
let slot = &get_open_files().slots[handle.index];
|
|
if let Ok(slot_guard) = slot.inner.try_write() {
|
|
clean_slot(slot, slot_guard, handle.tag);
|
|
} else {
|
|
let tag = handle.tag;
|
|
tokio::spawn(async move {
|
|
let slot_guard = slot.inner.write().await;
|
|
clean_slot(slot, slot_guard, tag);
|
|
});
|
|
};
|
|
}
|
|
}
|
|
|
|
impl OwnedAsyncWriter for VirtualFile {
|
|
async fn write_all_at<Buf: IoBufAligned + Send>(
|
|
&self,
|
|
buf: FullSlice<Buf>,
|
|
offset: u64,
|
|
ctx: &RequestContext,
|
|
) -> (FullSlice<Buf>, std::io::Result<()>) {
|
|
VirtualFile::write_all_at(self, buf, offset, ctx).await
|
|
}
|
|
async fn set_len(&self, len: u64, ctx: &RequestContext) -> std::io::Result<()> {
|
|
VirtualFile::set_len(self, len, ctx).await
|
|
}
|
|
}
|
|
|
|
impl OpenFiles {
|
|
fn new(num_slots: usize) -> OpenFiles {
|
|
let mut slots = Box::new(Vec::with_capacity(num_slots));
|
|
for _ in 0..num_slots {
|
|
let slot = Slot {
|
|
recently_used: AtomicBool::new(false),
|
|
inner: RwLock::new(SlotInner { tag: 0, file: None }),
|
|
};
|
|
slots.push(slot);
|
|
}
|
|
|
|
OpenFiles {
|
|
next: AtomicUsize::new(0),
|
|
slots: Box::leak(slots),
|
|
}
|
|
}
|
|
}
|
|
|
|
///
|
|
/// Initialize the virtual file module. This must be called once at page
|
|
/// server startup.
|
|
///
|
|
#[cfg(not(test))]
|
|
pub fn init(num_slots: usize, engine: IoEngineKind, mode: IoMode, sync_mode: SyncMode) {
|
|
if OPEN_FILES.set(OpenFiles::new(num_slots)).is_err() {
|
|
panic!("virtual_file::init called twice");
|
|
}
|
|
set_io_mode(mode);
|
|
io_engine::init(engine);
|
|
SYNC_MODE.store(sync_mode as u8, std::sync::atomic::Ordering::Relaxed);
|
|
crate::metrics::virtual_file_descriptor_cache::SIZE_MAX.set(num_slots as u64);
|
|
}
|
|
|
|
const TEST_MAX_FILE_DESCRIPTORS: usize = 10;
|
|
|
|
// Get a handle to the global slots array.
|
|
fn get_open_files() -> &'static OpenFiles {
|
|
//
|
|
// In unit tests, page server startup doesn't happen and no one calls
|
|
// virtual_file::init(). Initialize it here, with a small array.
|
|
//
|
|
// This applies to the virtual file tests below, but all other unit
|
|
// tests too, so the virtual file facility is always usable in
|
|
// unit tests.
|
|
//
|
|
if cfg!(test) {
|
|
OPEN_FILES.get_or_init(|| OpenFiles::new(TEST_MAX_FILE_DESCRIPTORS))
|
|
} else {
|
|
OPEN_FILES.get().expect("virtual_file::init not called yet")
|
|
}
|
|
}
|
|
|
|
/// Gets the io buffer alignment.
|
|
pub(crate) const fn get_io_buffer_alignment() -> usize {
|
|
DEFAULT_IO_BUFFER_ALIGNMENT
|
|
}
|
|
|
|
pub(crate) type IoBufferMut = AlignedBufferMut<ConstAlign<{ get_io_buffer_alignment() }>>;
|
|
pub(crate) type IoBuffer = AlignedBuffer<ConstAlign<{ get_io_buffer_alignment() }>>;
|
|
pub(crate) type IoPageSlice<'a> =
|
|
AlignedSlice<'a, PAGE_SZ, ConstAlign<{ get_io_buffer_alignment() }>>;
|
|
|
|
static IO_MODE: LazyLock<AtomicU8> = LazyLock::new(|| AtomicU8::new(IoMode::preferred() as u8));
|
|
|
|
pub fn set_io_mode(mode: IoMode) {
|
|
IO_MODE.store(mode as u8, std::sync::atomic::Ordering::Relaxed);
|
|
}
|
|
|
|
pub(crate) fn get_io_mode() -> IoMode {
|
|
IoMode::try_from(IO_MODE.load(Ordering::Relaxed)).unwrap()
|
|
}
|
|
|
|
static SYNC_MODE: AtomicU8 = AtomicU8::new(SyncMode::Sync as u8);
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::os::unix::fs::FileExt;
|
|
use std::sync::Arc;
|
|
|
|
use owned_buffers_io::io_buf_ext::IoBufExt;
|
|
use rand::Rng;
|
|
use rand::seq::SliceRandom;
|
|
|
|
use super::*;
|
|
use crate::context::DownloadBehavior;
|
|
use crate::task_mgr::TaskKind;
|
|
|
|
#[tokio::test]
|
|
async fn test_virtual_files() -> anyhow::Result<()> {
|
|
let ctx =
|
|
RequestContext::new(TaskKind::UnitTest, DownloadBehavior::Error).with_scope_unit_test();
|
|
let testdir = crate::config::PageServerConf::test_repo_dir("test_virtual_files");
|
|
std::fs::create_dir_all(&testdir)?;
|
|
|
|
let zeropad512 = |content: &[u8]| {
|
|
let mut buf = IoBufferMut::with_capacity_zeroed(512);
|
|
buf[..content.len()].copy_from_slice(content);
|
|
buf.freeze().slice_len()
|
|
};
|
|
|
|
let path_a = testdir.join("file_a");
|
|
let file_a = VirtualFile::open_with_options_v2(
|
|
path_a.clone(),
|
|
OpenOptions::new()
|
|
.read(true)
|
|
.write(true)
|
|
// set create & truncate flags to ensure when we trigger a reopen later in this test,
|
|
// the reopen_options must have masked out those flags; if they don't, then
|
|
// the after reopen we will fail to read the `content_a` that we write here.
|
|
.create(true)
|
|
.truncate(true),
|
|
&ctx,
|
|
)
|
|
.await?;
|
|
let (_, res) = file_a.write_all_at(zeropad512(b"content_a"), 0, &ctx).await;
|
|
res?;
|
|
|
|
let path_b = testdir.join("file_b");
|
|
let file_b = VirtualFile::open_with_options_v2(
|
|
path_b.clone(),
|
|
OpenOptions::new()
|
|
.read(true)
|
|
.write(true)
|
|
.create(true)
|
|
.truncate(true),
|
|
&ctx,
|
|
)
|
|
.await?;
|
|
let (_, res) = file_b.write_all_at(zeropad512(b"content_b"), 0, &ctx).await;
|
|
res?;
|
|
|
|
let assert_first_512_eq = async |vfile: &VirtualFile, expect: &[u8]| {
|
|
let buf = vfile
|
|
.read_exact_at(IoBufferMut::with_capacity_zeroed(512).slice_full(), 0, &ctx)
|
|
.await
|
|
.unwrap();
|
|
assert_eq!(&buf[..], &zeropad512(expect)[..]);
|
|
};
|
|
|
|
// Open a lot of file descriptors / VirtualFile instances.
|
|
// Enough to cause some evictions in the fd cache.
|
|
|
|
let mut file_b_dupes = Vec::new();
|
|
for _ in 0..100 {
|
|
let vfile = VirtualFile::open_with_options_v2(
|
|
path_b.clone(),
|
|
OpenOptions::new().read(true),
|
|
&ctx,
|
|
)
|
|
.await?;
|
|
assert_first_512_eq(&vfile, b"content_b").await;
|
|
file_b_dupes.push(vfile);
|
|
}
|
|
|
|
// make sure we opened enough files to definitely cause evictions.
|
|
assert!(file_b_dupes.len() > TEST_MAX_FILE_DESCRIPTORS * 2);
|
|
|
|
// The underlying file descriptor for 'file_a' should be closed now. Try to read
|
|
// from it again. The VirtualFile reopens the file internally.
|
|
assert_first_512_eq(&file_a, b"content_a").await;
|
|
|
|
// Check that all the other FDs still work too. Use them in random order for
|
|
// good measure.
|
|
file_b_dupes.as_mut_slice().shuffle(&mut rand::rng());
|
|
for vfile in file_b_dupes.iter_mut() {
|
|
assert_first_512_eq(vfile, b"content_b").await;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Test using VirtualFiles from many threads concurrently. This tests both using
|
|
/// a lot of VirtualFiles concurrently, causing evictions, and also using the same
|
|
/// VirtualFile from multiple threads concurrently.
|
|
#[tokio::test]
|
|
async fn test_vfile_concurrency() -> Result<(), Error> {
|
|
const SIZE: usize = 8 * 1024;
|
|
const VIRTUAL_FILES: usize = 100;
|
|
const THREADS: usize = 100;
|
|
const SAMPLE: [u8; SIZE] = [0xADu8; SIZE];
|
|
|
|
let ctx =
|
|
RequestContext::new(TaskKind::UnitTest, DownloadBehavior::Error).with_scope_unit_test();
|
|
let testdir = crate::config::PageServerConf::test_repo_dir("vfile_concurrency");
|
|
std::fs::create_dir_all(&testdir)?;
|
|
|
|
// Create a test file.
|
|
let test_file_path = testdir.join("concurrency_test_file");
|
|
{
|
|
let file = File::create(&test_file_path)?;
|
|
file.write_all_at(&SAMPLE, 0)?;
|
|
}
|
|
|
|
// Open the file many times.
|
|
let mut files = Vec::new();
|
|
for _ in 0..VIRTUAL_FILES {
|
|
let f = VirtualFile::open_with_options_v2(
|
|
&test_file_path,
|
|
OpenOptions::new().read(true),
|
|
&ctx,
|
|
)
|
|
.await?;
|
|
files.push(f);
|
|
}
|
|
let files = Arc::new(files);
|
|
|
|
// Launch many threads, and use the virtual files concurrently in random order.
|
|
let rt = tokio::runtime::Builder::new_multi_thread()
|
|
.worker_threads(THREADS)
|
|
.thread_name("test_vfile_concurrency thread")
|
|
.build()
|
|
.unwrap();
|
|
let mut hdls = Vec::new();
|
|
for _threadno in 0..THREADS {
|
|
let files = files.clone();
|
|
let ctx = ctx.detached_child(TaskKind::UnitTest, DownloadBehavior::Error);
|
|
let hdl = rt.spawn(async move {
|
|
let mut buf = IoBufferMut::with_capacity_zeroed(SIZE);
|
|
for _ in 1..1000 {
|
|
let f = &files[rand::rng().random_range(0..files.len())];
|
|
buf = f
|
|
.read_exact_at(buf.slice_full(), 0, &ctx)
|
|
.await
|
|
.unwrap()
|
|
.into_inner();
|
|
assert!(buf[..] == SAMPLE);
|
|
}
|
|
});
|
|
hdls.push(hdl);
|
|
}
|
|
for hdl in hdls {
|
|
hdl.await?;
|
|
}
|
|
std::mem::forget(rt);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_atomic_overwrite_basic() {
|
|
let testdir = crate::config::PageServerConf::test_repo_dir("test_atomic_overwrite_basic");
|
|
std::fs::create_dir_all(&testdir).unwrap();
|
|
|
|
let path = testdir.join("myfile");
|
|
let tmp_path = testdir.join("myfile.tmp");
|
|
|
|
VirtualFileInner::crashsafe_overwrite(path.clone(), tmp_path.clone(), b"foo".to_vec())
|
|
.await
|
|
.unwrap();
|
|
|
|
let post = std::fs::read_to_string(&path).unwrap();
|
|
assert_eq!(post, "foo");
|
|
assert!(!tmp_path.exists());
|
|
|
|
VirtualFileInner::crashsafe_overwrite(path.clone(), tmp_path.clone(), b"bar".to_vec())
|
|
.await
|
|
.unwrap();
|
|
|
|
let post = std::fs::read_to_string(&path).unwrap();
|
|
assert_eq!(post, "bar");
|
|
assert!(!tmp_path.exists());
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn test_atomic_overwrite_preexisting_tmp() {
|
|
let testdir =
|
|
crate::config::PageServerConf::test_repo_dir("test_atomic_overwrite_preexisting_tmp");
|
|
std::fs::create_dir_all(&testdir).unwrap();
|
|
|
|
let path = testdir.join("myfile");
|
|
let tmp_path = testdir.join("myfile.tmp");
|
|
|
|
std::fs::write(&tmp_path, "some preexisting junk that should be removed").unwrap();
|
|
assert!(tmp_path.exists());
|
|
|
|
VirtualFileInner::crashsafe_overwrite(path.clone(), tmp_path.clone(), b"foo".to_vec())
|
|
.await
|
|
.unwrap();
|
|
|
|
let post = std::fs::read_to_string(&path).unwrap();
|
|
assert_eq!(post, "foo");
|
|
assert!(!tmp_path.exists());
|
|
}
|
|
}
|