Files
neon/test_runner/batch_others
Heikki Linnakangas 9ff122835f Refactor ObjectTags, intruducing a new concept called "relish"
This clarifies - I hope - the abstractions between Repository and
ObjectRepository. The ObjectTag struct was a mix of objects that could
be accessed directly through the public Timeline interface, and also
objects that were created and used internally by the ObjectRepository
implementation and not supposed to be accessed directly by the
callers.  With the RelishTag separaate from ObjectTag, the distinction
is more clear: RelishTag is used in the public interface, and
ObjectTag is used internally between object_repository.rs and
object_store.rs, and it contains the internal metadata object types.

One awkward thing with the ObjectTag struct was that the Repository
implementation had to distinguish between ObjectTags for relations,
and track the size of the relation, while others were used to store
"blobs".  With the RelishTags, some relishes are considered
"non-blocky", and the Repository implementation is expected to track
their sizes, while others are stored as blobs. I'm not 100% happy with
how RelishTag captures that either: it just knows that some relish
kinds are blocky and some non-blocky, and there's an is_block()
function to check that.  But this does enable size-tracking for SLRUs,
allowing us to treat them more like relations.

This changes the way SLRUs are stored in the repository. Each SLRU
segment, e.g. "pg_clog/0000", "pg_clog/0001", are now handled as a
separate relish.  This removes the need for the SLRU-specific
put_slru_truncate() function in the Timeline trait. SLRU truncation is
now handled by caling put_unlink() on the segment. This is more in
line with how PostgreSQL stores SLRUs and handles their trunction.

The SLRUs are "blocky", so they are accessed one 8k page at a time,
and repository tracks their size. I considered an alternative design
where we would treat each SLRU segment as non-blocky, and just store
the whole file as one blob. Each SLRU segment is up to 256 kB in size,
which isn't that large, so that might've worked fine, too. One reason
I didn't do that is that it seems better to have the WAL redo
routines be as close as possible to the PostgreSQL routines. It
doesn't matter much in the repository, though; we have to track the
size for relations anyway, so there's not much difference in whether
we also do it for SLRUs.

While working on this, I noticed that the CLOG and MultiXact redo code
did not handle wraparound correctly. We need to fix that, but for now,
I just commented them out with a FIXME comment.
2021-08-03 14:01:05 +03:00
..
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00
2021-07-22 20:54:20 +03:00