Files
neon/libs/utils/src/postgres_backend_async.rs
Heikki Linnakangas 989d78aac8 Buffer the TCP incoming stream on libpq connections.
Reduces the number of syscalls needed to read the commands from the
compute.

Here's a snippet of strace output from the pageserver, when performing
a sequential scan on a table, with prefetch:

    3084934 recvfrom(47, "d", 1, 0, NULL, NULL) = 1
    3084934 recvfrom(47, "\0\0\0\37", 4, 0, NULL, NULL) = 4
    3084934 recvfrom(47, "\2\1\0\0\0\0\362\302\360\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\0\3", 27, 0, NULL, NULL) = 27
    3084934 pread64(28, "\0\0\0\1\0\0\0\0\0\0\0\253                    "..., 8192, 25190400) = 8192
    3084934 write(45, "B\0\0\0\25\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\3A\0\0\32\355\0\0\0\0\1"..., 7010) = 7010
    3084934 poll([{fd=46, events=POLLIN}, {fd=48, events=POLLIN}], 2, 60000) = 1 ([{fd=46, revents=POLLIN}])
    3084934 read(46, "\0\0\0\0p\311q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237\362\0\0\237\362\0"..., 8192) = 8192
    3084934 sendto(47, "d\0\0 \5f\0\0\0\0p\311q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237"..., 8198, MSG_NOSIGNAL, NULL, 0) = 8198
    3084934 recvfrom(47, "d", 1, 0, NULL, NULL) = 1
    3084934 recvfrom(47, "\0\0\0\37", 4, 0, NULL, NULL) = 4
    3084934 recvfrom(47, "\2\1\0\0\0\0\362\302\360\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\0\4", 27, 0, NULL, NULL) = 27
    3084934 pread64(28, "    \0=\0L\0\0\0\1\0\0\0\0\0\0\0\0\0\0\0\0;;\0\0\0\4\4\0"..., 8192, 25198592) = 8192
    3084934 write(45, "B\0\0\0\25\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\4A\0\0\32\355\0\0\0\0\1"..., 7010) = 7010
    3084934 poll([{fd=46, events=POLLIN}, {fd=48, events=POLLIN}], 2, 60000) = 1 ([{fd=46, revents=POLLIN}])
    3084934 read(46, "\0\0\0\0\260\344q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237\362\0\0\237\362\0"..., 8192) = 8192
    3084934 sendto(47, "d\0\0 \5f\0\0\0\0\260\344q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237"..., 8198, MSG_NOSIGNAL, NULL, 0) = 8198
    3084934 recvfrom(47, "d", 1, 0, NULL, NULL) = 1
    3084934 recvfrom(47, "\0\0\0\37", 4, 0, NULL, NULL) = 4
    3084934 recvfrom(47, "\2\1\0\0\0\0\362\302\360\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\0\5", 27, 0, NULL, NULL) = 27
    3084934 write(45, "B\0\0\0\25\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\5A\0\0\32\355\0\0\0\0\1"..., 7010) = 7010
    3084934 poll([{fd=46, events=POLLIN}, {fd=48, events=POLLIN}], 2, 60000) = 1 ([{fd=46, revents=POLLIN}])
    3084934 read(46, "\0\0\0\0\330\377q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237\362\0\0\237\362\0"..., 8192) = 8192
    3084934 sendto(47, "d\0\0 \5f\0\0\0\0\330\377q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237"..., 8198, MSG_NOSIGNAL, NULL, 0) = 8198

This shows the interaction for three get_page_at_lsn requests. For
each request, the pageserver performs three recvfrom syscalls to read
the incoming request from the socket. After this patch, those recvfrom
calls are gone:

    3086123 read(47, "\0\0\0\0\360\222q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237\362\0\0\237\362\0"..., 8192) = 8192
    3086123 sendto(45, "d\0\0 \5f\0\0\0\0\360\222q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237"..., 8198, MSG_NOSIGNAL, NULL, 0) = 8198
    3086123 pread64(29, "                                "..., 8192, 25182208) = 8192
    3086123 write(46, "B\0\0\0\25\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\2A\0\0\32\355\0\0\0\0\1"..., 7010) = 7010
    3086123 poll([{fd=47, events=POLLIN}, {fd=49, events=POLLIN}], 2, 60000) = 1 ([{fd=47, revents=POLLIN}])
    3086123 read(47, "\0\0\0\0000\256q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237\362\0\0\237\362\0"..., 8192) = 8192
    3086123 sendto(45, "d\0\0 \5f\0\0\0\0000\256q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237"..., 8198, MSG_NOSIGNAL, NULL, 0) = 8198
    3086123 pread64(29, "\0\0\0\1\0\0\0\0\0\0\0\253                    "..., 8192, 25190400) = 8192
    3086123 write(46, "B\0\0\0\25\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\3A\0\0\32\355\0\0\0\0\1"..., 7010) = 7010
    3086123 poll([{fd=47, events=POLLIN}, {fd=49, events=POLLIN}], 2, 60000) = 1 ([{fd=47, revents=POLLIN}])
    3086123 read(47, "\0\0\0\0p\311q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237\362\0\0\237\362\0"..., 8192) = 8192
    3086123 sendto(45, "d\0\0 \5f\0\0\0\0p\311q\1\0\0\4\0\f\1\200\1\0 \4 \0\0\0\0\200\237"..., 8198, MSG_NOSIGNAL, NULL, 0) = 8198
    3086123 pread64(29, "    \0=\0L\0\0\0\1\0\0\0\0\0\0\0\0\0\0\0\0;;\0\0\0\4\4\0"..., 8192, 25198592) = 8192
    3086123 write(46, "B\0\0\0\25\0\0\0\6\177\0\0002\276\0\0@\f\0\0\0\4A\0\0\32\355\0\0\0\0\1"..., 7010) = 7010
    3086123 poll([{fd=47, events=POLLIN}, {fd=49, events=POLLIN}], 2, 60000) = 1 ([{fd=47, revents=POLLIN}])

In this test, the compute sends a batch of prefetch requests, and they
are read from the socket in one syscall. That syscall was not captured
by the strace snippet above, but there are much fewer of them than
before.
2022-10-18 18:46:07 +03:00

486 lines
18 KiB
Rust

//! Server-side asynchronous Postgres connection, as limited as we need.
//! To use, create PostgresBackend and run() it, passing the Handler
//! implementation determining how to process the queries. Currently its API
//! is rather narrow, but we can extend it once required.
use crate::postgres_backend::AuthType;
use crate::pq_proto::{BeMessage, BeParameterStatusMessage, FeMessage, FeStartupPacket};
use anyhow::{bail, Context, Result};
use bytes::{Bytes, BytesMut};
use rand::Rng;
use std::future::Future;
use std::net::SocketAddr;
use std::pin::Pin;
use std::sync::Arc;
use std::task::Poll;
use tracing::{debug, error, trace};
use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt, BufReader};
use tokio_rustls::TlsAcceptor;
#[async_trait::async_trait]
pub trait Handler {
/// Handle single query.
/// postgres_backend will issue ReadyForQuery after calling this (this
/// might be not what we want after CopyData streaming, but currently we don't
/// care).
async fn process_query(&mut self, pgb: &mut PostgresBackend, query_string: &str) -> Result<()>;
/// Called on startup packet receival, allows to process params.
///
/// If Ok(false) is returned postgres_backend will skip auth -- that is needed for new users
/// creation is the proxy code. That is quite hacky and ad-hoc solution, may be we could allow
/// to override whole init logic in implementations.
fn startup(&mut self, _pgb: &mut PostgresBackend, _sm: &FeStartupPacket) -> Result<()> {
Ok(())
}
/// Check auth md5
fn check_auth_md5(&mut self, _pgb: &mut PostgresBackend, _md5_response: &[u8]) -> Result<()> {
bail!("MD5 auth failed")
}
/// Check auth jwt
fn check_auth_jwt(&mut self, _pgb: &mut PostgresBackend, _jwt_response: &[u8]) -> Result<()> {
bail!("JWT auth failed")
}
}
/// PostgresBackend protocol state.
/// XXX: The order of the constructors matters.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd)]
pub enum ProtoState {
Initialization,
Encrypted,
Authentication,
Established,
Closed,
}
#[derive(Clone, Copy)]
pub enum ProcessMsgResult {
Continue,
Break,
}
/// Always-writeable sock_split stream.
/// May not be readable. See [`PostgresBackend::take_stream_in`]
pub enum Stream {
Unencrypted(BufReader<tokio::net::TcpStream>),
Tls(Box<tokio_rustls::server::TlsStream<BufReader<tokio::net::TcpStream>>>),
Broken,
}
impl AsyncWrite for Stream {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, std::io::Error>> {
match self.get_mut() {
Self::Unencrypted(stream) => Pin::new(stream).poll_write(cx, buf),
Self::Tls(stream) => Pin::new(stream).poll_write(cx, buf),
Self::Broken => unreachable!(),
}
}
fn poll_flush(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> Poll<Result<(), std::io::Error>> {
match self.get_mut() {
Self::Unencrypted(stream) => Pin::new(stream).poll_flush(cx),
Self::Tls(stream) => Pin::new(stream).poll_flush(cx),
Self::Broken => unreachable!(),
}
}
fn poll_shutdown(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> Poll<Result<(), std::io::Error>> {
match self.get_mut() {
Self::Unencrypted(stream) => Pin::new(stream).poll_shutdown(cx),
Self::Tls(stream) => Pin::new(stream).poll_shutdown(cx),
Self::Broken => unreachable!(),
}
}
}
impl AsyncRead for Stream {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> Poll<Result<(), std::io::Error>> {
match self.get_mut() {
Self::Unencrypted(stream) => Pin::new(stream).poll_read(cx, buf),
Self::Tls(stream) => Pin::new(stream).poll_read(cx, buf),
Self::Broken => unreachable!(),
}
}
}
pub struct PostgresBackend {
stream: Stream,
// Output buffer. c.f. BeMessage::write why we are using BytesMut here.
buf_out: BytesMut,
pub state: ProtoState,
md5_salt: [u8; 4],
auth_type: AuthType,
peer_addr: SocketAddr,
pub tls_config: Option<Arc<rustls::ServerConfig>>,
}
pub fn query_from_cstring(query_string: Bytes) -> Vec<u8> {
let mut query_string = query_string.to_vec();
if let Some(ch) = query_string.last() {
if *ch == 0 {
query_string.pop();
}
}
query_string
}
// Cast a byte slice to a string slice, dropping null terminator if there's one.
fn cstr_to_str(bytes: &[u8]) -> Result<&str> {
let without_null = bytes.strip_suffix(&[0]).unwrap_or(bytes);
std::str::from_utf8(without_null).map_err(|e| e.into())
}
impl PostgresBackend {
pub fn new(
socket: tokio::net::TcpStream,
auth_type: AuthType,
tls_config: Option<Arc<rustls::ServerConfig>>,
) -> std::io::Result<Self> {
let peer_addr = socket.peer_addr()?;
Ok(Self {
stream: Stream::Unencrypted(BufReader::new(socket)),
buf_out: BytesMut::with_capacity(10 * 1024),
state: ProtoState::Initialization,
md5_salt: [0u8; 4],
auth_type,
tls_config,
peer_addr,
})
}
pub fn get_peer_addr(&self) -> &SocketAddr {
&self.peer_addr
}
/// Read full message or return None if connection is closed.
pub async fn read_message(&mut self) -> Result<Option<FeMessage>> {
use ProtoState::*;
match self.state {
Initialization | Encrypted => FeStartupPacket::read_fut(&mut self.stream).await,
Authentication | Established => FeMessage::read_fut(&mut self.stream).await,
Closed => Ok(None),
}
}
/// Flush output buffer into the socket.
pub async fn flush(&mut self) -> std::io::Result<&mut Self> {
self.stream.write_all(&self.buf_out).await?;
self.buf_out.clear();
Ok(self)
}
/// Write message into internal output buffer.
pub fn write_message(&mut self, message: &BeMessage<'_>) -> Result<&mut Self, std::io::Error> {
BeMessage::write(&mut self.buf_out, message)?;
Ok(self)
}
// Wrapper for run_message_loop() that shuts down socket when we are done
pub async fn run<F, S>(mut self, handler: &mut impl Handler, shutdown_watcher: F) -> Result<()>
where
F: Fn() -> S,
S: Future,
{
let ret = self.run_message_loop(handler, shutdown_watcher).await;
let _ = self.stream.shutdown();
ret
}
async fn run_message_loop<F, S>(
&mut self,
handler: &mut impl Handler,
shutdown_watcher: F,
) -> Result<()>
where
F: Fn() -> S,
S: Future,
{
trace!("postgres backend to {:?} started", self.peer_addr);
tokio::select!(
biased;
_ = shutdown_watcher() => {
// We were requested to shut down.
tracing::info!("shutdown request received during handshake");
return Ok(())
},
result = async {
while self.state < ProtoState::Established {
if let Some(msg) = self.read_message().await? {
trace!("got message {msg:?} during handshake");
match self.process_handshake_message(handler, msg).await? {
ProcessMsgResult::Continue => {
self.flush().await?;
continue;
}
ProcessMsgResult::Break => {
trace!("postgres backend to {:?} exited during handshake", self.peer_addr);
return Ok(());
}
}
} else {
trace!("postgres backend to {:?} exited during handshake", self.peer_addr);
return Ok(());
}
}
Ok::<(), anyhow::Error>(())
} => {
// Handshake complete.
result?;
}
);
// Authentication completed
let mut query_string = Bytes::new();
while let Some(msg) = tokio::select!(
biased;
_ = shutdown_watcher() => {
// We were requested to shut down.
tracing::info!("shutdown request received in run_message_loop");
Ok(None)
},
msg = self.read_message() => { msg },
)? {
trace!("got message {:?}", msg);
let result = self.process_message(handler, msg, &mut query_string).await;
self.flush().await?;
match result? {
ProcessMsgResult::Continue => {
self.flush().await?;
continue;
}
ProcessMsgResult::Break => break,
}
}
trace!("postgres backend to {:?} exited", self.peer_addr);
Ok(())
}
async fn start_tls(&mut self) -> anyhow::Result<()> {
if let Stream::Unencrypted(plain_stream) =
std::mem::replace(&mut self.stream, Stream::Broken)
{
let acceptor = TlsAcceptor::from(self.tls_config.clone().unwrap());
let tls_stream = acceptor.accept(plain_stream).await?;
self.stream = Stream::Tls(Box::new(tls_stream));
return Ok(());
};
bail!("TLS already started");
}
async fn process_handshake_message(
&mut self,
handler: &mut impl Handler,
msg: FeMessage,
) -> Result<ProcessMsgResult> {
assert!(self.state < ProtoState::Established);
let have_tls = self.tls_config.is_some();
match msg {
FeMessage::StartupPacket(m) => {
trace!("got startup message {m:?}");
match m {
FeStartupPacket::SslRequest => {
debug!("SSL requested");
self.write_message(&BeMessage::EncryptionResponse(have_tls))?;
if have_tls {
self.start_tls().await?;
self.state = ProtoState::Encrypted;
}
}
FeStartupPacket::GssEncRequest => {
debug!("GSS requested");
self.write_message(&BeMessage::EncryptionResponse(false))?;
}
FeStartupPacket::StartupMessage { .. } => {
if have_tls && !matches!(self.state, ProtoState::Encrypted) {
self.write_message(&BeMessage::ErrorResponse("must connect with TLS"))?;
bail!("client did not connect with TLS");
}
// NB: startup() may change self.auth_type -- we are using that in proxy code
// to bypass auth for new users.
handler.startup(self, &m)?;
match self.auth_type {
AuthType::Trust => {
self.write_message(&BeMessage::AuthenticationOk)?
.write_message(&BeParameterStatusMessage::encoding())?
// The async python driver requires a valid server_version
.write_message(&BeMessage::ParameterStatus(
BeParameterStatusMessage::ServerVersion("14.1"),
))?
.write_message(&BeMessage::ReadyForQuery)?;
self.state = ProtoState::Established;
}
AuthType::MD5 => {
rand::thread_rng().fill(&mut self.md5_salt);
self.write_message(&BeMessage::AuthenticationMD5Password(
self.md5_salt,
))?;
self.state = ProtoState::Authentication;
}
AuthType::NeonJWT => {
self.write_message(&BeMessage::AuthenticationCleartextPassword)?;
self.state = ProtoState::Authentication;
}
}
}
FeStartupPacket::CancelRequest { .. } => {
self.state = ProtoState::Closed;
return Ok(ProcessMsgResult::Break);
}
}
}
FeMessage::PasswordMessage(m) => {
trace!("got password message '{:?}'", m);
assert!(self.state == ProtoState::Authentication);
match self.auth_type {
AuthType::Trust => unreachable!(),
AuthType::MD5 => {
let (_, md5_response) = m.split_last().context("protocol violation")?;
if let Err(e) = handler.check_auth_md5(self, md5_response) {
self.write_message(&BeMessage::ErrorResponse(&e.to_string()))?;
bail!("auth failed: {}", e);
}
}
AuthType::NeonJWT => {
let (_, jwt_response) = m.split_last().context("protocol violation")?;
if let Err(e) = handler.check_auth_jwt(self, jwt_response) {
self.write_message(&BeMessage::ErrorResponse(&e.to_string()))?;
bail!("auth failed: {}", e);
}
}
}
self.write_message(&BeMessage::AuthenticationOk)?
.write_message(&BeParameterStatusMessage::encoding())?
.write_message(&BeMessage::ReadyForQuery)?;
self.state = ProtoState::Established;
}
_ => {
self.state = ProtoState::Closed;
return Ok(ProcessMsgResult::Break);
}
}
Ok(ProcessMsgResult::Continue)
}
async fn process_message(
&mut self,
handler: &mut impl Handler,
msg: FeMessage,
unnamed_query_string: &mut Bytes,
) -> Result<ProcessMsgResult> {
// Allow only startup and password messages during auth. Otherwise client would be able to bypass auth
// TODO: change that to proper top-level match of protocol state with separate message handling for each state
assert!(self.state == ProtoState::Established);
match msg {
FeMessage::StartupPacket(_) | FeMessage::PasswordMessage(_) => {
bail!("protocol violation");
}
FeMessage::Query(body) => {
// remove null terminator
let query_string = cstr_to_str(&body)?;
trace!("got query {:?}", query_string);
// xxx distinguish fatal and recoverable errors?
if let Err(e) = handler.process_query(self, query_string).await {
// ":?" uses the alternate formatting style, which makes anyhow display the
// full cause of the error, not just the top-level context + its trace.
// We don't want to send that in the ErrorResponse though,
// because it's not relevant to the compute node logs.
error!("query handler for '{}' failed: {:?}", query_string, e);
self.write_message(&BeMessage::ErrorResponse(&e.to_string()))?;
// TODO: untangle convoluted control flow
if e.to_string().contains("failed to run") {
return Ok(ProcessMsgResult::Break);
}
}
self.write_message(&BeMessage::ReadyForQuery)?;
}
FeMessage::Parse(m) => {
*unnamed_query_string = m.query_string;
self.write_message(&BeMessage::ParseComplete)?;
}
FeMessage::Describe(_) => {
self.write_message(&BeMessage::ParameterDescription)?
.write_message(&BeMessage::NoData)?;
}
FeMessage::Bind(_) => {
self.write_message(&BeMessage::BindComplete)?;
}
FeMessage::Close(_) => {
self.write_message(&BeMessage::CloseComplete)?;
}
FeMessage::Execute(_) => {
let query_string = cstr_to_str(unnamed_query_string)?;
trace!("got execute {:?}", query_string);
// xxx distinguish fatal and recoverable errors?
if let Err(e) = handler.process_query(self, query_string).await {
error!("query handler for '{}' failed: {:?}", query_string, e);
self.write_message(&BeMessage::ErrorResponse(&e.to_string()))?;
}
// NOTE there is no ReadyForQuery message. This handler is used
// for basebackup and it uses CopyOut which doesn't require
// ReadyForQuery message and backend just switches back to
// processing mode after sending CopyDone or ErrorResponse.
}
FeMessage::Sync => {
self.write_message(&BeMessage::ReadyForQuery)?;
}
FeMessage::Terminate => {
return Ok(ProcessMsgResult::Break);
}
// We prefer explicit pattern matching to wildcards, because
// this helps us spot the places where new variants are missing
FeMessage::CopyData(_) | FeMessage::CopyDone | FeMessage::CopyFail => {
bail!("unexpected message type: {:?}", msg);
}
}
Ok(ProcessMsgResult::Continue)
}
}