Files
neon/pageserver/src/context.rs
Christian Schwarz 3322b6c5b0 page cache: metrics: add page content kind dimension (#5373)
The TaskKind dimension added in #5339 is insufficient to understand what
kind of data causes the cache hits.

Regarding performance considerations: I'm not too worried because we're
moving from 3 to 4 one-byte sized fields; likely the space now used by
the new field was padding before. Didn't check this, though, and it
doesn't matter, we need the data.

What I don't like about this PR is that we have an `Unknown` content
type, and I also don't like that there's no compile-time way to assert
that it's set to something != `Unknown` when calling the page cache.
But, this is what I could come up with before tomorrow’s release, and I
think it covers the hot paths.
2023-09-26 10:01:09 +03:00

290 lines
12 KiB
Rust

//! This module defines `RequestContext`, a structure that we use throughout
//! the pageserver to propagate high-level context from places
//! that _originate_ activity down to the shared code paths at the
//! heart of the pageserver. It's inspired by Golang's `context.Context`.
//!
//! For example, in `Timeline::get(page_nr, lsn)` we need to answer the following questions:
//! 1. What high-level activity ([`TaskKind`]) needs this page?
//! We need that information as a categorical dimension for page access
//! statistics, which we, in turn, need to guide layer eviction policy design.
//! 2. How should we behave if, to produce the page image, we need to
//! on-demand download a layer file ([`DownloadBehavior`]).
//!
//! [`RequestContext`] satisfies those needs.
//! The current implementation is a small `struct` that is passed through
//! the call chain by reference.
//!
//! ### Future Work
//!
//! However, we do not intend to stop here, since there are other needs that
//! require carrying information from high to low levels of the app.
//!
//! Most importantly, **cancellation signaling** in response to
//! 1. timeouts (page_service max response time) and
//! 2. lifecycle requests (detach tenant, delete timeline).
//!
//! Related to that, there is sometimes a need to ensure that all tokio tasks spawned
//! by the transitive callees of a request have finished. The keyword here
//! is **Structured Concurrency**, and right now, we use `task_mgr` in most places,
//! `TaskHandle` in some places, and careful code review around `FuturesUnordered`
//! or `JoinSet` in other places.
//!
//! We do not yet have a systematic cancellation story in pageserver, and it is
//! pretty clear that [`RequestContext`] will be responsible for that.
//! So, the API already prepares for this role through the
//! [`RequestContext::detached_child`] and [`RequestContext::attached_child`] methods.
//! See their doc comments for details on how we will use them in the future.
//!
//! It is not clear whether or how we will enforce Structured Concurrency, and
//! what role [`RequestContext`] will play there.
//! So, the API doesn't prepare us for this topic.
//!
//! Other future uses of `RequestContext`:
//! - Communicate compute & IO priorities (user-initiated request vs. background-loop)
//! - Request IDs for distributed tracing
//! - Request/Timeline/Tenant-scoped log levels
//!
//! RequestContext might look quite different once it supports those features.
//! Likely, it will have a shape similar to Golang's `context.Context`.
//!
//! ### Why A Struct Instead Of Method Parameters
//!
//! What's typical about such information is that it needs to be passed down
//! along the call chain from high level to low level, but few of the functions
//! in the middle need to understand it.
//! Further, it is to be expected that we will need to propagate more data
//! in the future (see the earlier section on future work).
//! Hence, for functions in the middle of the call chain, we have the following
//! requirements:
//! 1. It should be easy to forward the context to callees.
//! 2. To propagate more data from high-level to low-level code, the functions in
//! the middle should not need to be modified.
//! The solution is to have a container structure ([`RequestContext`]) that
//! carries the information. Functions that don't care about what's in it
//! pass it along to callees.
//!
//! ### Why Not Task-Local Variables
//!
//! One could use task-local variables (the equivalent of thread-local variables)
//! to address the immediate needs outlined above.
//! However, we reject task-local variables because:
//! 1. they are implicit, thereby making it harder to trace the data flow in code
//! reviews and during debugging,
//! 2. they can be mutable, which enables implicit return data flow,
//! 3. they are restrictive in that code which fans out into multiple tasks,
//! or even threads, needs to carefully propagate the state.
//!
//! In contrast, information flow with [`RequestContext`] is
//! 1. always explicit,
//! 2. strictly uni-directional because RequestContext is immutable,
//! 3. tangible because a [`RequestContext`] is just a value.
//! When creating child activities, regardless of whether it's a task,
//! thread, or even an RPC to another service, the value can
//! be used like any other argument.
//!
//! The solution is that all code paths are infected with precisely one
//! [`RequestContext`] argument. Functions in the middle of the call chain
//! only need to pass it on.
use crate::task_mgr::TaskKind;
// The main structure of this module, see module-level comment.
#[derive(Clone, Debug)]
pub struct RequestContext {
task_kind: TaskKind,
download_behavior: DownloadBehavior,
access_stats_behavior: AccessStatsBehavior,
page_content_kind: PageContentKind,
}
/// The kind of access to the page cache.
#[derive(Clone, Copy, PartialEq, Eq, Debug, enum_map::Enum, strum_macros::IntoStaticStr)]
pub enum PageContentKind {
Unknown,
DeltaLayerBtreeNode,
DeltaLayerValue,
ImageLayerBtreeNode,
ImageLayerValue,
InMemoryLayer,
}
/// Desired behavior if the operation requires an on-demand download
/// to proceed.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum DownloadBehavior {
/// Download the layer file. It can take a while.
Download,
/// Download the layer file, but print a warning to the log. This should be used
/// in code where the layer file is expected to already exist locally.
Warn,
/// Return a PageReconstructError::NeedsDownload error
Error,
}
/// Whether this request should update access times used in LRU eviction
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub(crate) enum AccessStatsBehavior {
/// Update access times: this request's access to data should be taken
/// as a hint that the accessed layer is likely to be accessed again
Update,
/// Do not update access times: this request is accessing the layer
/// but does not want to indicate that the layer should be retained in cache,
/// perhaps because the requestor is a compaction routine that will soon cover
/// this layer with another.
Skip,
}
pub struct RequestContextBuilder {
inner: RequestContext,
}
impl RequestContextBuilder {
/// A new builder with default settings
pub fn new(task_kind: TaskKind) -> Self {
Self {
inner: RequestContext {
task_kind,
download_behavior: DownloadBehavior::Download,
access_stats_behavior: AccessStatsBehavior::Update,
page_content_kind: PageContentKind::Unknown,
},
}
}
pub fn extend(original: &RequestContext) -> Self {
Self {
// This is like a Copy, but avoid implementing Copy because ordinary users of
// RequestContext should always move or ref it.
inner: RequestContext {
task_kind: original.task_kind,
download_behavior: original.download_behavior,
access_stats_behavior: original.access_stats_behavior,
page_content_kind: original.page_content_kind,
},
}
}
/// Configure the DownloadBehavior of the context: whether to
/// download missing layers, and/or warn on the download.
pub fn download_behavior(mut self, b: DownloadBehavior) -> Self {
self.inner.download_behavior = b;
self
}
/// Configure the AccessStatsBehavior of the context: whether layer
/// accesses should update the access time of the layer.
pub(crate) fn access_stats_behavior(mut self, b: AccessStatsBehavior) -> Self {
self.inner.access_stats_behavior = b;
self
}
pub(crate) fn page_content_kind(mut self, k: PageContentKind) -> Self {
self.inner.page_content_kind = k;
self
}
pub fn build(self) -> RequestContext {
self.inner
}
}
impl RequestContext {
/// Create a new RequestContext that has no parent.
///
/// The function is called `new` because, once we add children
/// to it using `detached_child` or `attached_child`, the context
/// form a tree (not implemented yet since cancellation will be
/// the first feature that requires a tree).
///
/// # Future: Cancellation
///
/// The only reason why a context like this one can be canceled is
/// because someone explicitly canceled it.
/// It has no parent, so it cannot inherit cancellation from there.
pub fn new(task_kind: TaskKind, download_behavior: DownloadBehavior) -> Self {
RequestContextBuilder::new(task_kind)
.download_behavior(download_behavior)
.build()
}
/// Create a detached child context for a task that may outlive `self`.
///
/// Use this when spawning new background activity that should complete
/// even if the current request is canceled.
///
/// # Future: Cancellation
///
/// Cancellation of `self` will not propagate to the child context returned
/// by this method.
///
/// # Future: Structured Concurrency
///
/// We could add the Future as a parameter to this function, spawn it as a task,
/// and pass to the new task the child context as an argument.
/// That would be an ergonomic improvement.
///
/// We could make new calls to this function fail if `self` is already canceled.
pub fn detached_child(&self, task_kind: TaskKind, download_behavior: DownloadBehavior) -> Self {
self.child_impl(task_kind, download_behavior)
}
/// Create a child of context `self` for a task that shall not outlive `self`.
///
/// Use this when fanning-out work to other async tasks.
///
/// # Future: Cancellation
///
/// Cancelling a context will propagate to its attached children.
///
/// # Future: Structured Concurrency
///
/// We could add the Future as a parameter to this function, spawn it as a task,
/// and track its `JoinHandle` inside the `RequestContext`.
///
/// We could then provide another method to allow waiting for all child tasks
/// to finish.
///
/// We could make new calls to this function fail if `self` is already canceled.
/// Alternatively, we could allow the creation but not spawn the task.
/// The method to wait for child tasks would return an error, indicating
/// that the child task was not started because the context was canceled.
pub fn attached_child(&self) -> Self {
self.child_impl(self.task_kind(), self.download_behavior())
}
/// Use this function when you should be creating a child context using
/// [`attached_child`] or [`detached_child`], but your caller doesn't provide
/// a context and you are unwilling to change all callers to provide one.
///
/// Before we add cancellation, we should get rid of this method.
///
/// [`attached_child`]: Self::attached_child
/// [`detached_child`]: Self::detached_child
pub fn todo_child(task_kind: TaskKind, download_behavior: DownloadBehavior) -> Self {
Self::new(task_kind, download_behavior)
}
fn child_impl(&self, task_kind: TaskKind, download_behavior: DownloadBehavior) -> Self {
Self::new(task_kind, download_behavior)
}
pub fn task_kind(&self) -> TaskKind {
self.task_kind
}
pub fn download_behavior(&self) -> DownloadBehavior {
self.download_behavior
}
pub(crate) fn access_stats_behavior(&self) -> AccessStatsBehavior {
self.access_stats_behavior
}
pub(crate) fn page_content_kind(&self) -> PageContentKind {
self.page_content_kind
}
}