Files
neon/test_runner/fixtures/pageserver/http.py
Dmitry Rodionov eb3a8be933 keep track of timeline deletion status in IndexPart to prevent timeline resurrection (#3919)
Before this patch, the following sequence would lead to the resurrection of a deleted timeline:

- create timeline
- wait for its index part to reach s3
- delete timeline
- wait an arbitrary amount of time, including 0 seconds
- detach tenant
- attach tenant
- the timeline is there and Active again

This happens because we only kept track of the deletion in the tenant dir (by deleting the timeline dir) but not in S3.

The solution is to turn the deleted timeline's IndexPart into a tombstone.
The deletion status of the timeline is expressed in the `deleted_at: Option<NativeDateTime>` field of IndexPart.
It's `None` while the timeline is alive and `Some(deletion time stamp)` if it is deleted.

We change the timeline deletion handler to upload this tombstoned IndexPart.
The handler does not return success if the upload fails.

Coincidentally, this fixes the long-stanging TODO about the `std::fs::remove_dir_all` being not atomic.
It need not be atomic anymore because we set the `deleted_at=Some()` before starting the `remove_dir_all`.

The tombstone is in the IndexPart only, not in the `metadata`.
So, we only have the tombstone and the `remove_dir_all` benefits mentioned above if remote storage is configured.
This was a conscious trade-off because there's no good format evolution story for the current metadata file format.

The introduction of this additional step into `delete_timeline` was painful because delete_timeline needs to be
1. cancel-safe
2. idempotent
3. safe to call concurrently
These are mostly self-inflicted limitations that can be avoided by using request-coalescing.
PR https://github.com/neondatabase/neon/pull/4159 will do that.

fixes https://github.com/neondatabase/neon/issues/3560

refs https://github.com/neondatabase/neon/issues/3889 (part of tenant relocation)


Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
2023-05-10 10:27:12 +02:00

566 lines
20 KiB
Python

from __future__ import annotations
import time
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import requests
from fixtures.log_helper import log
from fixtures.metrics import Metrics, parse_metrics
from fixtures.pg_version import PgVersion
from fixtures.types import Lsn, TenantId, TimelineId
from fixtures.utils import Fn
class PageserverApiException(Exception):
def __init__(self, message, status_code: int):
super().__init__(message)
self.status_code = status_code
@dataclass
class InMemoryLayerInfo:
kind: str
lsn_start: str
lsn_end: Optional[str]
@classmethod
def from_json(cls, d: Dict[str, Any]) -> InMemoryLayerInfo:
return InMemoryLayerInfo(
kind=d["kind"],
lsn_start=d["lsn_start"],
lsn_end=d.get("lsn_end"),
)
@dataclass(frozen=True)
class HistoricLayerInfo:
kind: str
layer_file_name: str
layer_file_size: Optional[int]
lsn_start: str
lsn_end: Optional[str]
remote: bool
@classmethod
def from_json(cls, d: Dict[str, Any]) -> HistoricLayerInfo:
return HistoricLayerInfo(
kind=d["kind"],
layer_file_name=d["layer_file_name"],
layer_file_size=d.get("layer_file_size"),
lsn_start=d["lsn_start"],
lsn_end=d.get("lsn_end"),
remote=d["remote"],
)
@dataclass
class LayerMapInfo:
in_memory_layers: List[InMemoryLayerInfo]
historic_layers: List[HistoricLayerInfo]
@classmethod
def from_json(cls, d: Dict[str, Any]) -> LayerMapInfo:
info = LayerMapInfo(in_memory_layers=[], historic_layers=[])
json_in_memory_layers = d["in_memory_layers"]
assert isinstance(json_in_memory_layers, List)
for json_in_memory_layer in json_in_memory_layers:
info.in_memory_layers.append(InMemoryLayerInfo.from_json(json_in_memory_layer))
json_historic_layers = d["historic_layers"]
assert isinstance(json_historic_layers, List)
for json_historic_layer in json_historic_layers:
info.historic_layers.append(HistoricLayerInfo.from_json(json_historic_layer))
return info
def kind_count(self) -> Dict[str, int]:
counts: Dict[str, int] = defaultdict(int)
for inmem_layer in self.in_memory_layers:
counts[inmem_layer.kind] += 1
for hist_layer in self.historic_layers:
counts[hist_layer.kind] += 1
return counts
@dataclass
class TenantConfig:
tenant_specific_overrides: Dict[str, Any]
effective_config: Dict[str, Any]
@classmethod
def from_json(cls, d: Dict[str, Any]) -> TenantConfig:
return TenantConfig(
tenant_specific_overrides=d["tenant_specific_overrides"],
effective_config=d["effective_config"],
)
class PageserverHttpClient(requests.Session):
def __init__(self, port: int, is_testing_enabled_or_skip: Fn, auth_token: Optional[str] = None):
super().__init__()
self.port = port
self.auth_token = auth_token
self.is_testing_enabled_or_skip = is_testing_enabled_or_skip
if auth_token is not None:
self.headers["Authorization"] = f"Bearer {auth_token}"
def verbose_error(self, res: requests.Response):
try:
res.raise_for_status()
except requests.RequestException as e:
try:
msg = res.json()["msg"]
except: # noqa: E722
msg = ""
raise PageserverApiException(msg, res.status_code) from e
def check_status(self):
self.get(f"http://localhost:{self.port}/v1/status").raise_for_status()
def configure_failpoints(self, config_strings: Tuple[str, str] | List[Tuple[str, str]]):
self.is_testing_enabled_or_skip()
if isinstance(config_strings, tuple):
pairs = [config_strings]
else:
pairs = config_strings
log.info(f"Requesting config failpoints: {repr(pairs)}")
res = self.put(
f"http://localhost:{self.port}/v1/failpoints",
json=[{"name": name, "actions": actions} for name, actions in pairs],
)
log.info(f"Got failpoints request response code {res.status_code}")
self.verbose_error(res)
res_json = res.json()
assert res_json is None
return res_json
def tenant_list(self) -> List[Dict[Any, Any]]:
res = self.get(f"http://localhost:{self.port}/v1/tenant")
self.verbose_error(res)
res_json = res.json()
assert isinstance(res_json, list)
return res_json
def tenant_create(self, new_tenant_id: Optional[TenantId] = None) -> TenantId:
res = self.post(
f"http://localhost:{self.port}/v1/tenant",
json={
"new_tenant_id": str(new_tenant_id) if new_tenant_id else None,
},
)
self.verbose_error(res)
if res.status_code == 409:
raise Exception(f"could not create tenant: already exists for id {new_tenant_id}")
new_tenant_id = res.json()
assert isinstance(new_tenant_id, str)
return TenantId(new_tenant_id)
def tenant_attach(self, tenant_id: TenantId):
res = self.post(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/attach")
self.verbose_error(res)
def tenant_detach(self, tenant_id: TenantId, detach_ignored=False):
params = {}
if detach_ignored:
params["detach_ignored"] = "true"
res = self.post(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/detach", params=params)
self.verbose_error(res)
def tenant_load(self, tenant_id: TenantId):
res = self.post(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/load")
self.verbose_error(res)
def tenant_ignore(self, tenant_id: TenantId):
res = self.post(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/ignore")
self.verbose_error(res)
def tenant_status(self, tenant_id: TenantId) -> Dict[Any, Any]:
res = self.get(f"http://localhost:{self.port}/v1/tenant/{tenant_id}")
self.verbose_error(res)
res_json = res.json()
assert isinstance(res_json, dict)
return res_json
def tenant_config(self, tenant_id: TenantId) -> TenantConfig:
res = self.get(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/config")
self.verbose_error(res)
return TenantConfig.from_json(res.json())
def set_tenant_config(self, tenant_id: TenantId, config: dict[str, Any]):
assert "tenant_id" not in config.keys()
res = self.put(
f"http://localhost:{self.port}/v1/tenant/config",
json={**config, "tenant_id": str(tenant_id)},
)
self.verbose_error(res)
def patch_tenant_config_client_side(
self,
tenant_id: TenantId,
inserts: Optional[Dict[str, Any]] = None,
removes: Optional[List[str]] = None,
):
current = self.tenant_config(tenant_id).tenant_specific_overrides
if inserts is not None:
current.update(inserts)
if removes is not None:
for key in removes:
del current[key]
self.set_tenant_config(tenant_id, current)
def tenant_size(self, tenant_id: TenantId) -> int:
return self.tenant_size_and_modelinputs(tenant_id)[0]
def tenant_size_and_modelinputs(self, tenant_id: TenantId) -> Tuple[int, Dict[str, Any]]:
"""
Returns the tenant size, together with the model inputs as the second tuple item.
"""
res = self.get(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/synthetic_size")
self.verbose_error(res)
res = res.json()
assert isinstance(res, dict)
assert TenantId(res["id"]) == tenant_id
size = res["size"]
assert type(size) == int
inputs = res["inputs"]
assert type(inputs) is dict
return (size, inputs)
def tenant_size_debug(self, tenant_id: TenantId) -> str:
"""
Returns the tenant size debug info, as an HTML string
"""
res = self.get(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/synthetic_size",
headers={"Accept": "text/html"},
)
return res.text
def timeline_list(
self,
tenant_id: TenantId,
include_non_incremental_logical_size: bool = False,
include_timeline_dir_layer_file_size_sum: bool = False,
) -> List[Dict[str, Any]]:
params = {}
if include_non_incremental_logical_size:
params["include-non-incremental-logical-size"] = "true"
if include_timeline_dir_layer_file_size_sum:
params["include-timeline-dir-layer-file-size-sum"] = "true"
res = self.get(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline", params=params
)
self.verbose_error(res)
res_json = res.json()
assert isinstance(res_json, list)
return res_json
def timeline_create(
self,
pg_version: PgVersion,
tenant_id: TenantId,
new_timeline_id: Optional[TimelineId] = None,
ancestor_timeline_id: Optional[TimelineId] = None,
ancestor_start_lsn: Optional[Lsn] = None,
) -> Dict[Any, Any]:
body: Dict[str, Any] = {
"new_timeline_id": str(new_timeline_id) if new_timeline_id else None,
"ancestor_start_lsn": str(ancestor_start_lsn) if ancestor_start_lsn else None,
"ancestor_timeline_id": str(ancestor_timeline_id) if ancestor_timeline_id else None,
}
if pg_version != PgVersion.NOT_SET:
body["pg_version"] = int(pg_version)
res = self.post(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline", json=body)
self.verbose_error(res)
if res.status_code == 409:
raise Exception(f"could not create timeline: already exists for id {new_timeline_id}")
res_json = res.json()
assert isinstance(res_json, dict)
return res_json
def timeline_detail(
self,
tenant_id: TenantId,
timeline_id: TimelineId,
include_non_incremental_logical_size: bool = False,
include_timeline_dir_layer_file_size_sum: bool = False,
**kwargs,
) -> Dict[Any, Any]:
params = {}
if include_non_incremental_logical_size:
params["include-non-incremental-logical-size"] = "true"
if include_timeline_dir_layer_file_size_sum:
params["include-timeline-dir-layer-file-size-sum"] = "true"
res = self.get(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}",
params=params,
**kwargs,
)
self.verbose_error(res)
res_json = res.json()
assert isinstance(res_json, dict)
return res_json
def timeline_delete(self, tenant_id: TenantId, timeline_id: TimelineId, **kwargs):
res = self.delete(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}", **kwargs
)
self.verbose_error(res)
res_json = res.json()
assert res_json is None
def timeline_gc(
self, tenant_id: TenantId, timeline_id: TimelineId, gc_horizon: Optional[int]
) -> dict[str, Any]:
self.is_testing_enabled_or_skip()
log.info(
f"Requesting GC: tenant {tenant_id}, timeline {timeline_id}, gc_horizon {repr(gc_horizon)}"
)
res = self.put(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/do_gc",
json={"gc_horizon": gc_horizon},
)
log.info(f"Got GC request response code: {res.status_code}")
self.verbose_error(res)
res_json = res.json()
assert res_json is not None
assert isinstance(res_json, dict)
return res_json
def timeline_compact(self, tenant_id: TenantId, timeline_id: TimelineId):
self.is_testing_enabled_or_skip()
log.info(f"Requesting compact: tenant {tenant_id}, timeline {timeline_id}")
res = self.put(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/compact"
)
log.info(f"Got compact request response code: {res.status_code}")
self.verbose_error(res)
res_json = res.json()
assert res_json is None
def timeline_get_lsn_by_timestamp(
self, tenant_id: TenantId, timeline_id: TimelineId, timestamp
):
log.info(
f"Requesting lsn by timestamp {timestamp}, tenant {tenant_id}, timeline {timeline_id}"
)
res = self.get(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/get_lsn_by_timestamp?timestamp={timestamp}",
)
self.verbose_error(res)
res_json = res.json()
return res_json
def timeline_checkpoint(self, tenant_id: TenantId, timeline_id: TimelineId):
self.is_testing_enabled_or_skip()
log.info(f"Requesting checkpoint: tenant {tenant_id}, timeline {timeline_id}")
res = self.put(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/checkpoint"
)
log.info(f"Got checkpoint request response code: {res.status_code}")
self.verbose_error(res)
res_json = res.json()
assert res_json is None
def timeline_spawn_download_remote_layers(
self,
tenant_id: TenantId,
timeline_id: TimelineId,
max_concurrent_downloads: int,
) -> dict[str, Any]:
body = {
"max_concurrent_downloads": max_concurrent_downloads,
}
res = self.post(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/download_remote_layers",
json=body,
)
self.verbose_error(res)
res_json = res.json()
assert res_json is not None
assert isinstance(res_json, dict)
return res_json
def timeline_poll_download_remote_layers_status(
self,
tenant_id: TenantId,
timeline_id: TimelineId,
spawn_response: dict[str, Any],
poll_state=None,
) -> None | dict[str, Any]:
res = self.get(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/download_remote_layers",
)
self.verbose_error(res)
res_json = res.json()
assert res_json is not None
assert isinstance(res_json, dict)
# assumption in this API client here is that nobody else spawns the task
assert res_json["task_id"] == spawn_response["task_id"]
if poll_state is None or res_json["state"] == poll_state:
return res_json
return None
def timeline_download_remote_layers(
self,
tenant_id: TenantId,
timeline_id: TimelineId,
max_concurrent_downloads: int,
errors_ok=False,
at_least_one_download=True,
):
res = self.timeline_spawn_download_remote_layers(
tenant_id, timeline_id, max_concurrent_downloads
)
while True:
completed = self.timeline_poll_download_remote_layers_status(
tenant_id, timeline_id, res, poll_state="Completed"
)
if not completed:
time.sleep(0.1)
continue
if not errors_ok:
assert completed["failed_download_count"] == 0
if at_least_one_download:
assert completed["successful_download_count"] > 0
return completed
def get_metrics_str(self) -> str:
"""You probably want to use get_metrics() instead."""
res = self.get(f"http://localhost:{self.port}/metrics")
self.verbose_error(res)
return res.text
def get_metrics(self) -> Metrics:
res = self.get_metrics_str()
return parse_metrics(res)
def get_timeline_metric(
self, tenant_id: TenantId, timeline_id: TimelineId, metric_name: str
) -> float:
metrics = self.get_metrics()
return metrics.query_one(
metric_name,
filter={
"tenant_id": str(tenant_id),
"timeline_id": str(timeline_id),
},
).value
def get_remote_timeline_client_metric(
self,
metric_name: str,
tenant_id: TenantId,
timeline_id: TimelineId,
file_kind: str,
op_kind: str,
) -> Optional[float]:
metrics = self.get_metrics()
matches = metrics.query_all(
name=metric_name,
filter={
"tenant_id": str(tenant_id),
"timeline_id": str(timeline_id),
"file_kind": str(file_kind),
"op_kind": str(op_kind),
},
)
if len(matches) == 0:
value = None
elif len(matches) == 1:
value = matches[0].value
assert value is not None
else:
assert len(matches) < 2, "above filter should uniquely identify metric"
return value
def get_metric_value(
self, name: str, filter: Optional[Dict[str, str]] = None
) -> Optional[float]:
metrics = self.get_metrics()
results = metrics.query_all(name, filter=filter)
if not results:
log.info(f'could not find metric "{name}"')
return None
assert len(results) == 1, f"metric {name} with given filters is not unique, got: {results}"
return results[0].value
def layer_map_info(
self,
tenant_id: TenantId,
timeline_id: TimelineId,
) -> LayerMapInfo:
res = self.get(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/layer/",
)
self.verbose_error(res)
return LayerMapInfo.from_json(res.json())
def download_layer(self, tenant_id: TenantId, timeline_id: TimelineId, layer_name: str):
res = self.get(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/layer/{layer_name}",
)
self.verbose_error(res)
assert res.status_code == 200
def download_all_layers(self, tenant_id: TenantId, timeline_id: TimelineId):
info = self.layer_map_info(tenant_id, timeline_id)
for layer in info.historic_layers:
if not layer.remote:
continue
self.download_layer(tenant_id, timeline_id, layer.layer_file_name)
def evict_layer(self, tenant_id: TenantId, timeline_id: TimelineId, layer_name: str):
res = self.delete(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/layer/{layer_name}",
)
self.verbose_error(res)
assert res.status_code == 200
def evict_all_layers(self, tenant_id: TenantId, timeline_id: TimelineId):
info = self.layer_map_info(tenant_id, timeline_id)
for layer in info.historic_layers:
self.evict_layer(tenant_id, timeline_id, layer.layer_file_name)
def disk_usage_eviction_run(self, request: dict[str, Any]):
res = self.put(
f"http://localhost:{self.port}/v1/disk_usage_eviction/run",
json=request,
)
self.verbose_error(res)
return res.json()
def tenant_break(self, tenant_id: TenantId):
res = self.put(f"http://localhost:{self.port}/v1/tenant/{tenant_id}/break")
self.verbose_error(res)
def post_tracing_event(self, level: str, message: str):
res = self.post(
f"http://localhost:{self.port}/v1/tracing/event",
json={
"level": level,
"message": message,
},
)
self.verbose_error(res)