Files
neon/compute_tools/src/compute.rs
Tristan Partin bb3c0ff251 Make collecting the installed extensions metric async (#11071)
If the goal is to make compute_ctl completely asynchronous, then this is
one step to getting there.

Signed-off-by: Tristan Partin <tristan@neon.tech>
2025-03-12 16:09:02 +00:00

2051 lines
78 KiB
Rust

use std::collections::HashMap;
use std::os::unix::fs::{PermissionsExt, symlink};
use std::path::Path;
use std::process::{Command, Stdio};
use std::str::FromStr;
use std::sync::atomic::{AtomicU32, Ordering};
use std::sync::{Arc, Condvar, Mutex, RwLock};
use std::time::{Duration, Instant};
use std::{env, fs};
use anyhow::{Context, Result};
use chrono::{DateTime, Utc};
use compute_api::privilege::Privilege;
use compute_api::responses::{ComputeCtlConfig, ComputeMetrics, ComputeStatus};
use compute_api::spec::{
ComputeAudit, ComputeFeature, ComputeMode, ComputeSpec, ExtVersion, PgIdent,
};
use futures::StreamExt;
use futures::future::join_all;
use futures::stream::FuturesUnordered;
use nix::sys::signal::{Signal, kill};
use nix::unistd::Pid;
use postgres;
use postgres::NoTls;
use postgres::error::SqlState;
use remote_storage::{DownloadError, RemotePath};
use tokio::spawn;
use tracing::{Instrument, debug, error, info, instrument, warn};
use utils::id::{TenantId, TimelineId};
use utils::lsn::Lsn;
use utils::measured_stream::MeasuredReader;
use crate::configurator::launch_configurator;
use crate::disk_quota::set_disk_quota;
use crate::installed_extensions::get_installed_extensions;
use crate::logger::startup_context_from_env;
use crate::lsn_lease::launch_lsn_lease_bg_task_for_static;
use crate::monitor::launch_monitor;
use crate::pg_helpers::*;
use crate::rsyslog::configure_audit_rsyslog;
use crate::spec::*;
use crate::swap::resize_swap;
use crate::sync_sk::{check_if_synced, ping_safekeeper};
use crate::{config, extension_server, local_proxy};
pub static SYNC_SAFEKEEPERS_PID: AtomicU32 = AtomicU32::new(0);
pub static PG_PID: AtomicU32 = AtomicU32::new(0);
/// Static configuration params that don't change after startup. These mostly
/// come from the CLI args, or are derived from them.
pub struct ComputeNodeParams {
/// The ID of the compute
pub compute_id: String,
// Url type maintains proper escaping
pub connstr: url::Url,
pub resize_swap_on_bind: bool,
pub set_disk_quota_for_fs: Option<String>,
// VM monitor parameters
#[cfg(target_os = "linux")]
pub filecache_connstr: String,
#[cfg(target_os = "linux")]
pub cgroup: String,
#[cfg(target_os = "linux")]
pub vm_monitor_addr: String,
pub pgdata: String,
pub pgbin: String,
pub pgversion: String,
pub build_tag: String,
/// The port that the compute's external HTTP server listens on
pub external_http_port: u16,
/// The port that the compute's internal HTTP server listens on
pub internal_http_port: u16,
/// the address of extension storage proxy gateway
pub ext_remote_storage: Option<String>,
/// We should only allow live re- / configuration of the compute node if
/// it uses 'pull model', i.e. it can go to control-plane and fetch
/// the latest configuration. Otherwise, there could be a case:
/// - we start compute with some spec provided as argument
/// - we push new spec and it does reconfiguration
/// - but then something happens and compute pod / VM is destroyed,
/// so k8s controller starts it again with the **old** spec
///
/// and the same for empty computes:
/// - we started compute without any spec
/// - we push spec and it does configuration
/// - but then it is restarted without any spec again
pub live_config_allowed: bool,
}
/// Compute node info shared across several `compute_ctl` threads.
pub struct ComputeNode {
pub params: ComputeNodeParams,
// We connect to Postgres from many different places, so build configs once
// and reuse them where needed. These are derived from 'params.connstr'
pub conn_conf: postgres::config::Config,
pub tokio_conn_conf: tokio_postgres::config::Config,
/// Volatile part of the `ComputeNode`, which should be used under `Mutex`.
/// To allow HTTP API server to serving status requests, while configuration
/// is in progress, lock should be held only for short periods of time to do
/// read/write, not the whole configuration process.
pub state: Mutex<ComputeState>,
/// `Condvar` to allow notifying waiters about state changes.
pub state_changed: Condvar,
// key: ext_archive_name, value: started download time, download_completed?
pub ext_download_progress: RwLock<HashMap<String, (DateTime<Utc>, bool)>>,
}
// store some metrics about download size that might impact startup time
#[derive(Clone, Debug)]
pub struct RemoteExtensionMetrics {
num_ext_downloaded: u64,
largest_ext_size: u64,
total_ext_download_size: u64,
}
#[derive(Clone, Debug)]
pub struct ComputeState {
pub start_time: DateTime<Utc>,
pub status: ComputeStatus,
/// Timestamp of the last Postgres activity. It could be `None` if
/// compute wasn't used since start.
pub last_active: Option<DateTime<Utc>>,
pub error: Option<String>,
/// Compute spec. This can be received from the CLI or - more likely -
/// passed by the control plane with a /configure HTTP request.
pub pspec: Option<ParsedSpec>,
pub compute_ctl_config: ComputeCtlConfig,
/// If the spec is passed by a /configure request, 'startup_span' is the
/// /configure request's tracing span. The main thread enters it when it
/// processes the compute startup, so that the compute startup is considered
/// to be part of the /configure request for tracing purposes.
///
/// If the request handling thread/task called startup_compute() directly,
/// it would automatically be a child of the request handling span, and we
/// wouldn't need this. But because we use the main thread to perform the
/// startup, and the /configure task just waits for it to finish, we need to
/// set up the span relationship ourselves.
pub startup_span: Option<tracing::span::Span>,
pub metrics: ComputeMetrics,
}
impl ComputeState {
pub fn new() -> Self {
Self {
start_time: Utc::now(),
status: ComputeStatus::Empty,
last_active: None,
error: None,
pspec: None,
compute_ctl_config: ComputeCtlConfig::default(),
startup_span: None,
metrics: ComputeMetrics::default(),
}
}
pub fn set_status(&mut self, status: ComputeStatus, state_changed: &Condvar) {
let prev = self.status;
info!("Changing compute status from {} to {}", prev, status);
self.status = status;
state_changed.notify_all();
}
pub fn set_failed_status(&mut self, err: anyhow::Error, state_changed: &Condvar) {
self.error = Some(format!("{err:?}"));
self.set_status(ComputeStatus::Failed, state_changed);
}
}
impl Default for ComputeState {
fn default() -> Self {
Self::new()
}
}
#[derive(Clone, Debug)]
pub struct ParsedSpec {
pub spec: ComputeSpec,
pub tenant_id: TenantId,
pub timeline_id: TimelineId,
pub pageserver_connstr: String,
pub safekeeper_connstrings: Vec<String>,
pub storage_auth_token: Option<String>,
}
impl TryFrom<ComputeSpec> for ParsedSpec {
type Error = String;
fn try_from(spec: ComputeSpec) -> Result<Self, String> {
// Extract the options from the spec file that are needed to connect to
// the storage system.
//
// For backwards-compatibility, the top-level fields in the spec file
// may be empty. In that case, we need to dig them from the GUCs in the
// cluster.settings field.
let pageserver_connstr = spec
.pageserver_connstring
.clone()
.or_else(|| spec.cluster.settings.find("neon.pageserver_connstring"))
.ok_or("pageserver connstr should be provided")?;
let safekeeper_connstrings = if spec.safekeeper_connstrings.is_empty() {
if matches!(spec.mode, ComputeMode::Primary) {
spec.cluster
.settings
.find("neon.safekeepers")
.ok_or("safekeeper connstrings should be provided")?
.split(',')
.map(|str| str.to_string())
.collect()
} else {
vec![]
}
} else {
spec.safekeeper_connstrings.clone()
};
let storage_auth_token = spec.storage_auth_token.clone();
let tenant_id: TenantId = if let Some(tenant_id) = spec.tenant_id {
tenant_id
} else {
spec.cluster
.settings
.find("neon.tenant_id")
.ok_or("tenant id should be provided")
.map(|s| TenantId::from_str(&s))?
.or(Err("invalid tenant id"))?
};
let timeline_id: TimelineId = if let Some(timeline_id) = spec.timeline_id {
timeline_id
} else {
spec.cluster
.settings
.find("neon.timeline_id")
.ok_or("timeline id should be provided")
.map(|s| TimelineId::from_str(&s))?
.or(Err("invalid timeline id"))?
};
Ok(ParsedSpec {
spec,
pageserver_connstr,
safekeeper_connstrings,
storage_auth_token,
tenant_id,
timeline_id,
})
}
}
/// If we are a VM, returns a [`Command`] that will run in the `neon-postgres`
/// cgroup. Otherwise returns the default `Command::new(cmd)`
///
/// This function should be used to start postgres, as it will start it in the
/// neon-postgres cgroup if we are a VM. This allows autoscaling to control
/// postgres' resource usage. The cgroup will exist in VMs because vm-builder
/// creates it during the sysinit phase of its inittab.
fn maybe_cgexec(cmd: &str) -> Command {
// The cplane sets this env var for autoscaling computes.
// use `var_os` so we don't have to worry about the variable being valid
// unicode. Should never be an concern . . . but just in case
if env::var_os("AUTOSCALING").is_some() {
let mut command = Command::new("cgexec");
command.args(["-g", "memory:neon-postgres"]);
command.arg(cmd);
command
} else {
Command::new(cmd)
}
}
struct PostgresHandle {
postgres: std::process::Child,
log_collector: tokio::task::JoinHandle<Result<()>>,
}
impl PostgresHandle {
/// Return PID of the postgres (postmaster) process
fn pid(&self) -> Pid {
Pid::from_raw(self.postgres.id() as i32)
}
}
struct StartVmMonitorResult {
#[cfg(target_os = "linux")]
token: tokio_util::sync::CancellationToken,
#[cfg(target_os = "linux")]
vm_monitor: Option<tokio::task::JoinHandle<Result<()>>>,
}
impl ComputeNode {
pub fn new(
params: ComputeNodeParams,
cli_spec: Option<ComputeSpec>,
compute_ctl_config: ComputeCtlConfig,
) -> Result<Self> {
let connstr = params.connstr.as_str();
let conn_conf = postgres::config::Config::from_str(connstr)
.context("cannot build postgres config from connstr")?;
let tokio_conn_conf = tokio_postgres::config::Config::from_str(connstr)
.context("cannot build tokio postgres config from connstr")?;
let mut new_state = ComputeState::new();
if let Some(cli_spec) = cli_spec {
let pspec = ParsedSpec::try_from(cli_spec).map_err(|msg| anyhow::anyhow!(msg))?;
new_state.pspec = Some(pspec);
}
new_state.compute_ctl_config = compute_ctl_config;
Ok(ComputeNode {
params,
conn_conf,
tokio_conn_conf,
state: Mutex::new(new_state),
state_changed: Condvar::new(),
ext_download_progress: RwLock::new(HashMap::new()),
})
}
/// Top-level control flow of compute_ctl. Returns a process exit code we should
/// exit with.
pub fn run(self) -> Result<Option<i32>> {
let this = Arc::new(self);
let cli_spec = this.state.lock().unwrap().pspec.clone();
// If this is a pooled VM, prewarm before starting HTTP server and becoming
// available for binding. Prewarming helps Postgres start quicker later,
// because QEMU will already have its memory allocated from the host, and
// the necessary binaries will already be cached.
if cli_spec.is_none() {
this.prewarm_postgres()?;
}
// Launch the external HTTP server first, so that we can serve control plane
// requests while configuration is still in progress.
crate::http::server::Server::External {
port: this.params.external_http_port,
jwks: this.state.lock().unwrap().compute_ctl_config.jwks.clone(),
compute_id: this.params.compute_id.clone(),
}
.launch(&this);
// The internal HTTP server could be launched later, but there isn't much
// sense in waiting.
crate::http::server::Server::Internal {
port: this.params.internal_http_port,
}
.launch(&this);
// If we got a spec from the CLI already, use that. Otherwise wait for the
// control plane to pass it to us with a /configure HTTP request
let pspec = if let Some(cli_spec) = cli_spec {
cli_spec
} else {
this.wait_spec()?
};
launch_lsn_lease_bg_task_for_static(&this);
// We have a spec, start the compute
let mut delay_exit = false;
let mut vm_monitor = None;
let mut pg_process: Option<PostgresHandle> = None;
match this.start_compute(&mut pg_process) {
Ok(()) => {
// Success! Launch remaining services (just vm-monitor currently)
vm_monitor =
Some(this.start_vm_monitor(pspec.spec.disable_lfc_resizing.unwrap_or(false)));
}
Err(err) => {
// Something went wrong with the startup. Log it and expose the error to
// HTTP status requests.
error!("could not start the compute node: {:#}", err);
this.set_failed_status(err);
delay_exit = true;
// If the error happened after starting PostgreSQL, kill it
if let Some(ref pg_process) = pg_process {
kill(pg_process.pid(), Signal::SIGQUIT).ok();
}
}
}
// If startup was successful, or it failed in the late stages,
// PostgreSQL is now running. Wait until it exits.
let exit_code = if let Some(pg_handle) = pg_process {
let exit_status = this.wait_postgres(pg_handle);
info!("Postgres exited with code {}, shutting down", exit_status);
exit_status.code()
} else {
None
};
// Terminate the vm_monitor so it releases the file watcher on
// /sys/fs/cgroup/neon-postgres.
// Note: the vm-monitor only runs on linux because it requires cgroups.
if let Some(vm_monitor) = vm_monitor {
cfg_if::cfg_if! {
if #[cfg(target_os = "linux")] {
// Kills all threads spawned by the monitor
vm_monitor.token.cancel();
if let Some(handle) = vm_monitor.vm_monitor {
// Kills the actual task running the monitor
handle.abort();
}
} else {
_ = vm_monitor; // appease unused lint on macOS
}
}
}
// Reap the postgres process
delay_exit |= this.cleanup_after_postgres_exit()?;
// If launch failed, keep serving HTTP requests for a while, so the cloud
// control plane can get the actual error.
if delay_exit {
info!("giving control plane 30s to collect the error before shutdown");
std::thread::sleep(Duration::from_secs(30));
}
Ok(exit_code)
}
pub fn wait_spec(&self) -> Result<ParsedSpec> {
info!("no compute spec provided, waiting");
let mut state = self.state.lock().unwrap();
while state.status != ComputeStatus::ConfigurationPending {
state = self.state_changed.wait(state).unwrap();
}
info!("got spec, continue configuration");
let spec = state.pspec.as_ref().unwrap().clone();
// Record for how long we slept waiting for the spec.
let now = Utc::now();
state.metrics.wait_for_spec_ms = now
.signed_duration_since(state.start_time)
.to_std()
.unwrap()
.as_millis() as u64;
// Reset start time, so that the total startup time that is calculated later will
// not include the time that we waited for the spec.
state.start_time = now;
Ok(spec)
}
/// Start compute.
///
/// Prerequisites:
/// - the compute spec has been placed in self.state.pspec
///
/// On success:
/// - status is set to ComputeStatus::Running
/// - self.running_postgres is set
///
/// On error:
/// - status is left in ComputeStatus::Init. The caller is responsible for setting it to Failed
/// - if Postgres was started before the fatal error happened, self.running_postgres is
/// set. The caller is responsible for killing it.
///
/// Note that this is in the critical path of a compute cold start. Keep this fast.
/// Try to do things concurrently, to hide the latencies.
fn start_compute(self: &Arc<Self>, pg_handle: &mut Option<PostgresHandle>) -> Result<()> {
let compute_state: ComputeState;
let start_compute_span;
let _this_entered;
{
let mut state_guard = self.state.lock().unwrap();
// Create a tracing span for the startup operation.
//
// We could otherwise just annotate the function with #[instrument], but if
// we're being configured from a /configure HTTP request, we want the
// startup to be considered part of the /configure request.
//
// Similarly, if a trace ID was passed in env variables, attach it to the span.
start_compute_span = {
// Temporarily enter the parent span, so that the new span becomes its child.
if let Some(p) = state_guard.startup_span.take() {
let _parent_entered = p.entered();
tracing::info_span!("start_compute")
} else if let Some(otel_context) = startup_context_from_env() {
use tracing_opentelemetry::OpenTelemetrySpanExt;
let span = tracing::info_span!("start_compute");
span.set_parent(otel_context);
span
} else {
tracing::info_span!("start_compute")
}
};
_this_entered = start_compute_span.enter();
state_guard.set_status(ComputeStatus::Init, &self.state_changed);
compute_state = state_guard.clone()
}
let pspec = compute_state.pspec.as_ref().expect("spec must be set");
info!(
"starting compute for project {}, operation {}, tenant {}, timeline {}, features {:?}, spec.remote_extensions {:?}",
pspec.spec.cluster.cluster_id.as_deref().unwrap_or("None"),
pspec.spec.operation_uuid.as_deref().unwrap_or("None"),
pspec.tenant_id,
pspec.timeline_id,
pspec.spec.features,
pspec.spec.remote_extensions,
);
////// PRE-STARTUP PHASE: things that need to be finished before we start the Postgres process
// Collect all the tasks that must finish here
let mut pre_tasks = tokio::task::JoinSet::new();
// If there are any remote extensions in shared_preload_libraries, start downloading them
if pspec.spec.remote_extensions.is_some() {
let (this, spec) = (self.clone(), pspec.spec.clone());
pre_tasks.spawn(async move {
this.download_preload_extensions(&spec)
.in_current_span()
.await
});
}
// Prepare pgdata directory. This downloads the basebackup, among other things.
{
let (this, cs) = (self.clone(), compute_state.clone());
pre_tasks.spawn_blocking_child(move || this.prepare_pgdata(&cs));
}
// Resize swap to the desired size if the compute spec says so
if let (Some(size_bytes), true) =
(pspec.spec.swap_size_bytes, self.params.resize_swap_on_bind)
{
pre_tasks.spawn_blocking_child(move || {
// To avoid 'swapoff' hitting postgres startup, we need to run resize-swap to completion
// *before* starting postgres.
//
// In theory, we could do this asynchronously if SkipSwapon was enabled for VMs, but this
// carries a risk of introducing hard-to-debug issues - e.g. if postgres sometimes gets
// OOM-killed during startup because swap wasn't available yet.
resize_swap(size_bytes).context("failed to resize swap")?;
let size_mib = size_bytes as f32 / (1 << 20) as f32; // just for more coherent display.
info!(%size_bytes, %size_mib, "resized swap");
Ok::<(), anyhow::Error>(())
});
}
// Set disk quota if the compute spec says so
if let (Some(disk_quota_bytes), Some(disk_quota_fs_mountpoint)) = (
pspec.spec.disk_quota_bytes,
self.params.set_disk_quota_for_fs.as_ref(),
) {
let disk_quota_fs_mountpoint = disk_quota_fs_mountpoint.clone();
pre_tasks.spawn_blocking_child(move || {
set_disk_quota(disk_quota_bytes, &disk_quota_fs_mountpoint)
.context("failed to set disk quota")?;
let size_mib = disk_quota_bytes as f32 / (1 << 20) as f32; // just for more coherent display.
info!(%disk_quota_bytes, %size_mib, "set disk quota");
Ok::<(), anyhow::Error>(())
});
}
// tune pgbouncer
if let Some(pgbouncer_settings) = &pspec.spec.pgbouncer_settings {
info!("tuning pgbouncer");
// Spawn a background task to do the tuning,
// so that we don't block the main thread that starts Postgres.
let pgbouncer_settings = pgbouncer_settings.clone();
let _handle = tokio::spawn(async move {
let res = tune_pgbouncer(pgbouncer_settings).await;
if let Err(err) = res {
error!("error while tuning pgbouncer: {err:?}");
// Continue with the startup anyway
}
});
}
// configure local_proxy
if let Some(local_proxy) = &pspec.spec.local_proxy_config {
info!("configuring local_proxy");
// Spawn a background task to do the configuration,
// so that we don't block the main thread that starts Postgres.
let local_proxy = local_proxy.clone();
let _handle = tokio::spawn(async move {
if let Err(err) = local_proxy::configure(&local_proxy) {
error!("error while configuring local_proxy: {err:?}");
// Continue with the startup anyway
}
});
}
// Configure and start rsyslog if necessary
if let ComputeAudit::Hipaa = pspec.spec.audit_log_level {
let remote_endpoint = std::env::var("AUDIT_LOGGING_ENDPOINT").unwrap_or("".to_string());
if remote_endpoint.is_empty() {
anyhow::bail!("AUDIT_LOGGING_ENDPOINT is empty");
}
let log_directory_path = Path::new(&self.params.pgdata).join("log");
// TODO: make this more robust
// now rsyslog starts once and there is no monitoring or restart if it fails
configure_audit_rsyslog(
log_directory_path.to_str().unwrap(),
"hipaa",
&remote_endpoint,
)?;
}
// Launch remaining service threads
let _monitor_handle = launch_monitor(self);
let _configurator_handle = launch_configurator(self);
// Wait for all the pre-tasks to finish before starting postgres
let rt = tokio::runtime::Handle::current();
while let Some(res) = rt.block_on(pre_tasks.join_next()) {
res??;
}
////// START POSTGRES
let start_time = Utc::now();
let pg_process = self.start_postgres(pspec.storage_auth_token.clone())?;
let postmaster_pid = pg_process.pid();
*pg_handle = Some(pg_process);
// If this is a primary endpoint, perform some post-startup configuration before
// opening it up for the world.
let config_time = Utc::now();
if pspec.spec.mode == ComputeMode::Primary {
self.configure_as_primary(&compute_state)?;
let conf = self.get_tokio_conn_conf(None);
tokio::task::spawn(async {
let res = get_installed_extensions(conf).await;
match res {
Ok(extensions) => {
info!(
"[NEON_EXT_STAT] {}",
serde_json::to_string(&extensions)
.expect("failed to serialize extensions list")
);
}
Err(err) => error!("could not get installed extensions: {err:?}"),
}
});
}
// All done!
let startup_end_time = Utc::now();
let metrics = {
let mut state = self.state.lock().unwrap();
state.metrics.start_postgres_ms = config_time
.signed_duration_since(start_time)
.to_std()
.unwrap()
.as_millis() as u64;
state.metrics.config_ms = startup_end_time
.signed_duration_since(config_time)
.to_std()
.unwrap()
.as_millis() as u64;
state.metrics.total_startup_ms = startup_end_time
.signed_duration_since(compute_state.start_time)
.to_std()
.unwrap()
.as_millis() as u64;
state.metrics.clone()
};
self.set_status(ComputeStatus::Running);
// Log metrics so that we can search for slow operations in logs
info!(?metrics, postmaster_pid = %postmaster_pid, "compute start finished");
Ok(())
}
#[instrument(skip_all)]
async fn download_preload_extensions(&self, spec: &ComputeSpec) -> Result<()> {
let remote_extensions = if let Some(remote_extensions) = &spec.remote_extensions {
remote_extensions
} else {
return Ok(());
};
// First, create control files for all available extensions
extension_server::create_control_files(remote_extensions, &self.params.pgbin);
let library_load_start_time = Utc::now();
let remote_ext_metrics = self.prepare_preload_libraries(spec).await?;
let library_load_time = Utc::now()
.signed_duration_since(library_load_start_time)
.to_std()
.unwrap()
.as_millis() as u64;
let mut state = self.state.lock().unwrap();
state.metrics.load_ext_ms = library_load_time;
state.metrics.num_ext_downloaded = remote_ext_metrics.num_ext_downloaded;
state.metrics.largest_ext_size = remote_ext_metrics.largest_ext_size;
state.metrics.total_ext_download_size = remote_ext_metrics.total_ext_download_size;
info!(
"Loading shared_preload_libraries took {:?}ms",
library_load_time
);
info!("{:?}", remote_ext_metrics);
Ok(())
}
/// Start the vm-monitor if directed to. The vm-monitor only runs on linux
/// because it requires cgroups.
fn start_vm_monitor(&self, disable_lfc_resizing: bool) -> StartVmMonitorResult {
cfg_if::cfg_if! {
if #[cfg(target_os = "linux")] {
use std::env;
use tokio_util::sync::CancellationToken;
// This token is used internally by the monitor to clean up all threads
let token = CancellationToken::new();
// don't pass postgres connection string to vm-monitor if we don't want it to resize LFC
let pgconnstr = if disable_lfc_resizing {
None
} else {
Some(self.params.filecache_connstr.clone())
};
let vm_monitor = if env::var_os("AUTOSCALING").is_some() {
let vm_monitor = tokio::spawn(vm_monitor::start(
Box::leak(Box::new(vm_monitor::Args {
cgroup: Some(self.params.cgroup.clone()),
pgconnstr,
addr: self.params.vm_monitor_addr.clone(),
})),
token.clone(),
));
Some(vm_monitor)
} else {
None
};
StartVmMonitorResult { token, vm_monitor }
} else {
_ = disable_lfc_resizing; // appease unused lint on macOS
StartVmMonitorResult { }
}
}
}
fn cleanup_after_postgres_exit(&self) -> Result<bool> {
// Maybe sync safekeepers again, to speed up next startup
let compute_state = self.state.lock().unwrap().clone();
let pspec = compute_state.pspec.as_ref().expect("spec must be set");
if matches!(pspec.spec.mode, compute_api::spec::ComputeMode::Primary) {
info!("syncing safekeepers on shutdown");
let storage_auth_token = pspec.storage_auth_token.clone();
let lsn = self.sync_safekeepers(storage_auth_token)?;
info!("synced safekeepers at lsn {lsn}");
}
let mut delay_exit = false;
let mut state = self.state.lock().unwrap();
if state.status == ComputeStatus::TerminationPending {
state.status = ComputeStatus::Terminated;
self.state_changed.notify_all();
// we were asked to terminate gracefully, don't exit to avoid restart
delay_exit = true
}
drop(state);
if let Err(err) = self.check_for_core_dumps() {
error!("error while checking for core dumps: {err:?}");
}
Ok(delay_exit)
}
/// Check that compute node has corresponding feature enabled.
pub fn has_feature(&self, feature: ComputeFeature) -> bool {
let state = self.state.lock().unwrap();
if let Some(s) = state.pspec.as_ref() {
s.spec.features.contains(&feature)
} else {
false
}
}
pub fn set_status(&self, status: ComputeStatus) {
let mut state = self.state.lock().unwrap();
state.set_status(status, &self.state_changed);
}
pub fn set_failed_status(&self, err: anyhow::Error) {
let mut state = self.state.lock().unwrap();
state.set_failed_status(err, &self.state_changed);
}
pub fn get_status(&self) -> ComputeStatus {
self.state.lock().unwrap().status
}
pub fn get_timeline_id(&self) -> Option<TimelineId> {
self.state
.lock()
.unwrap()
.pspec
.as_ref()
.map(|s| s.timeline_id)
}
// Remove `pgdata` directory and create it again with right permissions.
fn create_pgdata(&self) -> Result<()> {
// Ignore removal error, likely it is a 'No such file or directory (os error 2)'.
// If it is something different then create_dir() will error out anyway.
let pgdata = &self.params.pgdata;
let _ok = fs::remove_dir_all(pgdata);
fs::create_dir(pgdata)?;
fs::set_permissions(pgdata, fs::Permissions::from_mode(0o700))?;
Ok(())
}
// Get basebackup from the libpq connection to pageserver using `connstr` and
// unarchive it to `pgdata` directory overriding all its previous content.
#[instrument(skip_all, fields(%lsn))]
fn try_get_basebackup(&self, compute_state: &ComputeState, lsn: Lsn) -> Result<()> {
let spec = compute_state.pspec.as_ref().expect("spec must be set");
let start_time = Instant::now();
let shard0_connstr = spec.pageserver_connstr.split(',').next().unwrap();
let mut config = postgres::Config::from_str(shard0_connstr)?;
// Use the storage auth token from the config file, if given.
// Note: this overrides any password set in the connection string.
if let Some(storage_auth_token) = &spec.storage_auth_token {
info!("Got storage auth token from spec file");
config.password(storage_auth_token);
} else {
info!("Storage auth token not set");
}
// Connect to pageserver
let mut client = config.connect(NoTls)?;
let pageserver_connect_micros = start_time.elapsed().as_micros() as u64;
let basebackup_cmd = match lsn {
Lsn(0) => {
if spec.spec.mode != ComputeMode::Primary {
format!(
"basebackup {} {} --gzip --replica",
spec.tenant_id, spec.timeline_id
)
} else {
format!("basebackup {} {} --gzip", spec.tenant_id, spec.timeline_id)
}
}
_ => {
if spec.spec.mode != ComputeMode::Primary {
format!(
"basebackup {} {} {} --gzip --replica",
spec.tenant_id, spec.timeline_id, lsn
)
} else {
format!(
"basebackup {} {} {} --gzip",
spec.tenant_id, spec.timeline_id, lsn
)
}
}
};
let copyreader = client.copy_out(basebackup_cmd.as_str())?;
let mut measured_reader = MeasuredReader::new(copyreader);
let mut bufreader = std::io::BufReader::new(&mut measured_reader);
// Read the archive directly from the `CopyOutReader`
//
// Set `ignore_zeros` so that unpack() reads all the Copy data and
// doesn't stop at the end-of-archive marker. Otherwise, if the server
// sends an Error after finishing the tarball, we will not notice it.
let mut ar = tar::Archive::new(flate2::read::GzDecoder::new(&mut bufreader));
ar.set_ignore_zeros(true);
ar.unpack(&self.params.pgdata)?;
// Report metrics
let mut state = self.state.lock().unwrap();
state.metrics.pageserver_connect_micros = pageserver_connect_micros;
state.metrics.basebackup_bytes = measured_reader.get_byte_count() as u64;
state.metrics.basebackup_ms = start_time.elapsed().as_millis() as u64;
Ok(())
}
// Gets the basebackup in a retry loop
#[instrument(skip_all, fields(%lsn))]
pub fn get_basebackup(&self, compute_state: &ComputeState, lsn: Lsn) -> Result<()> {
let mut retry_period_ms = 500.0;
let mut attempts = 0;
const DEFAULT_ATTEMPTS: u16 = 10;
#[cfg(feature = "testing")]
let max_attempts = if let Ok(v) = env::var("NEON_COMPUTE_TESTING_BASEBACKUP_RETRIES") {
u16::from_str(&v).unwrap()
} else {
DEFAULT_ATTEMPTS
};
#[cfg(not(feature = "testing"))]
let max_attempts = DEFAULT_ATTEMPTS;
loop {
let result = self.try_get_basebackup(compute_state, lsn);
match result {
Ok(_) => {
return result;
}
Err(ref e) if attempts < max_attempts => {
warn!(
"Failed to get basebackup: {} (attempt {}/{})",
e, attempts, max_attempts
);
std::thread::sleep(std::time::Duration::from_millis(retry_period_ms as u64));
retry_period_ms *= 1.5;
}
Err(_) => {
return result;
}
}
attempts += 1;
}
}
pub async fn check_safekeepers_synced_async(
&self,
compute_state: &ComputeState,
) -> Result<Option<Lsn>> {
// Construct a connection config for each safekeeper
let pspec: ParsedSpec = compute_state
.pspec
.as_ref()
.expect("spec must be set")
.clone();
let sk_connstrs: Vec<String> = pspec.safekeeper_connstrings.clone();
let sk_configs = sk_connstrs.into_iter().map(|connstr| {
// Format connstr
let id = connstr.clone();
let connstr = format!("postgresql://no_user@{}", connstr);
let options = format!(
"-c timeline_id={} tenant_id={}",
pspec.timeline_id, pspec.tenant_id
);
// Construct client
let mut config = tokio_postgres::Config::from_str(&connstr).unwrap();
config.options(&options);
if let Some(storage_auth_token) = pspec.storage_auth_token.clone() {
config.password(storage_auth_token);
}
(id, config)
});
// Create task set to query all safekeepers
let mut tasks = FuturesUnordered::new();
let quorum = sk_configs.len() / 2 + 1;
for (id, config) in sk_configs {
let timeout = tokio::time::Duration::from_millis(100);
let task = tokio::time::timeout(timeout, ping_safekeeper(id, config));
tasks.push(tokio::spawn(task));
}
// Get a quorum of responses or errors
let mut responses = Vec::new();
let mut join_errors = Vec::new();
let mut task_errors = Vec::new();
let mut timeout_errors = Vec::new();
while let Some(response) = tasks.next().await {
match response {
Ok(Ok(Ok(r))) => responses.push(r),
Ok(Ok(Err(e))) => task_errors.push(e),
Ok(Err(e)) => timeout_errors.push(e),
Err(e) => join_errors.push(e),
};
if responses.len() >= quorum {
break;
}
if join_errors.len() + task_errors.len() + timeout_errors.len() >= quorum {
break;
}
}
// In case of error, log and fail the check, but don't crash.
// We're playing it safe because these errors could be transient
// and we don't yet retry. Also being careful here allows us to
// be backwards compatible with safekeepers that don't have the
// TIMELINE_STATUS API yet.
if responses.len() < quorum {
error!(
"failed sync safekeepers check {:?} {:?} {:?}",
join_errors, task_errors, timeout_errors
);
return Ok(None);
}
Ok(check_if_synced(responses))
}
// Fast path for sync_safekeepers. If they're already synced we get the lsn
// in one roundtrip. If not, we should do a full sync_safekeepers.
#[instrument(skip_all)]
pub fn check_safekeepers_synced(&self, compute_state: &ComputeState) -> Result<Option<Lsn>> {
let start_time = Utc::now();
let rt = tokio::runtime::Handle::current();
let result = rt.block_on(self.check_safekeepers_synced_async(compute_state));
// Record runtime
self.state.lock().unwrap().metrics.sync_sk_check_ms = Utc::now()
.signed_duration_since(start_time)
.to_std()
.unwrap()
.as_millis() as u64;
result
}
// Run `postgres` in a special mode with `--sync-safekeepers` argument
// and return the reported LSN back to the caller.
#[instrument(skip_all)]
pub fn sync_safekeepers(&self, storage_auth_token: Option<String>) -> Result<Lsn> {
let start_time = Utc::now();
let mut sync_handle = maybe_cgexec(&self.params.pgbin)
.args(["--sync-safekeepers"])
.env("PGDATA", &self.params.pgdata) // we cannot use -D in this mode
.envs(if let Some(storage_auth_token) = &storage_auth_token {
vec![("NEON_AUTH_TOKEN", storage_auth_token)]
} else {
vec![]
})
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.spawn()
.expect("postgres --sync-safekeepers failed to start");
SYNC_SAFEKEEPERS_PID.store(sync_handle.id(), Ordering::SeqCst);
// `postgres --sync-safekeepers` will print all log output to stderr and
// final LSN to stdout. So we leave stdout to collect LSN, while stderr logs
// will be collected in a child thread.
let stderr = sync_handle
.stderr
.take()
.expect("stderr should be captured");
let logs_handle = handle_postgres_logs(stderr);
let sync_output = sync_handle
.wait_with_output()
.expect("postgres --sync-safekeepers failed");
SYNC_SAFEKEEPERS_PID.store(0, Ordering::SeqCst);
// Process has exited, so we can join the logs thread.
let _ = tokio::runtime::Handle::current()
.block_on(logs_handle)
.map_err(|e| tracing::error!("log task panicked: {:?}", e));
if !sync_output.status.success() {
anyhow::bail!(
"postgres --sync-safekeepers exited with non-zero status: {}. stdout: {}",
sync_output.status,
String::from_utf8(sync_output.stdout)
.expect("postgres --sync-safekeepers exited, and stdout is not utf-8"),
);
}
self.state.lock().unwrap().metrics.sync_safekeepers_ms = Utc::now()
.signed_duration_since(start_time)
.to_std()
.unwrap()
.as_millis() as u64;
let lsn = Lsn::from_str(String::from_utf8(sync_output.stdout)?.trim())?;
Ok(lsn)
}
/// Do all the preparations like PGDATA directory creation, configuration,
/// safekeepers sync, basebackup, etc.
#[instrument(skip_all)]
pub fn prepare_pgdata(&self, compute_state: &ComputeState) -> Result<()> {
let pspec = compute_state.pspec.as_ref().expect("spec must be set");
let spec = &pspec.spec;
let pgdata_path = Path::new(&self.params.pgdata);
// Remove/create an empty pgdata directory and put configuration there.
self.create_pgdata()?;
config::write_postgres_conf(
&pgdata_path.join("postgresql.conf"),
&pspec.spec,
self.params.internal_http_port,
)?;
// Syncing safekeepers is only safe with primary nodes: if a primary
// is already connected it will be kicked out, so a secondary (standby)
// cannot sync safekeepers.
let lsn = match spec.mode {
ComputeMode::Primary => {
info!("checking if safekeepers are synced");
let lsn = if let Ok(Some(lsn)) = self.check_safekeepers_synced(compute_state) {
lsn
} else {
info!("starting safekeepers syncing");
self.sync_safekeepers(pspec.storage_auth_token.clone())
.with_context(|| "failed to sync safekeepers")?
};
info!("safekeepers synced at LSN {}", lsn);
lsn
}
ComputeMode::Static(lsn) => {
info!("Starting read-only node at static LSN {}", lsn);
lsn
}
ComputeMode::Replica => {
info!("Initializing standby from latest Pageserver LSN");
Lsn(0)
}
};
info!(
"getting basebackup@{} from pageserver {}",
lsn, &pspec.pageserver_connstr
);
self.get_basebackup(compute_state, lsn).with_context(|| {
format!(
"failed to get basebackup@{} from pageserver {}",
lsn, &pspec.pageserver_connstr
)
})?;
// Update pg_hba.conf received with basebackup.
update_pg_hba(pgdata_path)?;
// Place pg_dynshmem under /dev/shm. This allows us to use
// 'dynamic_shared_memory_type = mmap' so that the files are placed in
// /dev/shm, similar to how 'dynamic_shared_memory_type = posix' works.
//
// Why on earth don't we just stick to the 'posix' default, you might
// ask. It turns out that making large allocations with 'posix' doesn't
// work very well with autoscaling. The behavior we want is that:
//
// 1. You can make large DSM allocations, larger than the current RAM
// size of the VM, without errors
//
// 2. If the allocated memory is really used, the VM is scaled up
// automatically to accommodate that
//
// We try to make that possible by having swap in the VM. But with the
// default 'posix' DSM implementation, we fail step 1, even when there's
// plenty of swap available. PostgreSQL uses posix_fallocate() to create
// the shmem segment, which is really just a file in /dev/shm in Linux,
// but posix_fallocate() on tmpfs returns ENOMEM if the size is larger
// than available RAM.
//
// Using 'dynamic_shared_memory_type = mmap' works around that, because
// the Postgres 'mmap' DSM implementation doesn't use
// posix_fallocate(). Instead, it uses repeated calls to write(2) to
// fill the file with zeros. It's weird that that differs between
// 'posix' and 'mmap', but we take advantage of it. When the file is
// filled slowly with write(2), the kernel allows it to grow larger, as
// long as there's swap available.
//
// In short, using 'dynamic_shared_memory_type = mmap' allows us one DSM
// segment to be larger than currently available RAM. But because we
// don't want to store it on a real file, which the kernel would try to
// flush to disk, so symlink pg_dynshm to /dev/shm.
//
// We don't set 'dynamic_shared_memory_type = mmap' here, we let the
// control plane control that option. If 'mmap' is not used, this
// symlink doesn't affect anything.
//
// See https://github.com/neondatabase/autoscaling/issues/800
std::fs::remove_dir(pgdata_path.join("pg_dynshmem"))?;
symlink("/dev/shm/", pgdata_path.join("pg_dynshmem"))?;
match spec.mode {
ComputeMode::Primary => {}
ComputeMode::Replica | ComputeMode::Static(..) => {
add_standby_signal(pgdata_path)?;
}
}
Ok(())
}
/// Start and stop a postgres process to warm up the VM for startup.
pub fn prewarm_postgres(&self) -> Result<()> {
info!("prewarming");
// Create pgdata
let pgdata = &format!("{}.warmup", self.params.pgdata);
create_pgdata(pgdata)?;
// Run initdb to completion
info!("running initdb");
let initdb_bin = Path::new(&self.params.pgbin)
.parent()
.unwrap()
.join("initdb");
Command::new(initdb_bin)
.args(["--pgdata", pgdata])
.output()
.expect("cannot start initdb process");
// Write conf
use std::io::Write;
let conf_path = Path::new(pgdata).join("postgresql.conf");
let mut file = std::fs::File::create(conf_path)?;
writeln!(file, "shared_buffers=65536")?;
writeln!(file, "port=51055")?; // Nobody should be connecting
writeln!(file, "shared_preload_libraries = 'neon'")?;
// Start postgres
info!("starting postgres");
let mut pg = maybe_cgexec(&self.params.pgbin)
.args(["-D", pgdata])
.spawn()
.expect("cannot start postgres process");
// Stop it when it's ready
info!("waiting for postgres");
wait_for_postgres(&mut pg, Path::new(pgdata))?;
// SIGQUIT orders postgres to exit immediately. We don't want to SIGKILL
// it to avoid orphaned processes prowling around while datadir is
// wiped.
let pm_pid = Pid::from_raw(pg.id() as i32);
kill(pm_pid, Signal::SIGQUIT)?;
info!("sent SIGQUIT signal");
pg.wait()?;
info!("done prewarming");
// clean up
let _ok = fs::remove_dir_all(pgdata);
Ok(())
}
/// Start Postgres as a child process and wait for it to start accepting
/// connections.
///
/// Returns a handle to the child process and a handle to the logs thread.
#[instrument(skip_all)]
pub fn start_postgres(&self, storage_auth_token: Option<String>) -> Result<PostgresHandle> {
let pgdata_path = Path::new(&self.params.pgdata);
// Run postgres as a child process.
let mut pg = maybe_cgexec(&self.params.pgbin)
.args(["-D", &self.params.pgdata])
.envs(if let Some(storage_auth_token) = &storage_auth_token {
vec![("NEON_AUTH_TOKEN", storage_auth_token)]
} else {
vec![]
})
.stderr(Stdio::piped())
.spawn()
.expect("cannot start postgres process");
PG_PID.store(pg.id(), Ordering::SeqCst);
// Start a task to collect logs from stderr.
let stderr = pg.stderr.take().expect("stderr should be captured");
let logs_handle = handle_postgres_logs(stderr);
wait_for_postgres(&mut pg, pgdata_path)?;
Ok(PostgresHandle {
postgres: pg,
log_collector: logs_handle,
})
}
/// Wait for the child Postgres process forever. In this state Ctrl+C will
/// propagate to Postgres and it will be shut down as well.
fn wait_postgres(&self, mut pg_handle: PostgresHandle) -> std::process::ExitStatus {
info!(postmaster_pid = %pg_handle.postgres.id(), "Waiting for Postgres to exit");
let ecode = pg_handle
.postgres
.wait()
.expect("failed to start waiting on Postgres process");
PG_PID.store(0, Ordering::SeqCst);
// Process has exited. Wait for the log collecting task to finish.
let _ = tokio::runtime::Handle::current()
.block_on(pg_handle.log_collector)
.map_err(|e| tracing::error!("log task panicked: {:?}", e));
ecode
}
/// Do post configuration of the already started Postgres. This function spawns a background task to
/// configure the database after applying the compute spec. Currently, it upgrades the neon extension
/// version. In the future, it may upgrade all 3rd-party extensions.
#[instrument(skip_all)]
pub fn post_apply_config(&self) -> Result<()> {
let conf = self.get_tokio_conn_conf(Some("compute_ctl:post_apply_config"));
tokio::spawn(async move {
let res = async {
let (mut client, connection) = conf.connect(NoTls).await?;
tokio::spawn(async move {
if let Err(e) = connection.await {
eprintln!("connection error: {}", e);
}
});
handle_neon_extension_upgrade(&mut client)
.await
.context("handle_neon_extension_upgrade")?;
Ok::<_, anyhow::Error>(())
}
.await;
if let Err(err) = res {
error!("error while post_apply_config: {err:#}");
}
});
Ok(())
}
pub fn get_conn_conf(&self, application_name: Option<&str>) -> postgres::Config {
let mut conf = self.conn_conf.clone();
if let Some(application_name) = application_name {
conf.application_name(application_name);
}
conf
}
pub fn get_tokio_conn_conf(&self, application_name: Option<&str>) -> tokio_postgres::Config {
let mut conf = self.tokio_conn_conf.clone();
if let Some(application_name) = application_name {
conf.application_name(application_name);
}
conf
}
pub async fn get_maintenance_client(
conf: &tokio_postgres::Config,
) -> Result<tokio_postgres::Client> {
let mut conf = conf.clone();
conf.application_name("compute_ctl:apply_config");
let (client, conn) = match conf.connect(NoTls).await {
// If connection fails, it may be the old node with `zenith_admin` superuser.
//
// In this case we need to connect with old `zenith_admin` name
// and create new user. We cannot simply rename connected user,
// but we can create a new one and grant it all privileges.
Err(e) => match e.code() {
Some(&SqlState::INVALID_PASSWORD)
| Some(&SqlState::INVALID_AUTHORIZATION_SPECIFICATION) => {
// Connect with zenith_admin if cloud_admin could not authenticate
info!(
"cannot connect to postgres: {}, retrying with `zenith_admin` username",
e
);
let mut zenith_admin_conf = postgres::config::Config::from(conf.clone());
zenith_admin_conf.application_name("compute_ctl:apply_config");
zenith_admin_conf.user("zenith_admin");
let mut client =
zenith_admin_conf.connect(NoTls)
.context("broken cloud_admin credential: tried connecting with cloud_admin but could not authenticate, and zenith_admin does not work either")?;
// Disable forwarding so that users don't get a cloud_admin role
let mut func = || {
client.simple_query("SET neon.forward_ddl = false")?;
client.simple_query("CREATE USER cloud_admin WITH SUPERUSER")?;
client.simple_query("GRANT zenith_admin TO cloud_admin")?;
Ok::<_, anyhow::Error>(())
};
func().context("apply_config setup cloud_admin")?;
drop(client);
// Reconnect with connstring with expected name
conf.connect(NoTls).await?
}
_ => return Err(e.into()),
},
Ok((client, conn)) => (client, conn),
};
spawn(async move {
if let Err(e) = conn.await {
error!("maintenance client connection error: {}", e);
}
});
// Disable DDL forwarding because control plane already knows about the roles/databases
// we're about to modify.
client
.simple_query("SET neon.forward_ddl = false")
.await
.context("apply_config SET neon.forward_ddl = false")?;
Ok(client)
}
/// Do initial configuration of the already started Postgres.
#[instrument(skip_all)]
pub fn apply_config(&self, compute_state: &ComputeState) -> Result<()> {
let conf = self.get_tokio_conn_conf(Some("compute_ctl:apply_config"));
let conf = Arc::new(conf);
let spec = Arc::new(
compute_state
.pspec
.as_ref()
.expect("spec must be set")
.spec
.clone(),
);
let max_concurrent_connections = self.max_service_connections(compute_state, &spec);
// Merge-apply spec & changes to PostgreSQL state.
self.apply_spec_sql(spec.clone(), conf.clone(), max_concurrent_connections)?;
if let Some(local_proxy) = &spec.clone().local_proxy_config {
info!("configuring local_proxy");
local_proxy::configure(local_proxy).context("apply_config local_proxy")?;
}
// Run migrations separately to not hold up cold starts
tokio::spawn(async move {
let mut conf = conf.as_ref().clone();
conf.application_name("compute_ctl:migrations");
match conf.connect(NoTls).await {
Ok((mut client, connection)) => {
tokio::spawn(async move {
if let Err(e) = connection.await {
eprintln!("connection error: {}", e);
}
});
if let Err(e) = handle_migrations(&mut client).await {
error!("Failed to run migrations: {}", e);
}
}
Err(e) => {
error!(
"Failed to connect to the compute for running migrations: {}",
e
);
}
};
});
Ok::<(), anyhow::Error>(())
}
// Wrapped this around `pg_ctl reload`, but right now we don't use
// `pg_ctl` for start / stop.
#[instrument(skip_all)]
fn pg_reload_conf(&self) -> Result<()> {
let pgctl_bin = Path::new(&self.params.pgbin)
.parent()
.unwrap()
.join("pg_ctl");
Command::new(pgctl_bin)
.args(["reload", "-D", &self.params.pgdata])
.output()
.expect("cannot run pg_ctl process");
Ok(())
}
/// Similar to `apply_config()`, but does a bit different sequence of operations,
/// as it's used to reconfigure a previously started and configured Postgres node.
#[instrument(skip_all)]
pub fn reconfigure(&self) -> Result<()> {
let spec = self.state.lock().unwrap().pspec.clone().unwrap().spec;
if let Some(ref pgbouncer_settings) = spec.pgbouncer_settings {
info!("tuning pgbouncer");
// Spawn a background task to do the tuning,
// so that we don't block the main thread that starts Postgres.
let pgbouncer_settings = pgbouncer_settings.clone();
tokio::spawn(async move {
let res = tune_pgbouncer(pgbouncer_settings).await;
if let Err(err) = res {
error!("error while tuning pgbouncer: {err:?}");
}
});
}
if let Some(ref local_proxy) = spec.local_proxy_config {
info!("configuring local_proxy");
// Spawn a background task to do the configuration,
// so that we don't block the main thread that starts Postgres.
let local_proxy = local_proxy.clone();
tokio::spawn(async move {
if let Err(err) = local_proxy::configure(&local_proxy) {
error!("error while configuring local_proxy: {err:?}");
}
});
}
// Write new config
let pgdata_path = Path::new(&self.params.pgdata);
let postgresql_conf_path = pgdata_path.join("postgresql.conf");
config::write_postgres_conf(&postgresql_conf_path, &spec, self.params.internal_http_port)?;
if !spec.skip_pg_catalog_updates {
let max_concurrent_connections = spec.reconfigure_concurrency;
// Temporarily reset max_cluster_size in config
// to avoid the possibility of hitting the limit, while we are reconfiguring:
// creating new extensions, roles, etc.
config::with_compute_ctl_tmp_override(pgdata_path, "neon.max_cluster_size=-1", || {
self.pg_reload_conf()?;
if spec.mode == ComputeMode::Primary {
let mut conf =
tokio_postgres::Config::from_str(self.params.connstr.as_str()).unwrap();
conf.application_name("apply_config");
let conf = Arc::new(conf);
let spec = Arc::new(spec.clone());
self.apply_spec_sql(spec, conf, max_concurrent_connections)?;
}
Ok(())
})?;
}
self.pg_reload_conf()?;
let unknown_op = "unknown".to_string();
let op_id = spec.operation_uuid.as_ref().unwrap_or(&unknown_op);
info!(
"finished reconfiguration of compute node for operation {}",
op_id
);
Ok(())
}
#[instrument(skip_all)]
pub fn configure_as_primary(&self, compute_state: &ComputeState) -> Result<()> {
let pspec = compute_state.pspec.as_ref().expect("spec must be set");
assert!(pspec.spec.mode == ComputeMode::Primary);
if !pspec.spec.skip_pg_catalog_updates {
let pgdata_path = Path::new(&self.params.pgdata);
// temporarily reset max_cluster_size in config
// to avoid the possibility of hitting the limit, while we are applying config:
// creating new extensions, roles, etc...
config::with_compute_ctl_tmp_override(pgdata_path, "neon.max_cluster_size=-1", || {
self.pg_reload_conf()?;
self.apply_config(compute_state)?;
Ok(())
})?;
let postgresql_conf_path = pgdata_path.join("postgresql.conf");
if config::line_in_file(
&postgresql_conf_path,
"neon.disable_logical_replication_subscribers=false",
)? {
info!(
"updated postgresql.conf to set neon.disable_logical_replication_subscribers=false"
);
}
self.pg_reload_conf()?;
}
self.post_apply_config()?;
Ok(())
}
/// Update the `last_active` in the shared state, but ensure that it's a more recent one.
pub fn update_last_active(&self, last_active: Option<DateTime<Utc>>) {
let mut state = self.state.lock().unwrap();
// NB: `Some(<DateTime>)` is always greater than `None`.
if last_active > state.last_active {
state.last_active = last_active;
debug!("set the last compute activity time to: {:?}", last_active);
}
}
// Look for core dumps and collect backtraces.
//
// EKS worker nodes have following core dump settings:
// /proc/sys/kernel/core_pattern -> core
// /proc/sys/kernel/core_uses_pid -> 1
// ulimit -c -> unlimited
// which results in core dumps being written to postgres data directory as core.<pid>.
//
// Use that as a default location and pattern, except macos where core dumps are written
// to /cores/ directory by default.
//
// With default Linux settings, the core dump file is called just "core", so check for
// that too.
pub fn check_for_core_dumps(&self) -> Result<()> {
let core_dump_dir = match std::env::consts::OS {
"macos" => Path::new("/cores/"),
_ => Path::new(&self.params.pgdata),
};
// Collect core dump paths if any
info!("checking for core dumps in {}", core_dump_dir.display());
let files = fs::read_dir(core_dump_dir)?;
let cores = files.filter_map(|entry| {
let entry = entry.ok()?;
let is_core_dump = match entry.file_name().to_str()? {
n if n.starts_with("core.") => true,
"core" => true,
_ => false,
};
if is_core_dump {
Some(entry.path())
} else {
None
}
});
// Print backtrace for each core dump
for core_path in cores {
warn!(
"core dump found: {}, collecting backtrace",
core_path.display()
);
// Try first with gdb
let backtrace = Command::new("gdb")
.args(["--batch", "-q", "-ex", "bt", &self.params.pgbin])
.arg(&core_path)
.output();
// Try lldb if no gdb is found -- that is handy for local testing on macOS
let backtrace = match backtrace {
Err(ref e) if e.kind() == std::io::ErrorKind::NotFound => {
warn!("cannot find gdb, trying lldb");
Command::new("lldb")
.arg("-c")
.arg(&core_path)
.args(["--batch", "-o", "bt all", "-o", "quit"])
.output()
}
_ => backtrace,
}?;
warn!(
"core dump backtrace: {}",
String::from_utf8_lossy(&backtrace.stdout)
);
warn!(
"debugger stderr: {}",
String::from_utf8_lossy(&backtrace.stderr)
);
}
Ok(())
}
/// Select `pg_stat_statements` data and return it as a stringified JSON
pub async fn collect_insights(&self) -> String {
let mut result_rows: Vec<String> = Vec::new();
let conf = self.get_tokio_conn_conf(Some("compute_ctl:collect_insights"));
let connect_result = conf.connect(NoTls).await;
let (client, connection) = connect_result.unwrap();
tokio::spawn(async move {
if let Err(e) = connection.await {
eprintln!("connection error: {}", e);
}
});
let result = client
.simple_query(
"SELECT
row_to_json(pg_stat_statements)
FROM
pg_stat_statements
WHERE
userid != 'cloud_admin'::regrole::oid
ORDER BY
(mean_exec_time + mean_plan_time) DESC
LIMIT 100",
)
.await;
if let Ok(raw_rows) = result {
for message in raw_rows.iter() {
if let postgres::SimpleQueryMessage::Row(row) = message {
if let Some(json) = row.get(0) {
result_rows.push(json.to_string());
}
}
}
format!("{{\"pg_stat_statements\": [{}]}}", result_rows.join(","))
} else {
"{{\"pg_stat_statements\": []}}".to_string()
}
}
// download an archive, unzip and place files in correct locations
pub async fn download_extension(
&self,
real_ext_name: String,
ext_path: RemotePath,
) -> Result<u64, DownloadError> {
let ext_remote_storage =
self.params
.ext_remote_storage
.as_ref()
.ok_or(DownloadError::BadInput(anyhow::anyhow!(
"Remote extensions storage is not configured",
)))?;
let ext_archive_name = ext_path.object_name().expect("bad path");
let mut first_try = false;
if !self
.ext_download_progress
.read()
.expect("lock err")
.contains_key(ext_archive_name)
{
self.ext_download_progress
.write()
.expect("lock err")
.insert(ext_archive_name.to_string(), (Utc::now(), false));
first_try = true;
}
let (download_start, download_completed) =
self.ext_download_progress.read().expect("lock err")[ext_archive_name];
let start_time_delta = Utc::now()
.signed_duration_since(download_start)
.to_std()
.unwrap()
.as_millis() as u64;
// how long to wait for extension download if it was started by another process
const HANG_TIMEOUT: u64 = 3000; // milliseconds
if download_completed {
info!("extension already downloaded, skipping re-download");
return Ok(0);
} else if start_time_delta < HANG_TIMEOUT && !first_try {
info!(
"download {ext_archive_name} already started by another process, hanging untill completion or timeout"
);
let mut interval = tokio::time::interval(tokio::time::Duration::from_millis(500));
loop {
info!("waiting for download");
interval.tick().await;
let (_, download_completed_now) =
self.ext_download_progress.read().expect("lock")[ext_archive_name];
if download_completed_now {
info!("download finished by whoever else downloaded it");
return Ok(0);
}
}
// NOTE: the above loop will get terminated
// based on the timeout of the download function
}
// if extension hasn't been downloaded before or the previous
// attempt to download was at least HANG_TIMEOUT ms ago
// then we try to download it here
info!("downloading new extension {ext_archive_name}");
let download_size = extension_server::download_extension(
&real_ext_name,
&ext_path,
ext_remote_storage,
&self.params.pgbin,
)
.await
.map_err(DownloadError::Other);
if download_size.is_ok() {
self.ext_download_progress
.write()
.expect("bad lock")
.insert(ext_archive_name.to_string(), (download_start, true));
}
download_size
}
pub async fn set_role_grants(
&self,
db_name: &PgIdent,
schema_name: &PgIdent,
privileges: &[Privilege],
role_name: &PgIdent,
) -> Result<()> {
use tokio_postgres::NoTls;
let mut conf = self.get_tokio_conn_conf(Some("compute_ctl:set_role_grants"));
conf.dbname(db_name);
let (db_client, conn) = conf
.connect(NoTls)
.await
.context("Failed to connect to the database")?;
tokio::spawn(conn);
// TODO: support other types of grants apart from schemas?
let query = format!(
"GRANT {} ON SCHEMA {} TO {}",
privileges
.iter()
// should not be quoted as it's part of the command.
// is already sanitized so it's ok
.map(|p| p.as_str())
.collect::<Vec<&'static str>>()
.join(", "),
// quote the schema and role name as identifiers to sanitize them.
schema_name.pg_quote(),
role_name.pg_quote(),
);
db_client
.simple_query(&query)
.await
.with_context(|| format!("Failed to execute query: {}", query))?;
Ok(())
}
pub async fn install_extension(
&self,
ext_name: &PgIdent,
db_name: &PgIdent,
ext_version: ExtVersion,
) -> Result<ExtVersion> {
use tokio_postgres::NoTls;
let mut conf = self.get_tokio_conn_conf(Some("compute_ctl:install_extension"));
conf.dbname(db_name);
let (db_client, conn) = conf
.connect(NoTls)
.await
.context("Failed to connect to the database")?;
tokio::spawn(conn);
let version_query = "SELECT extversion FROM pg_extension WHERE extname = $1";
let version: Option<ExtVersion> = db_client
.query_opt(version_query, &[&ext_name])
.await
.with_context(|| format!("Failed to execute query: {}", version_query))?
.map(|row| row.get(0));
// sanitize the inputs as postgres idents.
let ext_name: String = ext_name.pg_quote();
let quoted_version: String = ext_version.pg_quote();
if let Some(installed_version) = version {
if installed_version == ext_version {
return Ok(installed_version);
}
let query = format!("ALTER EXTENSION {ext_name} UPDATE TO {quoted_version}");
db_client
.simple_query(&query)
.await
.with_context(|| format!("Failed to execute query: {}", query))?;
} else {
let query =
format!("CREATE EXTENSION IF NOT EXISTS {ext_name} WITH VERSION {quoted_version}");
db_client
.simple_query(&query)
.await
.with_context(|| format!("Failed to execute query: {}", query))?;
}
Ok(ext_version)
}
pub async fn prepare_preload_libraries(
&self,
spec: &ComputeSpec,
) -> Result<RemoteExtensionMetrics> {
if self.params.ext_remote_storage.is_none() {
return Ok(RemoteExtensionMetrics {
num_ext_downloaded: 0,
largest_ext_size: 0,
total_ext_download_size: 0,
});
}
let remote_extensions = spec
.remote_extensions
.as_ref()
.ok_or(anyhow::anyhow!("Remote extensions are not configured"))?;
info!("parse shared_preload_libraries from spec.cluster.settings");
let mut libs_vec = Vec::new();
if let Some(libs) = spec.cluster.settings.find("shared_preload_libraries") {
libs_vec = libs
.split(&[',', '\'', ' '])
.filter(|s| *s != "neon" && !s.is_empty())
.map(str::to_string)
.collect();
}
info!("parse shared_preload_libraries from provided postgresql.conf");
// that is used in neon_local and python tests
if let Some(conf) = &spec.cluster.postgresql_conf {
let conf_lines = conf.split('\n').collect::<Vec<&str>>();
let mut shared_preload_libraries_line = "";
for line in conf_lines {
if line.starts_with("shared_preload_libraries") {
shared_preload_libraries_line = line;
}
}
let mut preload_libs_vec = Vec::new();
if let Some(libs) = shared_preload_libraries_line.split("='").nth(1) {
preload_libs_vec = libs
.split(&[',', '\'', ' '])
.filter(|s| *s != "neon" && !s.is_empty())
.map(str::to_string)
.collect();
}
libs_vec.extend(preload_libs_vec);
}
// Don't try to download libraries that are not in the index.
// Assume that they are already present locally.
libs_vec.retain(|lib| remote_extensions.library_index.contains_key(lib));
info!("Downloading to shared preload libraries: {:?}", &libs_vec);
let mut download_tasks = Vec::new();
for library in &libs_vec {
let (ext_name, ext_path) = remote_extensions.get_ext(
library,
true,
&self.params.build_tag,
&self.params.pgversion,
)?;
download_tasks.push(self.download_extension(ext_name, ext_path));
}
let results = join_all(download_tasks).await;
let mut remote_ext_metrics = RemoteExtensionMetrics {
num_ext_downloaded: 0,
largest_ext_size: 0,
total_ext_download_size: 0,
};
for result in results {
let download_size = match result {
Ok(res) => {
remote_ext_metrics.num_ext_downloaded += 1;
res
}
Err(err) => {
// if we failed to download an extension, we don't want to fail the whole
// process, but we do want to log the error
error!("Failed to download extension: {}", err);
0
}
};
remote_ext_metrics.largest_ext_size =
std::cmp::max(remote_ext_metrics.largest_ext_size, download_size);
remote_ext_metrics.total_ext_download_size += download_size;
}
Ok(remote_ext_metrics)
}
/// Waits until current thread receives a state changed notification and
/// the pageserver connection strings has changed.
///
/// The operation will time out after a specified duration.
pub fn wait_timeout_while_pageserver_connstr_unchanged(&self, duration: Duration) {
let state = self.state.lock().unwrap();
let old_pageserver_connstr = state
.pspec
.as_ref()
.expect("spec must be set")
.pageserver_connstr
.clone();
let mut unchanged = true;
let _ = self
.state_changed
.wait_timeout_while(state, duration, |s| {
let pageserver_connstr = &s
.pspec
.as_ref()
.expect("spec must be set")
.pageserver_connstr;
unchanged = pageserver_connstr == &old_pageserver_connstr;
unchanged
})
.unwrap();
if !unchanged {
info!("Pageserver config changed");
}
}
}
pub fn forward_termination_signal() {
let ss_pid = SYNC_SAFEKEEPERS_PID.load(Ordering::SeqCst);
if ss_pid != 0 {
let ss_pid = nix::unistd::Pid::from_raw(ss_pid as i32);
kill(ss_pid, Signal::SIGTERM).ok();
}
let pg_pid = PG_PID.load(Ordering::SeqCst);
if pg_pid != 0 {
let pg_pid = nix::unistd::Pid::from_raw(pg_pid as i32);
// Use 'fast' shutdown (SIGINT) because it also creates a shutdown checkpoint, which is important for
// ROs to get a list of running xacts faster instead of going through the CLOG.
// See https://www.postgresql.org/docs/current/server-shutdown.html for the list of modes and signals.
kill(pg_pid, Signal::SIGINT).ok();
}
}
// helper trait to call JoinSet::spawn_blocking(f), but propagates the current
// tracing span to the thread.
trait JoinSetExt<T> {
fn spawn_blocking_child<F>(&mut self, f: F) -> tokio::task::AbortHandle
where
F: FnOnce() -> T + Send + 'static,
T: Send;
}
impl<T: 'static> JoinSetExt<T> for tokio::task::JoinSet<T> {
fn spawn_blocking_child<F>(&mut self, f: F) -> tokio::task::AbortHandle
where
F: FnOnce() -> T + Send + 'static,
T: Send,
{
let sp = tracing::Span::current();
self.spawn_blocking(move || {
let _e = sp.enter();
f()
})
}
}