Files
neon/proxy/src/cache.rs
Conrad Ludgate 7c85c7ea91 proxy: merge connect compute (#4713)
## Problem

Half of #4699.

TCP/WS have one implementation of `connect_to_compute`, HTTP has another
implementation of `connect_to_compute`.

Having both is annoying to deal with.

## Summary of changes

Creates a set of traits `ConnectMechanism` and `ShouldError` that allows
the `connect_to_compute` to be generic over raw TCP stream or
tokio_postgres based connections.

I'm not super happy with this. I think it would be nice to
remove tokio_postgres entirely but that will need a lot more thought to
be put into it.

I have also slightly refactored the caching to use fewer references.
Instead using ownership to ensure the state of retrying is encoded in
the type system.
2023-07-17 15:53:01 +01:00

302 lines
10 KiB
Rust

use std::{
borrow::Borrow,
hash::Hash,
ops::{Deref, DerefMut},
time::{Duration, Instant},
};
use tracing::debug;
// This seems to make more sense than `lru` or `cached`:
//
// * `near/nearcore` ditched `cached` in favor of `lru`
// (https://github.com/near/nearcore/issues?q=is%3Aissue+lru+is%3Aclosed).
//
// * `lru` methods use an obscure `KeyRef` type in their contraints (which is deliberately excluded from docs).
// This severely hinders its usage both in terms of creating wrappers and supported key types.
//
// On the other hand, `hashlink` has good download stats and appears to be maintained.
use hashlink::{linked_hash_map::RawEntryMut, LruCache};
/// A generic trait which exposes types of cache's key and value,
/// as well as the notion of cache entry invalidation.
/// This is useful for [`timed_lru::Cached`].
pub trait Cache {
/// Entry's key.
type Key;
/// Entry's value.
type Value;
/// Used for entry invalidation.
type LookupInfo<Key>;
/// Invalidate an entry using a lookup info.
/// We don't have an empty default impl because it's error-prone.
fn invalidate(&self, _: &Self::LookupInfo<Self::Key>);
}
impl<C: Cache> Cache for &C {
type Key = C::Key;
type Value = C::Value;
type LookupInfo<Key> = C::LookupInfo<Key>;
fn invalidate(&self, info: &Self::LookupInfo<Self::Key>) {
C::invalidate(self, info)
}
}
pub use timed_lru::TimedLru;
pub mod timed_lru {
use super::*;
/// An implementation of timed LRU cache with fixed capacity.
/// Key properties:
///
/// * Whenever a new entry is inserted, the least recently accessed one is evicted.
/// The cache also keeps track of entry's insertion time (`created_at`) and TTL (`expires_at`).
///
/// * When the entry is about to be retrieved, we check its expiration timestamp.
/// If the entry has expired, we remove it from the cache; Otherwise we bump the
/// expiration timestamp (e.g. +5mins) and change its place in LRU list to prolong
/// its existence.
///
/// * There's an API for immediate invalidation (removal) of a cache entry;
/// It's useful in case we know for sure that the entry is no longer correct.
/// See [`timed_lru::LookupInfo`] & [`timed_lru::Cached`] for more information.
///
/// * Expired entries are kept in the cache, until they are evicted by the LRU policy,
/// or by a successful lookup (i.e. the entry hasn't expired yet).
/// There is no background job to reap the expired records.
///
/// * It's possible for an entry that has not yet expired entry to be evicted
/// before expired items. That's a bit wasteful, but probably fine in practice.
pub struct TimedLru<K, V> {
/// Cache's name for tracing.
name: &'static str,
/// The underlying cache implementation.
cache: parking_lot::Mutex<LruCache<K, Entry<V>>>,
/// Default time-to-live of a single entry.
ttl: Duration,
}
impl<K: Hash + Eq, V> Cache for TimedLru<K, V> {
type Key = K;
type Value = V;
type LookupInfo<Key> = LookupInfo<Key>;
fn invalidate(&self, info: &Self::LookupInfo<K>) {
self.invalidate_raw(info)
}
}
struct Entry<T> {
created_at: Instant,
expires_at: Instant,
value: T,
}
impl<K: Hash + Eq, V> TimedLru<K, V> {
/// Construct a new LRU cache with timed entries.
pub fn new(name: &'static str, capacity: usize, ttl: Duration) -> Self {
Self {
name,
cache: LruCache::new(capacity).into(),
ttl,
}
}
/// Drop an entry from the cache if it's outdated.
#[tracing::instrument(level = "debug", fields(cache = self.name), skip_all)]
fn invalidate_raw(&self, info: &LookupInfo<K>) {
let now = Instant::now();
// Do costly things before taking the lock.
let mut cache = self.cache.lock();
let raw_entry = match cache.raw_entry_mut().from_key(&info.key) {
RawEntryMut::Vacant(_) => return,
RawEntryMut::Occupied(x) => x,
};
// Remove the entry if it was created prior to lookup timestamp.
let entry = raw_entry.get();
let (created_at, expires_at) = (entry.created_at, entry.expires_at);
let should_remove = created_at <= info.created_at || expires_at <= now;
if should_remove {
raw_entry.remove();
}
drop(cache); // drop lock before logging
debug!(
created_at = format_args!("{created_at:?}"),
expires_at = format_args!("{expires_at:?}"),
entry_removed = should_remove,
"processed a cache entry invalidation event"
);
}
/// Try retrieving an entry by its key, then execute `extract` if it exists.
#[tracing::instrument(level = "debug", fields(cache = self.name), skip_all)]
fn get_raw<Q, R>(&self, key: &Q, extract: impl FnOnce(&K, &Entry<V>) -> R) -> Option<R>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
let now = Instant::now();
let deadline = now.checked_add(self.ttl).expect("time overflow");
// Do costly things before taking the lock.
let mut cache = self.cache.lock();
let mut raw_entry = match cache.raw_entry_mut().from_key(key) {
RawEntryMut::Vacant(_) => return None,
RawEntryMut::Occupied(x) => x,
};
// Immeditely drop the entry if it has expired.
let entry = raw_entry.get();
if entry.expires_at <= now {
raw_entry.remove();
return None;
}
let value = extract(raw_entry.key(), entry);
let (created_at, expires_at) = (entry.created_at, entry.expires_at);
// Update the deadline and the entry's position in the LRU list.
raw_entry.get_mut().expires_at = deadline;
raw_entry.to_back();
drop(cache); // drop lock before logging
debug!(
created_at = format_args!("{created_at:?}"),
old_expires_at = format_args!("{expires_at:?}"),
new_expires_at = format_args!("{deadline:?}"),
"accessed a cache entry"
);
Some(value)
}
/// Insert an entry to the cache. If an entry with the same key already
/// existed, return the previous value and its creation timestamp.
#[tracing::instrument(level = "debug", fields(cache = self.name), skip_all)]
fn insert_raw(&self, key: K, value: V) -> (Instant, Option<V>) {
let created_at = Instant::now();
let expires_at = created_at.checked_add(self.ttl).expect("time overflow");
let entry = Entry {
created_at,
expires_at,
value,
};
// Do costly things before taking the lock.
let old = self
.cache
.lock()
.insert(key, entry)
.map(|entry| entry.value);
debug!(
created_at = format_args!("{created_at:?}"),
expires_at = format_args!("{expires_at:?}"),
replaced = old.is_some(),
"created a cache entry"
);
(created_at, old)
}
}
impl<K: Hash + Eq + Clone, V: Clone> TimedLru<K, V> {
pub fn insert(&self, key: K, value: V) -> (Option<V>, Cached<&Self>) {
let (created_at, old) = self.insert_raw(key.clone(), value.clone());
let cached = Cached {
token: Some((self, LookupInfo { created_at, key })),
value,
};
(old, cached)
}
}
impl<K: Hash + Eq, V: Clone> TimedLru<K, V> {
/// Retrieve a cached entry in convenient wrapper.
pub fn get<Q>(&self, key: &Q) -> Option<timed_lru::Cached<&Self>>
where
K: Borrow<Q> + Clone,
Q: Hash + Eq + ?Sized,
{
self.get_raw(key, |key, entry| {
let info = LookupInfo {
created_at: entry.created_at,
key: key.clone(),
};
Cached {
token: Some((self, info)),
value: entry.value.clone(),
}
})
}
}
/// Lookup information for key invalidation.
pub struct LookupInfo<K> {
/// Time of creation of a cache [`Entry`].
/// We use this during invalidation lookups to prevent eviction of a newer
/// entry sharing the same key (it might've been inserted by a different
/// task after we got the entry we're trying to invalidate now).
created_at: Instant,
/// Search by this key.
key: K,
}
/// Wrapper for convenient entry invalidation.
pub struct Cached<C: Cache> {
/// Cache + lookup info.
token: Option<(C, C::LookupInfo<C::Key>)>,
/// The value itself.
value: C::Value,
}
impl<C: Cache> Cached<C> {
/// Place any entry into this wrapper; invalidation will be a no-op.
pub fn new_uncached(value: C::Value) -> Self {
Self { token: None, value }
}
/// Drop this entry from a cache if it's still there.
pub fn invalidate(self) -> C::Value {
if let Some((cache, info)) = &self.token {
cache.invalidate(info);
}
self.value
}
/// Tell if this entry is actually cached.
pub fn cached(&self) -> bool {
self.token.is_some()
}
}
impl<C: Cache> Deref for Cached<C> {
type Target = C::Value;
fn deref(&self) -> &Self::Target {
&self.value
}
}
impl<C: Cache> DerefMut for Cached<C> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.value
}
}
}