There was a tricky race condition in compute_ctl, that sometimes makes configurator skip updates. It makes a deadlock because: - control-plane cannot configure compute, because it's in ConfigurationPending state - compute_ctl doesn't do any reconfiguration because `configurator_main_loop` missed notification for it Full sequence that reproduces the issue: 1. `start_compute` finishes works and changes status `self.set_status(ComputeStatus::Running);` 2. configurator received update about `Running` state and dropped the mutex lock in the iteration 3. `/configure` request was triggered at the same time as step 1, and got the mutex lock 4. same `/configure` request set the spec and updated the state to `ConfigurationPending`, also sent a notification 5. next iteration in configurator got the mutex lock, but missed the notification There are more details in this slack thread: https://neondb.slack.com/archives/C03438W3FLZ/p1727281028478689?thread_ts=1727261220.483799&cid=C03438W3FLZ --------- Co-authored-by: Alexey Kondratov <kondratov.aleksey@gmail.com>
Compute node tools
Postgres wrapper (compute_ctl) is intended to be run as a Docker entrypoint or as a systemd
ExecStart option. It will handle all the Neon specifics during compute node
initialization:
compute_ctlaccepts cluster (compute node) specification as a JSON file.- Every start is a fresh start, so the data directory is removed and initialized again on each run.
- Next it will put configuration files into the
PGDATAdirectory. - Sync safekeepers and get commit LSN.
- Get
basebackupfrom pageserver using the returned on the previous step LSN. - Try to start
postgresand wait until it is ready to accept connections. - Check and alter/drop/create roles and databases.
- Hang waiting on the
postmasterprocess to exit.
Also compute_ctl spawns two separate service threads:
compute-monitorchecks the last Postgres activity timestamp and saves it into the sharedComputeNode;http-endpointruns a Hyper HTTP API server, which serves readiness and the last activity requests.
If AUTOSCALING environment variable is set, compute_ctl will start the
vm-monitor located in [neon/libs/vm_monitor]. For VM compute nodes,
vm-monitor communicates with the VM autoscaling system. It coordinates
downscaling and requests immediate upscaling under resource pressure.
Usage example:
compute_ctl -D /var/db/postgres/compute \
-C 'postgresql://cloud_admin@localhost/postgres' \
-S /var/db/postgres/specs/current.json \
-b /usr/local/bin/postgres
State Diagram
Computes can be in various states. Below is a diagram that details how a compute moves between states.
%% https://mermaid.js.org/syntax/stateDiagram.html
stateDiagram-v2
[*] --> Empty : Compute spawned
Empty --> ConfigurationPending : Waiting for compute spec
ConfigurationPending --> Configuration : Received compute spec
Configuration --> Failed : Failed to configure the compute
Configuration --> Running : Compute has been configured
Empty --> Init : Compute spec is immediately available
Empty --> TerminationPending : Requested termination
Init --> Failed : Failed to start Postgres
Init --> Running : Started Postgres
Running --> TerminationPending : Requested termination
TerminationPending --> Terminated : Terminated compute
Failed --> [*] : Compute exited
Terminated --> [*] : Compute exited
Tests
Cargo formatter:
cargo fmt
Run tests:
cargo test
Clippy linter:
cargo clippy --all --all-targets -- -Dwarnings -Drust-2018-idioms
Cross-platform compilation
Imaging that you are on macOS (x86) and you want a Linux GNU (x86_64-unknown-linux-gnu platform in rust terminology) executable.
Using docker
You can use a throw-away Docker container (rustlang/rust image) for doing that:
docker run --rm \
-v $(pwd):/compute_tools \
-w /compute_tools \
-t rustlang/rust:nightly cargo build --release --target=x86_64-unknown-linux-gnu
or one-line:
docker run --rm -v $(pwd):/compute_tools -w /compute_tools -t rust:latest cargo build --release --target=x86_64-unknown-linux-gnu
Using rust native cross-compilation
Another way is to add x86_64-unknown-linux-gnu target on your host system:
rustup target add x86_64-unknown-linux-gnu
Install macOS cross-compiler toolchain:
brew tap SergioBenitez/osxct
brew install x86_64-unknown-linux-gnu
And finally run cargo build:
CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_LINKER=x86_64-unknown-linux-gnu-gcc cargo build --target=x86_64-unknown-linux-gnu --release