Files
neon/pageserver/src/tenant/timeline.rs
John Spray ca154d9cd8 pageserver: local layer path followups (#7640)
- Rename "filename" types which no longer map directly to a filename
(LayerFileName -> LayerName)
- Add a -v1- part to local layer paths to smooth the path to future
updates (we anticipate a -v2- that uses checksums later)
- Rename methods that refer to the string-ized version of a LayerName to
no longer be called "filename"
- Refactor reconcile() function to use a LocalLayerFileMetadata type
that includes the local path, rather than carrying local path separately
in a tuple and unwrap()'ing it later.
2024-05-08 16:50:21 +00:00

5431 lines
211 KiB
Rust

mod compaction;
pub mod delete;
pub(crate) mod detach_ancestor;
mod eviction_task;
mod init;
pub mod layer_manager;
pub(crate) mod logical_size;
pub mod span;
pub mod uninit;
mod walreceiver;
use anyhow::{anyhow, bail, ensure, Context, Result};
use arc_swap::ArcSwap;
use bytes::Bytes;
use camino::Utf8Path;
use enumset::EnumSet;
use fail::fail_point;
use once_cell::sync::Lazy;
use pageserver_api::{
key::{
AUX_FILES_KEY, METADATA_KEY_BEGIN_PREFIX, METADATA_KEY_END_PREFIX, NON_INHERITED_RANGE,
NON_INHERITED_SPARSE_RANGE,
},
keyspace::{KeySpaceAccum, SparseKeyPartitioning},
models::{
AuxFilePolicy, CompactionAlgorithm, DownloadRemoteLayersTaskInfo,
DownloadRemoteLayersTaskSpawnRequest, EvictionPolicy, InMemoryLayerInfo, LayerMapInfo,
TimelineState,
},
reltag::BlockNumber,
shard::{ShardIdentity, ShardNumber, TenantShardId},
};
use rand::Rng;
use serde_with::serde_as;
use storage_broker::BrokerClientChannel;
use tokio::{
runtime::Handle,
sync::{oneshot, watch},
};
use tokio_util::sync::CancellationToken;
use tracing::*;
use utils::{
bin_ser::BeSer,
sync::gate::{Gate, GateGuard},
vec_map::VecMap,
};
use std::ops::{Deref, Range};
use std::pin::pin;
use std::sync::atomic::Ordering as AtomicOrdering;
use std::sync::{Arc, Mutex, RwLock, Weak};
use std::time::{Duration, Instant, SystemTime};
use std::{
array,
collections::{BTreeMap, HashMap, HashSet},
sync::atomic::AtomicU64,
};
use std::{
cmp::{max, min, Ordering},
ops::ControlFlow,
};
use crate::tenant::timeline::init::LocalLayerFileMetadata;
use crate::tenant::{
layer_map::{LayerMap, SearchResult},
metadata::TimelineMetadata,
};
use crate::{
context::{DownloadBehavior, RequestContext},
disk_usage_eviction_task::DiskUsageEvictionInfo,
pgdatadir_mapping::CollectKeySpaceError,
};
use crate::{deletion_queue::DeletionQueueClient, metrics::GetKind};
use crate::{
disk_usage_eviction_task::finite_f32,
tenant::storage_layer::{
AsLayerDesc, DeltaLayerWriter, EvictionError, ImageLayerWriter, InMemoryLayer, Layer,
LayerAccessStatsReset, LayerName, ResidentLayer, ValueReconstructResult,
ValueReconstructState, ValuesReconstructState,
},
};
use crate::{
disk_usage_eviction_task::EvictionCandidate, tenant::storage_layer::delta_layer::DeltaEntry,
};
use crate::{
metrics::ScanLatencyOngoingRecording, tenant::timeline::logical_size::CurrentLogicalSize,
};
use crate::{pgdatadir_mapping::LsnForTimestamp, tenant::tasks::BackgroundLoopKind};
use crate::{
pgdatadir_mapping::{AuxFilesDirectory, DirectoryKind},
virtual_file::{MaybeFatalIo, VirtualFile},
};
use crate::config::PageServerConf;
use crate::keyspace::{KeyPartitioning, KeySpace};
use crate::metrics::{
TimelineMetrics, MATERIALIZED_PAGE_CACHE_HIT, MATERIALIZED_PAGE_CACHE_HIT_DIRECT,
};
use crate::pgdatadir_mapping::CalculateLogicalSizeError;
use crate::tenant::config::TenantConfOpt;
use pageserver_api::key::{is_inherited_key, is_rel_fsm_block_key, is_rel_vm_block_key};
use pageserver_api::reltag::RelTag;
use pageserver_api::shard::ShardIndex;
use postgres_connection::PgConnectionConfig;
use postgres_ffi::to_pg_timestamp;
use utils::{
completion,
generation::Generation,
id::TimelineId,
lsn::{AtomicLsn, Lsn, RecordLsn},
seqwait::SeqWait,
simple_rcu::{Rcu, RcuReadGuard},
};
use crate::page_cache;
use crate::repository::GcResult;
use crate::repository::{Key, Value};
use crate::task_mgr;
use crate::task_mgr::TaskKind;
use crate::ZERO_PAGE;
use self::delete::DeleteTimelineFlow;
pub(super) use self::eviction_task::EvictionTaskTenantState;
use self::eviction_task::EvictionTaskTimelineState;
use self::layer_manager::LayerManager;
use self::logical_size::LogicalSize;
use self::walreceiver::{WalReceiver, WalReceiverConf};
use super::secondary::heatmap::{HeatMapLayer, HeatMapTimeline};
use super::{config::TenantConf, storage_layer::VectoredValueReconstructState};
use super::{debug_assert_current_span_has_tenant_and_timeline_id, AttachedTenantConf};
use super::{remote_timeline_client::index::IndexPart, storage_layer::LayerFringe};
use super::{remote_timeline_client::RemoteTimelineClient, storage_layer::ReadableLayer};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub(super) enum FlushLoopState {
NotStarted,
Running {
#[cfg(test)]
expect_initdb_optimization: bool,
#[cfg(test)]
initdb_optimization_count: usize,
},
Exited,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ImageLayerCreationMode {
/// Try to create image layers based on `time_for_new_image_layer`. Used in compaction code path.
Try,
/// Force creating the image layers if possible. For now, no image layers will be created
/// for metadata keys. Used in compaction code path with force flag enabled.
Force,
/// Initial ingestion of the data, and no data should be dropped in this function. This
/// means that no metadata keys should be included in the partitions. Used in flush frozen layer
/// code path.
Initial,
}
impl std::fmt::Display for ImageLayerCreationMode {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self)
}
}
/// Wrapper for key range to provide reverse ordering by range length for BinaryHeap
#[derive(Debug, Clone, PartialEq, Eq)]
pub(crate) struct Hole {
key_range: Range<Key>,
coverage_size: usize,
}
impl Ord for Hole {
fn cmp(&self, other: &Self) -> Ordering {
other.coverage_size.cmp(&self.coverage_size) // inverse order
}
}
impl PartialOrd for Hole {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
/// Temporary function for immutable storage state refactor, ensures we are dropping mutex guard instead of other things.
/// Can be removed after all refactors are done.
fn drop_rlock<T>(rlock: tokio::sync::OwnedRwLockReadGuard<T>) {
drop(rlock)
}
/// Temporary function for immutable storage state refactor, ensures we are dropping mutex guard instead of other things.
/// Can be removed after all refactors are done.
fn drop_wlock<T>(rlock: tokio::sync::RwLockWriteGuard<'_, T>) {
drop(rlock)
}
/// The outward-facing resources required to build a Timeline
pub struct TimelineResources {
pub remote_client: Option<RemoteTimelineClient>,
pub deletion_queue_client: DeletionQueueClient,
pub timeline_get_throttle: Arc<
crate::tenant::throttle::Throttle<&'static crate::metrics::tenant_throttling::TimelineGet>,
>,
}
pub(crate) struct AuxFilesState {
pub(crate) dir: Option<AuxFilesDirectory>,
pub(crate) n_deltas: usize,
}
/// The relation size cache caches relation sizes at the end of the timeline. It speeds up WAL
/// ingestion considerably, because WAL ingestion needs to check on most records if the record
/// implicitly extends the relation. At startup, `complete_as_of` is initialized to the current end
/// of the timeline (disk_consistent_lsn). It's used on reads of relation sizes to check if the
/// value can be used to also update the cache, see [`Timeline::update_cached_rel_size`].
pub(crate) struct RelSizeCache {
pub(crate) complete_as_of: Lsn,
pub(crate) map: HashMap<RelTag, (Lsn, BlockNumber)>,
}
pub struct Timeline {
conf: &'static PageServerConf,
tenant_conf: Arc<ArcSwap<AttachedTenantConf>>,
myself: Weak<Self>,
pub(crate) tenant_shard_id: TenantShardId,
pub timeline_id: TimelineId,
/// The generation of the tenant that instantiated us: this is used for safety when writing remote objects.
/// Never changes for the lifetime of this [`Timeline`] object.
///
/// This duplicates the generation stored in LocationConf, but that structure is mutable:
/// this copy enforces the invariant that generatio doesn't change during a Tenant's lifetime.
pub(crate) generation: Generation,
/// The detailed sharding information from our parent Tenant. This enables us to map keys
/// to shards, and is constant through the lifetime of this Timeline.
shard_identity: ShardIdentity,
pub pg_version: u32,
/// The tuple has two elements.
/// 1. `LayerFileManager` keeps track of the various physical representations of the layer files (inmem, local, remote).
/// 2. `LayerMap`, the acceleration data structure for `get_reconstruct_data`.
///
/// `LayerMap` maps out the `(PAGE,LSN) / (KEY,LSN)` space, which is composed of `(KeyRange, LsnRange)` rectangles.
/// We describe these rectangles through the `PersistentLayerDesc` struct.
///
/// When we want to reconstruct a page, we first find the `PersistentLayerDesc`'s that we need for page reconstruction,
/// using `LayerMap`. Then, we use `LayerFileManager` to get the `PersistentLayer`'s that correspond to the
/// `PersistentLayerDesc`'s.
///
/// Hence, it's important to keep things coherent. The `LayerFileManager` must always have an entry for all
/// `PersistentLayerDesc`'s in the `LayerMap`. If it doesn't, `LayerFileManager::get_from_desc` will panic at
/// runtime, e.g., during page reconstruction.
///
/// In the future, we'll be able to split up the tuple of LayerMap and `LayerFileManager`,
/// so that e.g. on-demand-download/eviction, and layer spreading, can operate just on `LayerFileManager`.
pub(crate) layers: Arc<tokio::sync::RwLock<LayerManager>>,
last_freeze_at: AtomicLsn,
// Atomic would be more appropriate here.
last_freeze_ts: RwLock<Instant>,
// WAL redo manager. `None` only for broken tenants.
walredo_mgr: Option<Arc<super::WalRedoManager>>,
/// Remote storage client.
/// See [`remote_timeline_client`](super::remote_timeline_client) module comment for details.
pub remote_client: Option<Arc<RemoteTimelineClient>>,
// What page versions do we hold in the repository? If we get a
// request > last_record_lsn, we need to wait until we receive all
// the WAL up to the request. The SeqWait provides functions for
// that. TODO: If we get a request for an old LSN, such that the
// versions have already been garbage collected away, we should
// throw an error, but we don't track that currently.
//
// last_record_lsn.load().last points to the end of last processed WAL record.
//
// We also remember the starting point of the previous record in
// 'last_record_lsn.load().prev'. It's used to set the xl_prev pointer of the
// first WAL record when the node is started up. But here, we just
// keep track of it.
last_record_lsn: SeqWait<RecordLsn, Lsn>,
// All WAL records have been processed and stored durably on files on
// local disk, up to this LSN. On crash and restart, we need to re-process
// the WAL starting from this point.
//
// Some later WAL records might have been processed and also flushed to disk
// already, so don't be surprised to see some, but there's no guarantee on
// them yet.
disk_consistent_lsn: AtomicLsn,
// Parent timeline that this timeline was branched from, and the LSN
// of the branch point.
ancestor_timeline: Option<Arc<Timeline>>,
ancestor_lsn: Lsn,
pub(super) metrics: TimelineMetrics,
// `Timeline` doesn't write these metrics itself, but it manages the lifetime. Code
// in `crate::page_service` writes these metrics.
pub(crate) query_metrics: crate::metrics::SmgrQueryTimePerTimeline,
directory_metrics: [AtomicU64; DirectoryKind::KINDS_NUM],
/// Ensures layers aren't frozen by checkpointer between
/// [`Timeline::get_layer_for_write`] and layer reads.
/// Locked automatically by [`TimelineWriter`] and checkpointer.
/// Must always be acquired before the layer map/individual layer lock
/// to avoid deadlock.
write_lock: tokio::sync::Mutex<Option<TimelineWriterState>>,
/// Used to avoid multiple `flush_loop` tasks running
pub(super) flush_loop_state: Mutex<FlushLoopState>,
/// layer_flush_start_tx can be used to wake up the layer-flushing task.
/// - The u64 value is a counter, incremented every time a new flush cycle is requested.
/// The flush cycle counter is sent back on the layer_flush_done channel when
/// the flush finishes. You can use that to wait for the flush to finish.
/// - The LSN is updated to max() of its current value and the latest disk_consistent_lsn
/// read by whoever sends an update
layer_flush_start_tx: tokio::sync::watch::Sender<(u64, Lsn)>,
/// to be notified when layer flushing has finished, subscribe to the layer_flush_done channel
layer_flush_done_tx: tokio::sync::watch::Sender<(u64, Result<(), FlushLayerError>)>,
// Needed to ensure that we can't create a branch at a point that was already garbage collected
pub latest_gc_cutoff_lsn: Rcu<Lsn>,
// List of child timelines and their branch points. This is needed to avoid
// garbage collecting data that is still needed by the child timelines.
pub(crate) gc_info: std::sync::RwLock<GcInfo>,
// It may change across major versions so for simplicity
// keep it after running initdb for a timeline.
// It is needed in checks when we want to error on some operations
// when they are requested for pre-initdb lsn.
// It can be unified with latest_gc_cutoff_lsn under some "first_valid_lsn",
// though let's keep them both for better error visibility.
pub initdb_lsn: Lsn,
/// When did we last calculate the partitioning?
partitioning: tokio::sync::Mutex<((KeyPartitioning, SparseKeyPartitioning), Lsn)>,
/// Configuration: how often should the partitioning be recalculated.
repartition_threshold: u64,
last_image_layer_creation_check_at: AtomicLsn,
/// Current logical size of the "datadir", at the last LSN.
current_logical_size: LogicalSize,
/// Information about the last processed message by the WAL receiver,
/// or None if WAL receiver has not received anything for this timeline
/// yet.
pub last_received_wal: Mutex<Option<WalReceiverInfo>>,
pub walreceiver: Mutex<Option<WalReceiver>>,
/// Relation size cache
pub(crate) rel_size_cache: RwLock<RelSizeCache>,
download_all_remote_layers_task_info: RwLock<Option<DownloadRemoteLayersTaskInfo>>,
state: watch::Sender<TimelineState>,
/// Prevent two tasks from deleting the timeline at the same time. If held, the
/// timeline is being deleted. If 'true', the timeline has already been deleted.
pub delete_progress: Arc<tokio::sync::Mutex<DeleteTimelineFlow>>,
eviction_task_timeline_state: tokio::sync::Mutex<EvictionTaskTimelineState>,
/// Load or creation time information about the disk_consistent_lsn and when the loading
/// happened. Used for consumption metrics.
pub(crate) loaded_at: (Lsn, SystemTime),
/// Gate to prevent shutdown completing while I/O is still happening to this timeline's data
pub(crate) gate: Gate,
/// Cancellation token scoped to this timeline: anything doing long-running work relating
/// to the timeline should drop out when this token fires.
pub(crate) cancel: CancellationToken,
/// Make sure we only have one running compaction at a time in tests.
///
/// Must only be taken in two places:
/// - [`Timeline::compact`] (this file)
/// - [`delete::delete_local_timeline_directory`]
///
/// Timeline deletion will acquire both compaction and gc locks in whatever order.
compaction_lock: tokio::sync::Mutex<()>,
/// Make sure we only have one running gc at a time.
///
/// Must only be taken in two places:
/// - [`Timeline::gc`] (this file)
/// - [`delete::delete_local_timeline_directory`]
///
/// Timeline deletion will acquire both compaction and gc locks in whatever order.
gc_lock: tokio::sync::Mutex<()>,
/// Cloned from [`super::Tenant::timeline_get_throttle`] on construction.
timeline_get_throttle: Arc<
crate::tenant::throttle::Throttle<&'static crate::metrics::tenant_throttling::TimelineGet>,
>,
/// Keep aux directory cache to avoid it's reconstruction on each update
pub(crate) aux_files: tokio::sync::Mutex<AuxFilesState>,
}
pub struct WalReceiverInfo {
pub wal_source_connconf: PgConnectionConfig,
pub last_received_msg_lsn: Lsn,
pub last_received_msg_ts: u128,
}
/// Information about how much history needs to be retained, needed by
/// Garbage Collection.
#[derive(Default)]
pub(crate) struct GcInfo {
/// Specific LSNs that are needed.
///
/// Currently, this includes all points where child branches have
/// been forked off from. In the future, could also include
/// explicit user-defined snapshot points.
pub(crate) retain_lsns: Vec<Lsn>,
/// The cutoff coordinates, which are combined by selecting the minimum.
pub(crate) cutoffs: GcCutoffs,
}
impl GcInfo {
pub(crate) fn min_cutoff(&self) -> Lsn {
self.cutoffs.select_min()
}
}
/// The `GcInfo` component describing which Lsns need to be retained.
#[derive(Debug)]
pub(crate) struct GcCutoffs {
/// Keep everything newer than this point.
///
/// This is calculated by subtracting 'gc_horizon' setting from
/// last-record LSN
///
/// FIXME: is this inclusive or exclusive?
pub(crate) horizon: Lsn,
/// In addition to 'retain_lsns' and 'horizon_cutoff', keep everything newer than this
/// point.
///
/// This is calculated by finding a number such that a record is needed for PITR
/// if only if its LSN is larger than 'pitr_cutoff'.
pub(crate) pitr: Lsn,
}
impl Default for GcCutoffs {
fn default() -> Self {
Self {
horizon: Lsn::INVALID,
pitr: Lsn::INVALID,
}
}
}
impl GcCutoffs {
fn select_min(&self) -> Lsn {
std::cmp::min(self.horizon, self.pitr)
}
}
/// An error happened in a get() operation.
#[derive(thiserror::Error, Debug)]
pub(crate) enum PageReconstructError {
#[error(transparent)]
Other(#[from] anyhow::Error),
#[error("Ancestor LSN wait error: {0}")]
AncestorLsnTimeout(#[from] WaitLsnError),
#[error("timeline shutting down")]
Cancelled,
/// The ancestor of this is being stopped
#[error("ancestor timeline {0} is being stopped")]
AncestorStopping(TimelineId),
/// An error happened replaying WAL records
#[error(transparent)]
WalRedo(anyhow::Error),
#[error("{0}")]
MissingKey(MissingKeyError),
}
#[derive(Debug)]
pub struct MissingKeyError {
key: Key,
shard: ShardNumber,
cont_lsn: Lsn,
request_lsn: Lsn,
ancestor_lsn: Option<Lsn>,
traversal_path: Vec<TraversalPathItem>,
backtrace: Option<std::backtrace::Backtrace>,
}
impl std::fmt::Display for MissingKeyError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"could not find data for key {} (shard {:?}) at LSN {}, request LSN {}",
self.key, self.shard, self.cont_lsn, self.request_lsn
)?;
if let Some(ref ancestor_lsn) = self.ancestor_lsn {
write!(f, ", ancestor {}", ancestor_lsn)?;
}
if !self.traversal_path.is_empty() {
writeln!(f)?;
}
for (r, c, l) in &self.traversal_path {
writeln!(
f,
"layer traversal: result {:?}, cont_lsn {}, layer: {}",
r, c, l,
)?;
}
if let Some(ref backtrace) = self.backtrace {
write!(f, "\n{}", backtrace)?;
}
Ok(())
}
}
impl PageReconstructError {
/// Returns true if this error indicates a tenant/timeline shutdown alike situation
pub(crate) fn is_stopping(&self) -> bool {
use PageReconstructError::*;
match self {
Other(_) => false,
AncestorLsnTimeout(_) => false,
Cancelled | AncestorStopping(_) => true,
WalRedo(_) => false,
MissingKey { .. } => false,
}
}
}
#[derive(thiserror::Error, Debug)]
enum CreateImageLayersError {
#[error("timeline shutting down")]
Cancelled,
#[error(transparent)]
GetVectoredError(GetVectoredError),
#[error(transparent)]
PageReconstructError(PageReconstructError),
#[error(transparent)]
Other(#[from] anyhow::Error),
}
#[derive(thiserror::Error, Debug)]
enum FlushLayerError {
/// Timeline cancellation token was cancelled
#[error("timeline shutting down")]
Cancelled,
#[error(transparent)]
CreateImageLayersError(CreateImageLayersError),
#[error(transparent)]
Other(#[from] anyhow::Error),
}
#[derive(thiserror::Error, Debug)]
pub(crate) enum GetVectoredError {
#[error("timeline shutting down")]
Cancelled,
#[error("Requested too many keys: {0} > {}", Timeline::MAX_GET_VECTORED_KEYS)]
Oversized(u64),
#[error("Requested at invalid LSN: {0}")]
InvalidLsn(Lsn),
#[error("Requested key not found: {0}")]
MissingKey(MissingKeyError),
#[error(transparent)]
GetReadyAncestorError(GetReadyAncestorError),
#[error(transparent)]
Other(#[from] anyhow::Error),
}
#[derive(thiserror::Error, Debug)]
pub(crate) enum GetReadyAncestorError {
#[error("ancestor timeline {0} is being stopped")]
AncestorStopping(TimelineId),
#[error("Ancestor LSN wait error: {0}")]
AncestorLsnTimeout(#[from] WaitLsnError),
#[error("Cancelled")]
Cancelled,
#[error(transparent)]
Other(#[from] anyhow::Error),
}
#[derive(Clone, Copy)]
pub enum LogicalSizeCalculationCause {
Initial,
ConsumptionMetricsSyntheticSize,
EvictionTaskImitation,
TenantSizeHandler,
}
pub enum GetLogicalSizePriority {
User,
Background,
}
#[derive(enumset::EnumSetType)]
pub(crate) enum CompactFlags {
ForceRepartition,
ForceImageLayerCreation,
}
impl std::fmt::Debug for Timeline {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "Timeline<{}>", self.timeline_id)
}
}
#[derive(thiserror::Error, Debug)]
pub(crate) enum WaitLsnError {
// Called on a timeline which is shutting down
#[error("Shutdown")]
Shutdown,
// Called on an timeline not in active state or shutting down
#[error("Bad state (not active)")]
BadState,
// Timeout expired while waiting for LSN to catch up with goal.
#[error("{0}")]
Timeout(String),
}
// The impls below achieve cancellation mapping for errors.
// Perhaps there's a way of achieving this with less cruft.
impl From<CreateImageLayersError> for CompactionError {
fn from(e: CreateImageLayersError) -> Self {
match e {
CreateImageLayersError::Cancelled => CompactionError::ShuttingDown,
_ => CompactionError::Other(e.into()),
}
}
}
impl From<CreateImageLayersError> for FlushLayerError {
fn from(e: CreateImageLayersError) -> Self {
match e {
CreateImageLayersError::Cancelled => FlushLayerError::Cancelled,
any => FlushLayerError::CreateImageLayersError(any),
}
}
}
impl From<PageReconstructError> for CreateImageLayersError {
fn from(e: PageReconstructError) -> Self {
match e {
PageReconstructError::Cancelled => CreateImageLayersError::Cancelled,
_ => CreateImageLayersError::PageReconstructError(e),
}
}
}
impl From<GetVectoredError> for CreateImageLayersError {
fn from(e: GetVectoredError) -> Self {
match e {
GetVectoredError::Cancelled => CreateImageLayersError::Cancelled,
_ => CreateImageLayersError::GetVectoredError(e),
}
}
}
impl From<GetVectoredError> for PageReconstructError {
fn from(e: GetVectoredError) -> Self {
match e {
GetVectoredError::Cancelled => PageReconstructError::Cancelled,
GetVectoredError::InvalidLsn(_) => PageReconstructError::Other(anyhow!("Invalid LSN")),
err @ GetVectoredError::Oversized(_) => PageReconstructError::Other(err.into()),
GetVectoredError::MissingKey(err) => PageReconstructError::MissingKey(err),
GetVectoredError::GetReadyAncestorError(err) => PageReconstructError::from(err),
GetVectoredError::Other(err) => PageReconstructError::Other(err),
}
}
}
impl From<GetReadyAncestorError> for PageReconstructError {
fn from(e: GetReadyAncestorError) -> Self {
use GetReadyAncestorError::*;
match e {
AncestorStopping(tid) => PageReconstructError::AncestorStopping(tid),
AncestorLsnTimeout(wait_err) => PageReconstructError::AncestorLsnTimeout(wait_err),
Cancelled => PageReconstructError::Cancelled,
Other(other) => PageReconstructError::Other(other),
}
}
}
#[derive(
Eq,
PartialEq,
Debug,
Copy,
Clone,
strum_macros::EnumString,
strum_macros::Display,
serde_with::DeserializeFromStr,
serde_with::SerializeDisplay,
)]
#[strum(serialize_all = "kebab-case")]
pub enum GetVectoredImpl {
Sequential,
Vectored,
}
#[derive(
Eq,
PartialEq,
Debug,
Copy,
Clone,
strum_macros::EnumString,
strum_macros::Display,
serde_with::DeserializeFromStr,
serde_with::SerializeDisplay,
)]
#[strum(serialize_all = "kebab-case")]
pub enum GetImpl {
Legacy,
Vectored,
}
pub(crate) enum WaitLsnWaiter<'a> {
Timeline(&'a Timeline),
Tenant,
PageService,
}
/// Argument to [`Timeline::shutdown`].
#[derive(Debug, Clone, Copy)]
pub(crate) enum ShutdownMode {
/// Graceful shutdown, may do a lot of I/O as we flush any open layers to disk and then
/// also to remote storage. This method can easily take multiple seconds for a busy timeline.
///
/// While we are flushing, we continue to accept read I/O for LSNs ingested before
/// the call to [`Timeline::shutdown`].
FreezeAndFlush,
/// Shut down immediately, without waiting for any open layers to flush.
Hard,
}
/// Public interface functions
impl Timeline {
/// Get the LSN where this branch was created
pub(crate) fn get_ancestor_lsn(&self) -> Lsn {
self.ancestor_lsn
}
/// Get the ancestor's timeline id
pub(crate) fn get_ancestor_timeline_id(&self) -> Option<TimelineId> {
self.ancestor_timeline
.as_ref()
.map(|ancestor| ancestor.timeline_id)
}
/// Lock and get timeline's GC cutoff
pub(crate) fn get_latest_gc_cutoff_lsn(&self) -> RcuReadGuard<Lsn> {
self.latest_gc_cutoff_lsn.read()
}
/// Look up given page version.
///
/// If a remote layer file is needed, it is downloaded as part of this
/// call.
///
/// This method enforces [`Self::timeline_get_throttle`] internally.
///
/// NOTE: It is considered an error to 'get' a key that doesn't exist. The
/// abstraction above this needs to store suitable metadata to track what
/// data exists with what keys, in separate metadata entries. If a
/// non-existent key is requested, we may incorrectly return a value from
/// an ancestor branch, for example, or waste a lot of cycles chasing the
/// non-existing key.
///
/// # Cancel-Safety
///
/// This method is cancellation-safe.
#[inline(always)]
pub(crate) async fn get(
&self,
key: Key,
lsn: Lsn,
ctx: &RequestContext,
) -> Result<Bytes, PageReconstructError> {
if !lsn.is_valid() {
return Err(PageReconstructError::Other(anyhow::anyhow!("Invalid LSN")));
}
// This check is debug-only because of the cost of hashing, and because it's a double-check: we
// already checked the key against the shard_identity when looking up the Timeline from
// page_service.
debug_assert!(!self.shard_identity.is_key_disposable(&key));
self.timeline_get_throttle.throttle(ctx, 1).await;
// Check the page cache. We will get back the most recent page with lsn <= `lsn`.
// The cached image can be returned directly if there is no WAL between the cached image
// and requested LSN. The cached image can also be used to reduce the amount of WAL needed
// for redo.
let cached_page_img = match self.lookup_cached_page(&key, lsn, ctx).await {
Some((cached_lsn, cached_img)) => {
match cached_lsn.cmp(&lsn) {
Ordering::Less => {} // there might be WAL between cached_lsn and lsn, we need to check
Ordering::Equal => {
MATERIALIZED_PAGE_CACHE_HIT_DIRECT.inc();
return Ok(cached_img); // exact LSN match, return the image
}
Ordering::Greater => {
unreachable!("the returned lsn should never be after the requested lsn")
}
}
Some((cached_lsn, cached_img))
}
None => None,
};
match self.conf.get_impl {
GetImpl::Legacy => {
let reconstruct_state = ValueReconstructState {
records: Vec::new(),
img: cached_page_img,
};
self.get_impl(key, lsn, reconstruct_state, ctx).await
}
GetImpl::Vectored => {
let keyspace = KeySpace {
ranges: vec![key..key.next()],
};
// Initialise the reconstruct state for the key with the cache
// entry returned above.
let mut reconstruct_state = ValuesReconstructState::new();
// Only add the cached image to the reconstruct state when it exists.
if cached_page_img.is_some() {
let mut key_state = VectoredValueReconstructState::default();
key_state.img = cached_page_img;
reconstruct_state.keys.insert(key, Ok(key_state));
}
let vectored_res = self
.get_vectored_impl(keyspace.clone(), lsn, reconstruct_state, ctx)
.await;
if self.conf.validate_vectored_get {
self.validate_get_vectored_impl(&vectored_res, keyspace, lsn, ctx)
.await;
}
let key_value = vectored_res?.pop_first();
match key_value {
Some((got_key, value)) => {
if got_key != key {
error!(
"Expected {}, but singular vectored get returned {}",
key, got_key
);
Err(PageReconstructError::Other(anyhow!(
"Singular vectored get returned wrong key"
)))
} else {
value
}
}
None => Err(PageReconstructError::MissingKey(MissingKeyError {
key,
shard: self.shard_identity.get_shard_number(&key),
cont_lsn: Lsn(0),
request_lsn: lsn,
ancestor_lsn: None,
traversal_path: Vec::new(),
backtrace: None,
})),
}
}
}
}
/// Not subject to [`Self::timeline_get_throttle`].
async fn get_impl(
&self,
key: Key,
lsn: Lsn,
mut reconstruct_state: ValueReconstructState,
ctx: &RequestContext,
) -> Result<Bytes, PageReconstructError> {
// XXX: structured stats collection for layer eviction here.
trace!(
"get page request for {}@{} from task kind {:?}",
key,
lsn,
ctx.task_kind()
);
let timer = crate::metrics::GET_RECONSTRUCT_DATA_TIME
.for_get_kind(GetKind::Singular)
.start_timer();
let path = self
.get_reconstruct_data(key, lsn, &mut reconstruct_state, ctx)
.await?;
timer.stop_and_record();
let start = Instant::now();
let res = self.reconstruct_value(key, lsn, reconstruct_state).await;
let elapsed = start.elapsed();
crate::metrics::RECONSTRUCT_TIME
.for_get_kind(GetKind::Singular)
.observe(elapsed.as_secs_f64());
if cfg!(feature = "testing") && res.is_err() {
// it can only be walredo issue
use std::fmt::Write;
let mut msg = String::new();
path.into_iter().for_each(|(res, cont_lsn, layer)| {
writeln!(
msg,
"- layer traversal: result {res:?}, cont_lsn {cont_lsn}, layer: {}",
layer,
)
.expect("string grows")
});
// this is to rule out or provide evidence that we could in some cases read a duplicate
// walrecord
tracing::info!("walredo failed, path:\n{msg}");
}
res
}
pub(crate) const MAX_GET_VECTORED_KEYS: u64 = 32;
/// Look up multiple page versions at a given LSN
///
/// This naive implementation will be replaced with a more efficient one
/// which actually vectorizes the read path.
pub(crate) async fn get_vectored(
&self,
keyspace: KeySpace,
lsn: Lsn,
ctx: &RequestContext,
) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
if !lsn.is_valid() {
return Err(GetVectoredError::InvalidLsn(lsn));
}
let key_count = keyspace.total_raw_size().try_into().unwrap();
if key_count > Timeline::MAX_GET_VECTORED_KEYS {
return Err(GetVectoredError::Oversized(key_count));
}
for range in &keyspace.ranges {
let mut key = range.start;
while key != range.end {
assert!(!self.shard_identity.is_key_disposable(&key));
key = key.next();
}
}
trace!(
"get vectored request for {:?}@{} from task kind {:?} will use {} implementation",
keyspace,
lsn,
ctx.task_kind(),
self.conf.get_vectored_impl
);
let start = crate::metrics::GET_VECTORED_LATENCY
.for_task_kind(ctx.task_kind())
.map(|metric| (metric, Instant::now()));
// start counting after throttle so that throttle time
// is always less than observation time
let throttled = self
.timeline_get_throttle
.throttle(ctx, key_count as usize)
.await;
let res = match self.conf.get_vectored_impl {
GetVectoredImpl::Sequential => {
self.get_vectored_sequential_impl(keyspace, lsn, ctx).await
}
GetVectoredImpl::Vectored => {
let vectored_res = self
.get_vectored_impl(keyspace.clone(), lsn, ValuesReconstructState::new(), ctx)
.await;
if self.conf.validate_vectored_get {
self.validate_get_vectored_impl(&vectored_res, keyspace, lsn, ctx)
.await;
}
vectored_res
}
};
if let Some((metric, start)) = start {
let elapsed = start.elapsed();
let ex_throttled = if let Some(throttled) = throttled {
elapsed.checked_sub(throttled)
} else {
Some(elapsed)
};
if let Some(ex_throttled) = ex_throttled {
metric.observe(ex_throttled.as_secs_f64());
} else {
use utils::rate_limit::RateLimit;
static LOGGED: Lazy<Mutex<RateLimit>> =
Lazy::new(|| Mutex::new(RateLimit::new(Duration::from_secs(10))));
let mut rate_limit = LOGGED.lock().unwrap();
rate_limit.call(|| {
warn!("error deducting time spent throttled; this message is logged at a global rate limit");
});
}
}
res
}
/// Scan the keyspace and return all existing key-values in the keyspace. This currently uses vectored
/// get underlying. Normal vectored get would throw an error when a key in the keyspace is not found
/// during the search, but for the scan interface, it returns all existing key-value pairs, and does
/// not expect each single key in the key space will be found. The semantics is closer to the RocksDB
/// scan iterator interface. We could optimize this interface later to avoid some checks in the vectored
/// get path to maintain and split the probing and to-be-probe keyspace. We also need to ensure that
/// the scan operation will not cause OOM in the future.
#[allow(dead_code)]
pub(crate) async fn scan(
&self,
keyspace: KeySpace,
lsn: Lsn,
ctx: &RequestContext,
) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
if !lsn.is_valid() {
return Err(GetVectoredError::InvalidLsn(lsn));
}
trace!(
"key-value scan request for {:?}@{} from task kind {:?}",
keyspace,
lsn,
ctx.task_kind()
);
// We should generalize this into Keyspace::contains in the future.
for range in &keyspace.ranges {
if range.start.field1 < METADATA_KEY_BEGIN_PREFIX
|| range.end.field1 > METADATA_KEY_END_PREFIX
{
return Err(GetVectoredError::Other(anyhow::anyhow!(
"only metadata keyspace can be scanned"
)));
}
}
let start = crate::metrics::SCAN_LATENCY
.for_task_kind(ctx.task_kind())
.map(ScanLatencyOngoingRecording::start_recording);
// start counting after throttle so that throttle time
// is always less than observation time
let throttled = self
.timeline_get_throttle
// assume scan = 1 quota for now until we find a better way to process this
.throttle(ctx, 1)
.await;
let vectored_res = self
.get_vectored_impl(
keyspace.clone(),
lsn,
ValuesReconstructState::default(),
ctx,
)
.await;
if let Some(recording) = start {
recording.observe(throttled);
}
vectored_res
}
/// Not subject to [`Self::timeline_get_throttle`].
pub(super) async fn get_vectored_sequential_impl(
&self,
keyspace: KeySpace,
lsn: Lsn,
ctx: &RequestContext,
) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
let mut values = BTreeMap::new();
for range in keyspace.ranges {
let mut key = range.start;
while key != range.end {
let block = self
.get_impl(key, lsn, ValueReconstructState::default(), ctx)
.await;
use PageReconstructError::*;
match block {
Err(Cancelled | AncestorStopping(_)) => {
return Err(GetVectoredError::Cancelled)
}
Err(MissingKey(_))
if NON_INHERITED_RANGE.contains(&key)
|| NON_INHERITED_SPARSE_RANGE.contains(&key) =>
{
// Ignore missing key error for aux key range. TODO: currently, we assume non_inherited_range == aux_key_range.
// When we add more types of keys into the page server, we should revisit this part of code and throw errors
// accordingly.
key = key.next();
}
Err(MissingKey(err)) => {
return Err(GetVectoredError::MissingKey(err));
}
Err(Other(err))
if err
.to_string()
.contains("downloading evicted layer file failed") =>
{
return Err(GetVectoredError::Other(err))
}
Err(Other(err))
if err
.chain()
.any(|cause| cause.to_string().contains("layer loading failed")) =>
{
// The intent here is to achieve error parity with the vectored read path.
// When vectored read fails to load a layer it fails the whole read, hence
// we mimic this behaviour here to keep the validation happy.
return Err(GetVectoredError::Other(err));
}
_ => {
values.insert(key, block);
key = key.next();
}
}
}
}
Ok(values)
}
pub(super) async fn get_vectored_impl(
&self,
keyspace: KeySpace,
lsn: Lsn,
mut reconstruct_state: ValuesReconstructState,
ctx: &RequestContext,
) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
let get_kind = if keyspace.total_raw_size() == 1 {
GetKind::Singular
} else {
GetKind::Vectored
};
let get_data_timer = crate::metrics::GET_RECONSTRUCT_DATA_TIME
.for_get_kind(get_kind)
.start_timer();
self.get_vectored_reconstruct_data(keyspace, lsn, &mut reconstruct_state, ctx)
.await?;
get_data_timer.stop_and_record();
let reconstruct_timer = crate::metrics::RECONSTRUCT_TIME
.for_get_kind(get_kind)
.start_timer();
let mut results: BTreeMap<Key, Result<Bytes, PageReconstructError>> = BTreeMap::new();
let layers_visited = reconstruct_state.get_layers_visited();
for (key, res) in reconstruct_state.keys {
match res {
Err(err) => {
results.insert(key, Err(err));
}
Ok(state) => {
let state = ValueReconstructState::from(state);
let reconstruct_res = self.reconstruct_value(key, lsn, state).await;
results.insert(key, reconstruct_res);
}
}
}
reconstruct_timer.stop_and_record();
// Note that this is an approximation. Tracking the exact number of layers visited
// per key requires virtually unbounded memory usage and is inefficient
// (i.e. segment tree tracking each range queried from a layer)
crate::metrics::VEC_READ_NUM_LAYERS_VISITED
.observe(layers_visited as f64 / results.len() as f64);
Ok(results)
}
/// Not subject to [`Self::timeline_get_throttle`].
pub(super) async fn validate_get_vectored_impl(
&self,
vectored_res: &Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError>,
keyspace: KeySpace,
lsn: Lsn,
ctx: &RequestContext,
) {
if keyspace.overlaps(&Key::metadata_key_range()) {
// skip validation for metadata key range
return;
}
let sequential_res = self
.get_vectored_sequential_impl(keyspace.clone(), lsn, ctx)
.await;
fn errors_match(lhs: &GetVectoredError, rhs: &GetVectoredError) -> bool {
use GetVectoredError::*;
match (lhs, rhs) {
(Oversized(l), Oversized(r)) => l == r,
(InvalidLsn(l), InvalidLsn(r)) => l == r,
(MissingKey(l), MissingKey(r)) => l.key == r.key,
(GetReadyAncestorError(_), GetReadyAncestorError(_)) => true,
(Other(_), Other(_)) => true,
_ => false,
}
}
match (&sequential_res, vectored_res) {
(Err(GetVectoredError::Cancelled), _) => {},
(_, Err(GetVectoredError::Cancelled)) => {},
(Err(seq_err), Ok(_)) => {
panic!(concat!("Sequential get failed with {}, but vectored get did not",
" - keyspace={:?} lsn={}"),
seq_err, keyspace, lsn) },
(Ok(_), Err(GetVectoredError::GetReadyAncestorError(GetReadyAncestorError::AncestorLsnTimeout(_)))) => {
// Sequential get runs after vectored get, so it is possible for the later
// to time out while waiting for its ancestor's Lsn to become ready and for the
// former to succeed (it essentially has a doubled wait time).
},
(Ok(_), Err(vec_err)) => {
panic!(concat!("Vectored get failed with {}, but sequential get did not",
" - keyspace={:?} lsn={}"),
vec_err, keyspace, lsn) },
(Err(seq_err), Err(vec_err)) => {
assert!(errors_match(seq_err, vec_err),
"Mismatched errors: {seq_err} != {vec_err} - keyspace={keyspace:?} lsn={lsn}")},
(Ok(seq_values), Ok(vec_values)) => {
seq_values.iter().zip(vec_values.iter()).for_each(|((seq_key, seq_res), (vec_key, vec_res))| {
assert_eq!(seq_key, vec_key);
match (seq_res, vec_res) {
(Ok(seq_blob), Ok(vec_blob)) => {
Self::validate_key_equivalence(seq_key, &keyspace, lsn, seq_blob, vec_blob);
},
(Err(err), Ok(_)) => {
panic!(
concat!("Sequential get failed with {} for key {}, but vectored get did not",
" - keyspace={:?} lsn={}"),
err, seq_key, keyspace, lsn) },
(Ok(_), Err(err)) => {
panic!(
concat!("Vectored get failed with {} for key {}, but sequential get did not",
" - keyspace={:?} lsn={}"),
err, seq_key, keyspace, lsn) },
(Err(_), Err(_)) => {}
}
})
}
}
}
fn validate_key_equivalence(
key: &Key,
keyspace: &KeySpace,
lsn: Lsn,
seq: &Bytes,
vec: &Bytes,
) {
if *key == AUX_FILES_KEY {
// The value reconstruct of AUX_FILES_KEY from records is not deterministic
// since it uses a hash map under the hood. Hence, deserialise both results
// before comparing.
let seq_aux_dir_res = AuxFilesDirectory::des(seq);
let vec_aux_dir_res = AuxFilesDirectory::des(vec);
match (&seq_aux_dir_res, &vec_aux_dir_res) {
(Ok(seq_aux_dir), Ok(vec_aux_dir)) => {
assert_eq!(
seq_aux_dir, vec_aux_dir,
"Mismatch for key {} - keyspace={:?} lsn={}",
key, keyspace, lsn
);
}
(Err(_), Err(_)) => {}
_ => {
panic!("Mismatch for {key}: {seq_aux_dir_res:?} != {vec_aux_dir_res:?}");
}
}
} else {
// All other keys should reconstruct deterministically, so we simply compare the blobs.
assert_eq!(
seq, vec,
"Image mismatch for key {key} - keyspace={keyspace:?} lsn={lsn}"
);
}
}
/// Get last or prev record separately. Same as get_last_record_rlsn().last/prev.
pub(crate) fn get_last_record_lsn(&self) -> Lsn {
self.last_record_lsn.load().last
}
pub(crate) fn get_prev_record_lsn(&self) -> Lsn {
self.last_record_lsn.load().prev
}
/// Atomically get both last and prev.
pub(crate) fn get_last_record_rlsn(&self) -> RecordLsn {
self.last_record_lsn.load()
}
/// Subscribe to callers of wait_lsn(). The value of the channel is None if there are no
/// wait_lsn() calls in progress, and Some(Lsn) if there is an active waiter for wait_lsn().
pub(crate) fn subscribe_for_wait_lsn_updates(&self) -> watch::Receiver<Option<Lsn>> {
self.last_record_lsn.status_receiver()
}
pub(crate) fn get_disk_consistent_lsn(&self) -> Lsn {
self.disk_consistent_lsn.load()
}
/// remote_consistent_lsn from the perspective of the tenant's current generation,
/// not validated with control plane yet.
/// See [`Self::get_remote_consistent_lsn_visible`].
pub(crate) fn get_remote_consistent_lsn_projected(&self) -> Option<Lsn> {
if let Some(remote_client) = &self.remote_client {
remote_client.remote_consistent_lsn_projected()
} else {
None
}
}
/// remote_consistent_lsn which the tenant is guaranteed not to go backward from,
/// i.e. a value of remote_consistent_lsn_projected which has undergone
/// generation validation in the deletion queue.
pub(crate) fn get_remote_consistent_lsn_visible(&self) -> Option<Lsn> {
if let Some(remote_client) = &self.remote_client {
remote_client.remote_consistent_lsn_visible()
} else {
None
}
}
/// The sum of the file size of all historic layers in the layer map.
/// This method makes no distinction between local and remote layers.
/// Hence, the result **does not represent local filesystem usage**.
pub(crate) async fn layer_size_sum(&self) -> u64 {
let guard = self.layers.read().await;
let layer_map = guard.layer_map();
let mut size = 0;
for l in layer_map.iter_historic_layers() {
size += l.file_size();
}
size
}
pub(crate) fn resident_physical_size(&self) -> u64 {
self.metrics.resident_physical_size_get()
}
pub(crate) fn get_directory_metrics(&self) -> [u64; DirectoryKind::KINDS_NUM] {
array::from_fn(|idx| self.directory_metrics[idx].load(AtomicOrdering::Relaxed))
}
///
/// Wait until WAL has been received and processed up to this LSN.
///
/// You should call this before any of the other get_* or list_* functions. Calling
/// those functions with an LSN that has been processed yet is an error.
///
pub(crate) async fn wait_lsn(
&self,
lsn: Lsn,
who_is_waiting: WaitLsnWaiter<'_>,
ctx: &RequestContext, /* Prepare for use by cancellation */
) -> Result<(), WaitLsnError> {
if self.cancel.is_cancelled() {
return Err(WaitLsnError::Shutdown);
} else if !self.is_active() {
return Err(WaitLsnError::BadState);
}
if cfg!(debug_assertions) {
match ctx.task_kind() {
TaskKind::WalReceiverManager
| TaskKind::WalReceiverConnectionHandler
| TaskKind::WalReceiverConnectionPoller => {
let is_myself = match who_is_waiting {
WaitLsnWaiter::Timeline(waiter) => Weak::ptr_eq(&waiter.myself, &self.myself),
WaitLsnWaiter::Tenant | WaitLsnWaiter::PageService => unreachable!("tenant or page_service context are not expected to have task kind {:?}", ctx.task_kind()),
};
if is_myself {
if let Err(current) = self.last_record_lsn.would_wait_for(lsn) {
// walingest is the only one that can advance last_record_lsn; it should make sure to never reach here
panic!("this timeline's walingest task is calling wait_lsn({lsn}) but we only have last_record_lsn={current}; would deadlock");
}
} else {
// if another timeline's is waiting for us, there's no deadlock risk because
// our walreceiver task can make progress independent of theirs
}
}
_ => {}
}
}
let _timer = crate::metrics::WAIT_LSN_TIME.start_timer();
match self
.last_record_lsn
.wait_for_timeout(lsn, self.conf.wait_lsn_timeout)
.await
{
Ok(()) => Ok(()),
Err(e) => {
use utils::seqwait::SeqWaitError::*;
match e {
Shutdown => Err(WaitLsnError::Shutdown),
Timeout => {
// don't count the time spent waiting for lock below, and also in walreceiver.status(), towards the wait_lsn_time_histo
drop(_timer);
let walreceiver_status = self.walreceiver_status();
Err(WaitLsnError::Timeout(format!(
"Timed out while waiting for WAL record at LSN {} to arrive, last_record_lsn {} disk consistent LSN={}, WalReceiver status: {}",
lsn,
self.get_last_record_lsn(),
self.get_disk_consistent_lsn(),
walreceiver_status,
)))
}
}
}
}
}
pub(crate) fn walreceiver_status(&self) -> String {
match &*self.walreceiver.lock().unwrap() {
None => "stopping or stopped".to_string(),
Some(walreceiver) => match walreceiver.status() {
Some(status) => status.to_human_readable_string(),
None => "Not active".to_string(),
},
}
}
/// Check that it is valid to request operations with that lsn.
pub(crate) fn check_lsn_is_in_scope(
&self,
lsn: Lsn,
latest_gc_cutoff_lsn: &RcuReadGuard<Lsn>,
) -> anyhow::Result<()> {
ensure!(
lsn >= **latest_gc_cutoff_lsn,
"LSN {} is earlier than latest GC horizon {} (we might've already garbage collected needed data)",
lsn,
**latest_gc_cutoff_lsn,
);
Ok(())
}
/// Flush to disk all data that was written with the put_* functions
#[instrument(skip(self), fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id))]
pub(crate) async fn freeze_and_flush(&self) -> anyhow::Result<()> {
self.freeze_and_flush0().await
}
// This exists to provide a non-span creating version of `freeze_and_flush` we can call without
// polluting the span hierarchy.
pub(crate) async fn freeze_and_flush0(&self) -> anyhow::Result<()> {
let to_lsn = self.freeze_inmem_layer(false).await;
self.flush_frozen_layers_and_wait(to_lsn).await
}
// Check if an open ephemeral layer should be closed: this provides
// background enforcement of checkpoint interval if there is no active WAL receiver, to avoid keeping
// an ephemeral layer open forever when idle. It also freezes layers if the global limit on
// ephemeral layer bytes has been breached.
pub(super) async fn maybe_freeze_ephemeral_layer(&self) {
let Ok(_write_guard) = self.write_lock.try_lock() else {
// If the write lock is held, there is an active wal receiver: rolling open layers
// is their responsibility while they hold this lock.
return;
};
let Ok(layers_guard) = self.layers.try_read() else {
// Don't block if the layer lock is busy
return;
};
let Some(open_layer) = &layers_guard.layer_map().open_layer else {
// If there is no open layer, we have no layer freezing to do. However, we might need to generate
// some updates to disk_consistent_lsn and remote_consistent_lsn, in case we ingested some WAL regions
// that didn't result in writes to this shard.
// Must not hold the layers lock while waiting for a flush.
drop(layers_guard);
let last_record_lsn = self.get_last_record_lsn();
let disk_consistent_lsn = self.get_disk_consistent_lsn();
if last_record_lsn > disk_consistent_lsn {
// We have no open layer, but disk_consistent_lsn is behind the last record: this indicates
// we are a sharded tenant and have skipped some WAL
let last_freeze_ts = *self.last_freeze_ts.read().unwrap();
if last_freeze_ts.elapsed() >= self.get_checkpoint_timeout() {
// Only do this if have been layer-less longer than get_checkpoint_timeout, so that a shard
// without any data ingested (yet) doesn't write a remote index as soon as it
// sees its LSN advance: we only do this if we've been layer-less
// for some time.
tracing::debug!(
"Advancing disk_consistent_lsn past WAL ingest gap {} -> {}",
disk_consistent_lsn,
last_record_lsn
);
// The flush loop will update remote consistent LSN as well as disk consistent LSN.
self.flush_frozen_layers_and_wait(last_record_lsn)
.await
.ok();
}
}
return;
};
let Some(current_size) = open_layer.try_len() else {
// Unexpected: since we hold the write guard, nobody else should be writing to this layer, so
// read lock to get size should always succeed.
tracing::warn!("Lock conflict while reading size of open layer");
return;
};
let current_lsn = self.get_last_record_lsn();
let checkpoint_distance_override = open_layer.tick().await;
if let Some(size_override) = checkpoint_distance_override {
if current_size > size_override {
// This is not harmful, but it only happens in relatively rare cases where
// time-based checkpoints are not happening fast enough to keep the amount of
// ephemeral data within configured limits. It's a sign of stress on the system.
tracing::info!("Early-rolling open layer at size {current_size} (limit {size_override}) due to dirty data pressure");
}
}
let checkpoint_distance =
checkpoint_distance_override.unwrap_or(self.get_checkpoint_distance());
if self.should_roll(
current_size,
current_size,
checkpoint_distance,
self.get_last_record_lsn(),
self.last_freeze_at.load(),
open_layer.get_opened_at(),
) {
match open_layer.info() {
InMemoryLayerInfo::Frozen { lsn_start, lsn_end } => {
// We may reach this point if the layer was already frozen by not yet flushed: flushing
// happens asynchronously in the background.
tracing::debug!(
"Not freezing open layer, it's already frozen ({lsn_start}..{lsn_end})"
);
}
InMemoryLayerInfo::Open { .. } => {
// Upgrade to a write lock and freeze the layer
drop(layers_guard);
let mut layers_guard = self.layers.write().await;
layers_guard
.try_freeze_in_memory_layer(current_lsn, &self.last_freeze_at)
.await;
}
}
self.flush_frozen_layers();
}
}
/// Outermost timeline compaction operation; downloads needed layers.
pub(crate) async fn compact(
self: &Arc<Self>,
cancel: &CancellationToken,
flags: EnumSet<CompactFlags>,
ctx: &RequestContext,
) -> Result<(), CompactionError> {
// most likely the cancellation token is from background task, but in tests it could be the
// request task as well.
let prepare = async move {
let guard = self.compaction_lock.lock().await;
let permit = super::tasks::concurrent_background_tasks_rate_limit_permit(
BackgroundLoopKind::Compaction,
ctx,
)
.await;
(guard, permit)
};
// this wait probably never needs any "long time spent" logging, because we already nag if
// compaction task goes over it's period (20s) which is quite often in production.
let (_guard, _permit) = tokio::select! {
tuple = prepare => { tuple },
_ = self.cancel.cancelled() => return Ok(()),
_ = cancel.cancelled() => return Ok(()),
};
let last_record_lsn = self.get_last_record_lsn();
// Last record Lsn could be zero in case the timeline was just created
if !last_record_lsn.is_valid() {
warn!("Skipping compaction for potentially just initialized timeline, it has invalid last record lsn: {last_record_lsn}");
return Ok(());
}
match self.get_compaction_algorithm() {
CompactionAlgorithm::Tiered => self.compact_tiered(cancel, ctx).await,
CompactionAlgorithm::Legacy => self.compact_legacy(cancel, flags, ctx).await,
}
}
/// Mutate the timeline with a [`TimelineWriter`].
pub(crate) async fn writer(&self) -> TimelineWriter<'_> {
TimelineWriter {
tl: self,
write_guard: self.write_lock.lock().await,
}
}
pub(crate) fn activate(
self: &Arc<Self>,
parent: Arc<crate::tenant::Tenant>,
broker_client: BrokerClientChannel,
background_jobs_can_start: Option<&completion::Barrier>,
ctx: &RequestContext,
) {
if self.tenant_shard_id.is_shard_zero() {
// Logical size is only maintained accurately on shard zero.
self.spawn_initial_logical_size_computation_task(ctx);
}
self.launch_wal_receiver(ctx, broker_client);
self.set_state(TimelineState::Active);
self.launch_eviction_task(parent, background_jobs_can_start);
}
/// After this function returns, there are no timeline-scoped tasks are left running.
///
/// The preferred pattern for is:
/// - in any spawned tasks, keep Timeline::guard open + Timeline::cancel / child token
/// - if early shutdown (not just cancellation) of a sub-tree of tasks is required,
/// go the extra mile and keep track of JoinHandles
/// - Keep track of JoinHandles using a passed-down `Arc<Mutex<Option<JoinSet>>>` or similar,
/// instead of spawning directly on a runtime. It is a more composable / testable pattern.
///
/// For legacy reasons, we still have multiple tasks spawned using
/// `task_mgr::spawn(X, Some(tenant_id), Some(timeline_id))`.
/// We refer to these as "timeline-scoped task_mgr tasks".
/// Some of these tasks are already sensitive to Timeline::cancel while others are
/// not sensitive to Timeline::cancel and instead respect [`task_mgr::shutdown_token`]
/// or [`task_mgr::shutdown_watcher`].
/// We want to gradually convert the code base away from these.
///
/// Here is an inventory of timeline-scoped task_mgr tasks that are still sensitive to
/// `task_mgr::shutdown_{token,watcher}` (there are also tenant-scoped and global-scoped
/// ones that aren't mentioned here):
/// - [`TaskKind::TimelineDeletionWorker`]
/// - NB: also used for tenant deletion
/// - [`TaskKind::RemoteUploadTask`]`
/// - [`TaskKind::InitialLogicalSizeCalculation`]
/// - [`TaskKind::DownloadAllRemoteLayers`] (can we get rid of it?)
// Inventory of timeline-scoped task_mgr tasks that use spawn but aren't sensitive:
/// - [`TaskKind::Eviction`]
/// - [`TaskKind::LayerFlushTask`]
/// - [`TaskKind::OndemandLogicalSizeCalculation`]
/// - [`TaskKind::GarbageCollector`] (immediate_gc is timeline-scoped)
pub(crate) async fn shutdown(&self, mode: ShutdownMode) {
debug_assert_current_span_has_tenant_and_timeline_id();
let try_freeze_and_flush = match mode {
ShutdownMode::FreezeAndFlush => true,
ShutdownMode::Hard => false,
};
// Regardless of whether we're going to try_freeze_and_flush
// or not, stop ingesting any more data. Walreceiver only provides
// cancellation but no "wait until gone", because it uses the Timeline::gate.
// So, only after the self.gate.close() below will we know for sure that
// no walreceiver tasks are left.
// For `try_freeze_and_flush=true`, this means that we might still be ingesting
// data during the call to `self.freeze_and_flush()` below.
// That's not ideal, but, we don't have the concept of a ChildGuard,
// which is what we'd need to properly model early shutdown of the walreceiver
// task sub-tree before the other Timeline task sub-trees.
let walreceiver = self.walreceiver.lock().unwrap().take();
tracing::debug!(
is_some = walreceiver.is_some(),
"Waiting for WalReceiverManager..."
);
if let Some(walreceiver) = walreceiver {
walreceiver.cancel();
}
// ... and inform any waiters for newer LSNs that there won't be any.
self.last_record_lsn.shutdown();
if try_freeze_and_flush {
// we shut down walreceiver above, so, we won't add anything more
// to the InMemoryLayer; freeze it and wait for all frozen layers
// to reach the disk & upload queue, then shut the upload queue and
// wait for it to drain.
match self.freeze_and_flush().await {
Ok(_) => {
// drain the upload queue
if let Some(client) = self.remote_client.as_ref() {
// if we did not wait for completion here, it might be our shutdown process
// didn't wait for remote uploads to complete at all, as new tasks can forever
// be spawned.
//
// what is problematic is the shutting down of RemoteTimelineClient, because
// obviously it does not make sense to stop while we wait for it, but what
// about corner cases like s3 suddenly hanging up?
client.shutdown().await;
}
}
Err(e) => {
// Non-fatal. Shutdown is infallible. Failures to flush just mean that
// we have some extra WAL replay to do next time the timeline starts.
warn!("failed to freeze and flush: {e:#}");
}
}
}
// Signal any subscribers to our cancellation token to drop out
tracing::debug!("Cancelling CancellationToken");
self.cancel.cancel();
// Transition the remote_client into a state where it's only useful for timeline deletion.
// (The deletion use case is why we can't just hook up remote_client to Self::cancel).)
if let Some(remote_client) = self.remote_client.as_ref() {
remote_client.stop();
// As documented in remote_client.stop()'s doc comment, it's our responsibility
// to shut down the upload queue tasks.
// TODO: fix that, task management should be encapsulated inside remote_client.
task_mgr::shutdown_tasks(
Some(TaskKind::RemoteUploadTask),
Some(self.tenant_shard_id),
Some(self.timeline_id),
)
.await;
}
// TODO: work toward making this a no-op. See this funciton's doc comment for more context.
tracing::debug!("Waiting for tasks...");
task_mgr::shutdown_tasks(None, Some(self.tenant_shard_id), Some(self.timeline_id)).await;
// Finally wait until any gate-holders are complete.
//
// TODO: once above shutdown_tasks is a no-op, we can close the gate before calling shutdown_tasks
// and use a TBD variant of shutdown_tasks that asserts that there were no tasks left.
self.gate.close().await;
self.metrics.shutdown();
}
pub(crate) fn set_state(&self, new_state: TimelineState) {
match (self.current_state(), new_state) {
(equal_state_1, equal_state_2) if equal_state_1 == equal_state_2 => {
info!("Ignoring new state, equal to the existing one: {equal_state_2:?}");
}
(st, TimelineState::Loading) => {
error!("ignoring transition from {st:?} into Loading state");
}
(TimelineState::Broken { .. }, new_state) => {
error!("Ignoring state update {new_state:?} for broken timeline");
}
(TimelineState::Stopping, TimelineState::Active) => {
error!("Not activating a Stopping timeline");
}
(_, new_state) => {
self.state.send_replace(new_state);
}
}
}
pub(crate) fn set_broken(&self, reason: String) {
let backtrace_str: String = format!("{}", std::backtrace::Backtrace::force_capture());
let broken_state = TimelineState::Broken {
reason,
backtrace: backtrace_str,
};
self.set_state(broken_state);
// Although the Broken state is not equivalent to shutdown() (shutdown will be called
// later when this tenant is detach or the process shuts down), firing the cancellation token
// here avoids the need for other tasks to watch for the Broken state explicitly.
self.cancel.cancel();
}
pub(crate) fn current_state(&self) -> TimelineState {
self.state.borrow().clone()
}
pub(crate) fn is_broken(&self) -> bool {
matches!(&*self.state.borrow(), TimelineState::Broken { .. })
}
pub(crate) fn is_active(&self) -> bool {
self.current_state() == TimelineState::Active
}
pub(crate) fn is_stopping(&self) -> bool {
self.current_state() == TimelineState::Stopping
}
pub(crate) fn subscribe_for_state_updates(&self) -> watch::Receiver<TimelineState> {
self.state.subscribe()
}
pub(crate) async fn wait_to_become_active(
&self,
_ctx: &RequestContext, // Prepare for use by cancellation
) -> Result<(), TimelineState> {
let mut receiver = self.state.subscribe();
loop {
let current_state = receiver.borrow().clone();
match current_state {
TimelineState::Loading => {
receiver
.changed()
.await
.expect("holding a reference to self");
}
TimelineState::Active { .. } => {
return Ok(());
}
TimelineState::Broken { .. } | TimelineState::Stopping => {
// There's no chance the timeline can transition back into ::Active
return Err(current_state);
}
}
}
}
pub(crate) async fn layer_map_info(&self, reset: LayerAccessStatsReset) -> LayerMapInfo {
let guard = self.layers.read().await;
let layer_map = guard.layer_map();
let mut in_memory_layers = Vec::with_capacity(layer_map.frozen_layers.len() + 1);
if let Some(open_layer) = &layer_map.open_layer {
in_memory_layers.push(open_layer.info());
}
for frozen_layer in &layer_map.frozen_layers {
in_memory_layers.push(frozen_layer.info());
}
let mut historic_layers = Vec::new();
for historic_layer in layer_map.iter_historic_layers() {
let historic_layer = guard.get_from_desc(&historic_layer);
historic_layers.push(historic_layer.info(reset));
}
LayerMapInfo {
in_memory_layers,
historic_layers,
}
}
#[instrument(skip_all, fields(tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))]
pub(crate) async fn download_layer(
&self,
layer_file_name: &LayerName,
) -> anyhow::Result<Option<bool>> {
let Some(layer) = self.find_layer(layer_file_name).await else {
return Ok(None);
};
if self.remote_client.is_none() {
return Ok(Some(false));
}
layer.download().await?;
Ok(Some(true))
}
/// Evict just one layer.
///
/// Returns `Ok(None)` in the case where the layer could not be found by its `layer_file_name`.
pub(crate) async fn evict_layer(
&self,
layer_file_name: &LayerName,
) -> anyhow::Result<Option<bool>> {
let _gate = self
.gate
.enter()
.map_err(|_| anyhow::anyhow!("Shutting down"))?;
let Some(local_layer) = self.find_layer(layer_file_name).await else {
return Ok(None);
};
// curl has this by default
let timeout = std::time::Duration::from_secs(120);
match local_layer.evict_and_wait(timeout).await {
Ok(()) => Ok(Some(true)),
Err(EvictionError::NotFound) => Ok(Some(false)),
Err(EvictionError::Downloaded) => Ok(Some(false)),
Err(EvictionError::Timeout) => Ok(Some(false)),
}
}
fn should_roll(
&self,
layer_size: u64,
projected_layer_size: u64,
checkpoint_distance: u64,
projected_lsn: Lsn,
last_freeze_at: Lsn,
opened_at: Instant,
) -> bool {
let distance = projected_lsn.widening_sub(last_freeze_at);
// Rolling the open layer can be triggered by:
// 1. The distance from the last LSN we rolled at. This bounds the amount of WAL that
// the safekeepers need to store. For sharded tenants, we multiply by shard count to
// account for how writes are distributed across shards: we expect each node to consume
// 1/count of the LSN on average.
// 2. The size of the currently open layer.
// 3. The time since the last roll. It helps safekeepers to regard pageserver as caught
// up and suspend activity.
if distance >= checkpoint_distance as i128 * self.shard_identity.count.count() as i128 {
info!(
"Will roll layer at {} with layer size {} due to LSN distance ({})",
projected_lsn, layer_size, distance
);
true
} else if projected_layer_size >= checkpoint_distance {
info!(
"Will roll layer at {} with layer size {} due to layer size ({})",
projected_lsn, layer_size, projected_layer_size
);
true
} else if distance > 0 && opened_at.elapsed() >= self.get_checkpoint_timeout() {
info!(
"Will roll layer at {} with layer size {} due to time since first write to the layer ({:?})",
projected_lsn,
layer_size,
opened_at.elapsed()
);
true
} else {
false
}
}
}
/// Number of times we will compute partition within a checkpoint distance.
const REPARTITION_FREQ_IN_CHECKPOINT_DISTANCE: u64 = 10;
// Private functions
impl Timeline {
pub(crate) fn get_switch_aux_file_policy(&self) -> AuxFilePolicy {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.switch_aux_file_policy
.unwrap_or(self.conf.default_tenant_conf.switch_aux_file_policy)
}
pub(crate) fn get_lazy_slru_download(&self) -> bool {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.lazy_slru_download
.unwrap_or(self.conf.default_tenant_conf.lazy_slru_download)
}
fn get_checkpoint_distance(&self) -> u64 {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.checkpoint_distance
.unwrap_or(self.conf.default_tenant_conf.checkpoint_distance)
}
fn get_checkpoint_timeout(&self) -> Duration {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.checkpoint_timeout
.unwrap_or(self.conf.default_tenant_conf.checkpoint_timeout)
}
fn get_compaction_target_size(&self) -> u64 {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.compaction_target_size
.unwrap_or(self.conf.default_tenant_conf.compaction_target_size)
}
fn get_compaction_threshold(&self) -> usize {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.compaction_threshold
.unwrap_or(self.conf.default_tenant_conf.compaction_threshold)
}
fn get_image_creation_threshold(&self) -> usize {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.image_creation_threshold
.unwrap_or(self.conf.default_tenant_conf.image_creation_threshold)
}
fn get_compaction_algorithm(&self) -> CompactionAlgorithm {
let tenant_conf = &self.tenant_conf.load();
tenant_conf
.tenant_conf
.compaction_algorithm
.unwrap_or(self.conf.default_tenant_conf.compaction_algorithm)
}
fn get_eviction_policy(&self) -> EvictionPolicy {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.eviction_policy
.unwrap_or(self.conf.default_tenant_conf.eviction_policy)
}
fn get_evictions_low_residence_duration_metric_threshold(
tenant_conf: &TenantConfOpt,
default_tenant_conf: &TenantConf,
) -> Duration {
tenant_conf
.evictions_low_residence_duration_metric_threshold
.unwrap_or(default_tenant_conf.evictions_low_residence_duration_metric_threshold)
}
fn get_image_layer_creation_check_threshold(&self) -> u8 {
let tenant_conf = self.tenant_conf.load();
tenant_conf
.tenant_conf
.image_layer_creation_check_threshold
.unwrap_or(
self.conf
.default_tenant_conf
.image_layer_creation_check_threshold,
)
}
pub(super) fn tenant_conf_updated(&self, new_conf: &TenantConfOpt) {
// NB: Most tenant conf options are read by background loops, so,
// changes will automatically be picked up.
// The threshold is embedded in the metric. So, we need to update it.
{
let new_threshold = Self::get_evictions_low_residence_duration_metric_threshold(
new_conf,
&self.conf.default_tenant_conf,
);
let tenant_id_str = self.tenant_shard_id.tenant_id.to_string();
let shard_id_str = format!("{}", self.tenant_shard_id.shard_slug());
let timeline_id_str = self.timeline_id.to_string();
self.metrics
.evictions_with_low_residence_duration
.write()
.unwrap()
.change_threshold(
&tenant_id_str,
&shard_id_str,
&timeline_id_str,
new_threshold,
);
}
}
/// Open a Timeline handle.
///
/// Loads the metadata for the timeline into memory, but not the layer map.
#[allow(clippy::too_many_arguments)]
pub(super) fn new(
conf: &'static PageServerConf,
tenant_conf: Arc<ArcSwap<AttachedTenantConf>>,
metadata: &TimelineMetadata,
ancestor: Option<Arc<Timeline>>,
timeline_id: TimelineId,
tenant_shard_id: TenantShardId,
generation: Generation,
shard_identity: ShardIdentity,
walredo_mgr: Option<Arc<super::WalRedoManager>>,
resources: TimelineResources,
pg_version: u32,
state: TimelineState,
cancel: CancellationToken,
) -> Arc<Self> {
let disk_consistent_lsn = metadata.disk_consistent_lsn();
let (state, _) = watch::channel(state);
let (layer_flush_start_tx, _) = tokio::sync::watch::channel((0, disk_consistent_lsn));
let (layer_flush_done_tx, _) = tokio::sync::watch::channel((0, Ok(())));
let evictions_low_residence_duration_metric_threshold = {
let loaded_tenant_conf = tenant_conf.load();
Self::get_evictions_low_residence_duration_metric_threshold(
&loaded_tenant_conf.tenant_conf,
&conf.default_tenant_conf,
)
};
Arc::new_cyclic(|myself| {
let mut result = Timeline {
conf,
tenant_conf,
myself: myself.clone(),
timeline_id,
tenant_shard_id,
generation,
shard_identity,
pg_version,
layers: Default::default(),
walredo_mgr,
walreceiver: Mutex::new(None),
remote_client: resources.remote_client.map(Arc::new),
// initialize in-memory 'last_record_lsn' from 'disk_consistent_lsn'.
last_record_lsn: SeqWait::new(RecordLsn {
last: disk_consistent_lsn,
prev: metadata.prev_record_lsn().unwrap_or(Lsn(0)),
}),
disk_consistent_lsn: AtomicLsn::new(disk_consistent_lsn.0),
last_freeze_at: AtomicLsn::new(disk_consistent_lsn.0),
last_freeze_ts: RwLock::new(Instant::now()),
loaded_at: (disk_consistent_lsn, SystemTime::now()),
ancestor_timeline: ancestor,
ancestor_lsn: metadata.ancestor_lsn(),
metrics: TimelineMetrics::new(
&tenant_shard_id,
&timeline_id,
crate::metrics::EvictionsWithLowResidenceDurationBuilder::new(
"mtime",
evictions_low_residence_duration_metric_threshold,
),
),
query_metrics: crate::metrics::SmgrQueryTimePerTimeline::new(
&tenant_shard_id,
&timeline_id,
),
directory_metrics: array::from_fn(|_| AtomicU64::new(0)),
flush_loop_state: Mutex::new(FlushLoopState::NotStarted),
layer_flush_start_tx,
layer_flush_done_tx,
write_lock: tokio::sync::Mutex::new(None),
gc_info: std::sync::RwLock::new(GcInfo::default()),
latest_gc_cutoff_lsn: Rcu::new(metadata.latest_gc_cutoff_lsn()),
initdb_lsn: metadata.initdb_lsn(),
current_logical_size: if disk_consistent_lsn.is_valid() {
// we're creating timeline data with some layer files existing locally,
// need to recalculate timeline's logical size based on data in the layers.
LogicalSize::deferred_initial(disk_consistent_lsn)
} else {
// we're creating timeline data without any layers existing locally,
// initial logical size is 0.
LogicalSize::empty_initial()
},
partitioning: tokio::sync::Mutex::new((
(KeyPartitioning::new(), KeyPartitioning::new().into_sparse()),
Lsn(0),
)),
repartition_threshold: 0,
last_image_layer_creation_check_at: AtomicLsn::new(0),
last_received_wal: Mutex::new(None),
rel_size_cache: RwLock::new(RelSizeCache {
complete_as_of: disk_consistent_lsn,
map: HashMap::new(),
}),
download_all_remote_layers_task_info: RwLock::new(None),
state,
eviction_task_timeline_state: tokio::sync::Mutex::new(
EvictionTaskTimelineState::default(),
),
delete_progress: Arc::new(tokio::sync::Mutex::new(DeleteTimelineFlow::default())),
cancel,
gate: Gate::default(),
compaction_lock: tokio::sync::Mutex::default(),
gc_lock: tokio::sync::Mutex::default(),
timeline_get_throttle: resources.timeline_get_throttle,
aux_files: tokio::sync::Mutex::new(AuxFilesState {
dir: None,
n_deltas: 0,
}),
};
result.repartition_threshold =
result.get_checkpoint_distance() / REPARTITION_FREQ_IN_CHECKPOINT_DISTANCE;
result
.metrics
.last_record_gauge
.set(disk_consistent_lsn.0 as i64);
result
})
}
pub(super) fn maybe_spawn_flush_loop(self: &Arc<Self>) {
let Ok(guard) = self.gate.enter() else {
info!("cannot start flush loop when the timeline gate has already been closed");
return;
};
let mut flush_loop_state = self.flush_loop_state.lock().unwrap();
match *flush_loop_state {
FlushLoopState::NotStarted => (),
FlushLoopState::Running { .. } => {
info!(
"skipping attempt to start flush_loop twice {}/{}",
self.tenant_shard_id, self.timeline_id
);
return;
}
FlushLoopState::Exited => {
warn!(
"ignoring attempt to restart exited flush_loop {}/{}",
self.tenant_shard_id, self.timeline_id
);
return;
}
}
let layer_flush_start_rx = self.layer_flush_start_tx.subscribe();
let self_clone = Arc::clone(self);
debug!("spawning flush loop");
*flush_loop_state = FlushLoopState::Running {
#[cfg(test)]
expect_initdb_optimization: false,
#[cfg(test)]
initdb_optimization_count: 0,
};
task_mgr::spawn(
task_mgr::BACKGROUND_RUNTIME.handle(),
task_mgr::TaskKind::LayerFlushTask,
Some(self.tenant_shard_id),
Some(self.timeline_id),
"layer flush task",
false,
async move {
let _guard = guard;
let background_ctx = RequestContext::todo_child(TaskKind::LayerFlushTask, DownloadBehavior::Error);
self_clone.flush_loop(layer_flush_start_rx, &background_ctx).await;
let mut flush_loop_state = self_clone.flush_loop_state.lock().unwrap();
assert!(matches!(*flush_loop_state, FlushLoopState::Running{ ..}));
*flush_loop_state = FlushLoopState::Exited;
Ok(())
}
.instrument(info_span!(parent: None, "layer flush task", tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))
);
}
/// Creates and starts the wal receiver.
///
/// This function is expected to be called at most once per Timeline's lifecycle
/// when the timeline is activated.
fn launch_wal_receiver(
self: &Arc<Self>,
ctx: &RequestContext,
broker_client: BrokerClientChannel,
) {
info!(
"launching WAL receiver for timeline {} of tenant {}",
self.timeline_id, self.tenant_shard_id
);
let tenant_conf = self.tenant_conf.load();
let wal_connect_timeout = tenant_conf
.tenant_conf
.walreceiver_connect_timeout
.unwrap_or(self.conf.default_tenant_conf.walreceiver_connect_timeout);
let lagging_wal_timeout = tenant_conf
.tenant_conf
.lagging_wal_timeout
.unwrap_or(self.conf.default_tenant_conf.lagging_wal_timeout);
let max_lsn_wal_lag = tenant_conf
.tenant_conf
.max_lsn_wal_lag
.unwrap_or(self.conf.default_tenant_conf.max_lsn_wal_lag);
let mut guard = self.walreceiver.lock().unwrap();
assert!(
guard.is_none(),
"multiple launches / re-launches of WAL receiver are not supported"
);
*guard = Some(WalReceiver::start(
Arc::clone(self),
WalReceiverConf {
wal_connect_timeout,
lagging_wal_timeout,
max_lsn_wal_lag,
auth_token: crate::config::SAFEKEEPER_AUTH_TOKEN.get().cloned(),
availability_zone: self.conf.availability_zone.clone(),
ingest_batch_size: self.conf.ingest_batch_size,
},
broker_client,
ctx,
));
}
/// Initialize with an empty layer map. Used when creating a new timeline.
pub(super) fn init_empty_layer_map(&self, start_lsn: Lsn) {
let mut layers = self.layers.try_write().expect(
"in the context where we call this function, no other task has access to the object",
);
layers.initialize_empty(Lsn(start_lsn.0));
}
/// Scan the timeline directory, cleanup, populate the layer map, and schedule uploads for local-only
/// files.
pub(super) async fn load_layer_map(
&self,
disk_consistent_lsn: Lsn,
index_part: Option<IndexPart>,
) -> anyhow::Result<()> {
use init::{Decision::*, Discovered, DismissedLayer};
use LayerName::*;
let mut guard = self.layers.write().await;
let timer = self.metrics.load_layer_map_histo.start_timer();
// Scan timeline directory and create ImageLayerName and DeltaFilename
// structs representing all files on disk
let timeline_path = self
.conf
.timeline_path(&self.tenant_shard_id, &self.timeline_id);
let conf = self.conf;
let span = tracing::Span::current();
// Copy to move into the task we're about to spawn
let generation = self.generation;
let shard = self.get_shard_index();
let this = self.myself.upgrade().expect("&self method holds the arc");
let (loaded_layers, needs_cleanup, total_physical_size) = tokio::task::spawn_blocking({
move || {
let _g = span.entered();
let discovered = init::scan_timeline_dir(&timeline_path)?;
let mut discovered_layers = Vec::with_capacity(discovered.len());
let mut unrecognized_files = Vec::new();
let mut path = timeline_path;
for discovered in discovered {
let (name, kind) = match discovered {
Discovered::Layer(layer_file_name, local_path, file_size) => {
discovered_layers.push((layer_file_name, local_path, file_size));
continue;
}
Discovered::Metadata => {
warn!("found legacy metadata file, these should have been removed in load_tenant_config");
continue;
}
Discovered::IgnoredBackup => {
continue;
}
Discovered::Unknown(file_name) => {
// we will later error if there are any
unrecognized_files.push(file_name);
continue;
}
Discovered::Ephemeral(name) => (name, "old ephemeral file"),
Discovered::Temporary(name) => (name, "temporary timeline file"),
Discovered::TemporaryDownload(name) => (name, "temporary download"),
};
path.push(Utf8Path::new(&name));
init::cleanup(&path, kind)?;
path.pop();
}
if !unrecognized_files.is_empty() {
// assume that if there are any there are many many.
let n = unrecognized_files.len();
let first = &unrecognized_files[..n.min(10)];
anyhow::bail!(
"unrecognized files in timeline dir (total {n}), first 10: {first:?}"
);
}
let decided = init::reconcile(
discovered_layers,
index_part.as_ref(),
disk_consistent_lsn,
generation,
shard,
);
let mut loaded_layers = Vec::new();
let mut needs_cleanup = Vec::new();
let mut total_physical_size = 0;
for (name, decision) in decided {
let decision = match decision {
Ok(UseRemote { local, remote }) => {
// Remote is authoritative, but we may still choose to retain
// the local file if the contents appear to match
if local.metadata.file_size() == remote.file_size() {
// Use the local file, but take the remote metadata so that we pick up
// the correct generation.
UseLocal(
LocalLayerFileMetadata {
metadata: remote,
local_path: local.local_path
}
)
} else {
init::cleanup_local_file_for_remote(&local, &remote)?;
UseRemote { local, remote }
}
}
Ok(decision) => decision,
Err(DismissedLayer::Future { local }) => {
if let Some(local) = local {
init::cleanup_future_layer(&local.local_path, &name, disk_consistent_lsn)?;
}
needs_cleanup.push(name);
continue;
}
Err(DismissedLayer::LocalOnly(local)) => {
init::cleanup_local_only_file(&name, &local)?;
// this file never existed remotely, we will have to do rework
continue;
}
};
match &name {
Delta(d) => assert!(d.lsn_range.end <= disk_consistent_lsn + 1),
Image(i) => assert!(i.lsn <= disk_consistent_lsn),
}
tracing::debug!(layer=%name, ?decision, "applied");
let layer = match decision {
UseLocal(local) => {
total_physical_size += local.metadata.file_size();
Layer::for_resident(conf, &this, local.local_path, name, local.metadata).drop_eviction_guard()
}
Evicted(remote) | UseRemote { remote, .. } => {
Layer::for_evicted(conf, &this, name, remote)
}
};
loaded_layers.push(layer);
}
Ok((loaded_layers, needs_cleanup, total_physical_size))
}
})
.await
.map_err(anyhow::Error::new)
.and_then(|x| x)?;
let num_layers = loaded_layers.len();
guard.initialize_local_layers(loaded_layers, disk_consistent_lsn + 1);
if let Some(rtc) = self.remote_client.as_ref() {
rtc.schedule_layer_file_deletion(&needs_cleanup)?;
rtc.schedule_index_upload_for_file_changes()?;
// This barrier orders above DELETEs before any later operations.
// This is critical because code executing after the barrier might
// create again objects with the same key that we just scheduled for deletion.
// For example, if we just scheduled deletion of an image layer "from the future",
// later compaction might run again and re-create the same image layer.
// "from the future" here means an image layer whose LSN is > IndexPart::disk_consistent_lsn.
// "same" here means same key range and LSN.
//
// Without a barrier between above DELETEs and the re-creation's PUTs,
// the upload queue may execute the PUT first, then the DELETE.
// In our example, we will end up with an IndexPart referencing a non-existent object.
//
// 1. a future image layer is created and uploaded
// 2. ps restart
// 3. the future layer from (1) is deleted during load layer map
// 4. image layer is re-created and uploaded
// 5. deletion queue would like to delete (1) but actually deletes (4)
// 6. delete by name works as expected, but it now deletes the wrong (later) version
//
// See https://github.com/neondatabase/neon/issues/5878
//
// NB: generation numbers naturally protect against this because they disambiguate
// (1) and (4)
rtc.schedule_barrier()?;
// Tenant::create_timeline will wait for these uploads to happen before returning, or
// on retry.
}
info!(
"loaded layer map with {} layers at {}, total physical size: {}",
num_layers, disk_consistent_lsn, total_physical_size
);
timer.stop_and_record();
Ok(())
}
/// Retrieve current logical size of the timeline.
///
/// The size could be lagging behind the actual number, in case
/// the initial size calculation has not been run (gets triggered on the first size access).
///
/// return size and boolean flag that shows if the size is exact
pub(crate) fn get_current_logical_size(
self: &Arc<Self>,
priority: GetLogicalSizePriority,
ctx: &RequestContext,
) -> logical_size::CurrentLogicalSize {
if !self.tenant_shard_id.is_shard_zero() {
// Logical size is only accurately maintained on shard zero: when called elsewhere, for example
// when HTTP API is serving a GET for timeline zero, return zero
return logical_size::CurrentLogicalSize::Approximate(logical_size::Approximate::zero());
}
let current_size = self.current_logical_size.current_size();
debug!("Current size: {current_size:?}");
match (current_size.accuracy(), priority) {
(logical_size::Accuracy::Exact, _) => (), // nothing to do
(logical_size::Accuracy::Approximate, GetLogicalSizePriority::Background) => {
// background task will eventually deliver an exact value, we're in no rush
}
(logical_size::Accuracy::Approximate, GetLogicalSizePriority::User) => {
// background task is not ready, but user is asking for it now;
// => make the background task skip the line
// (The alternative would be to calculate the size here, but,
// it can actually take a long time if the user has a lot of rels.
// And we'll inevitable need it again; So, let the background task do the work.)
match self
.current_logical_size
.cancel_wait_for_background_loop_concurrency_limit_semaphore
.get()
{
Some(cancel) => cancel.cancel(),
None => {
let state = self.current_state();
if matches!(
state,
TimelineState::Broken { .. } | TimelineState::Stopping
) {
// Can happen when timeline detail endpoint is used when deletion is ongoing (or its broken).
// Don't make noise.
} else {
warn!("unexpected: cancel_wait_for_background_loop_concurrency_limit_semaphore not set, priority-boosting of logical size calculation will not work");
}
}
};
}
}
if let CurrentLogicalSize::Approximate(_) = &current_size {
if ctx.task_kind() == TaskKind::WalReceiverConnectionHandler {
let first = self
.current_logical_size
.did_return_approximate_to_walreceiver
.compare_exchange(
false,
true,
AtomicOrdering::Relaxed,
AtomicOrdering::Relaxed,
)
.is_ok();
if first {
crate::metrics::initial_logical_size::TIMELINES_WHERE_WALRECEIVER_GOT_APPROXIMATE_SIZE.inc();
}
}
}
current_size
}
fn spawn_initial_logical_size_computation_task(self: &Arc<Self>, ctx: &RequestContext) {
let Some(initial_part_end) = self.current_logical_size.initial_part_end else {
// nothing to do for freshly created timelines;
assert_eq!(
self.current_logical_size.current_size().accuracy(),
logical_size::Accuracy::Exact,
);
self.current_logical_size.initialized.add_permits(1);
return;
};
let cancel_wait_for_background_loop_concurrency_limit_semaphore = CancellationToken::new();
let token = cancel_wait_for_background_loop_concurrency_limit_semaphore.clone();
self.current_logical_size
.cancel_wait_for_background_loop_concurrency_limit_semaphore.set(token)
.expect("initial logical size calculation task must be spawned exactly once per Timeline object");
let self_clone = Arc::clone(self);
let background_ctx = ctx.detached_child(
TaskKind::InitialLogicalSizeCalculation,
DownloadBehavior::Download,
);
task_mgr::spawn(
task_mgr::BACKGROUND_RUNTIME.handle(),
task_mgr::TaskKind::InitialLogicalSizeCalculation,
Some(self.tenant_shard_id),
Some(self.timeline_id),
"initial size calculation",
false,
// NB: don't log errors here, task_mgr will do that.
async move {
let cancel = task_mgr::shutdown_token();
self_clone
.initial_logical_size_calculation_task(
initial_part_end,
cancel_wait_for_background_loop_concurrency_limit_semaphore,
cancel,
background_ctx,
)
.await;
Ok(())
}
.instrument(info_span!(parent: None, "initial_size_calculation", tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id)),
);
}
async fn initial_logical_size_calculation_task(
self: Arc<Self>,
initial_part_end: Lsn,
skip_concurrency_limiter: CancellationToken,
cancel: CancellationToken,
background_ctx: RequestContext,
) {
scopeguard::defer! {
// Irrespective of the outcome of this operation, we should unblock anyone waiting for it.
self.current_logical_size.initialized.add_permits(1);
}
enum BackgroundCalculationError {
Cancelled,
Other(anyhow::Error),
}
let try_once = |attempt: usize| {
let background_ctx = &background_ctx;
let self_ref = &self;
let skip_concurrency_limiter = &skip_concurrency_limiter;
async move {
let cancel = task_mgr::shutdown_token();
let wait_for_permit = super::tasks::concurrent_background_tasks_rate_limit_permit(
BackgroundLoopKind::InitialLogicalSizeCalculation,
background_ctx,
);
use crate::metrics::initial_logical_size::StartCircumstances;
let (_maybe_permit, circumstances) = tokio::select! {
permit = wait_for_permit => {
(Some(permit), StartCircumstances::AfterBackgroundTasksRateLimit)
}
_ = self_ref.cancel.cancelled() => {
return Err(BackgroundCalculationError::Cancelled);
}
_ = cancel.cancelled() => {
return Err(BackgroundCalculationError::Cancelled);
},
() = skip_concurrency_limiter.cancelled() => {
// Some action that is part of a end user interaction requested logical size
// => break out of the rate limit
// TODO: ideally we'd not run on BackgroundRuntime but the requester's runtime;
// but then again what happens if they cancel; also, we should just be using
// one runtime across the entire process, so, let's leave this for now.
(None, StartCircumstances::SkippedConcurrencyLimiter)
}
};
let metrics_guard = if attempt == 1 {
crate::metrics::initial_logical_size::START_CALCULATION.first(circumstances)
} else {
crate::metrics::initial_logical_size::START_CALCULATION.retry(circumstances)
};
match self_ref
.logical_size_calculation_task(
initial_part_end,
LogicalSizeCalculationCause::Initial,
background_ctx,
)
.await
{
Ok(calculated_size) => Ok((calculated_size, metrics_guard)),
Err(CalculateLogicalSizeError::Cancelled) => {
Err(BackgroundCalculationError::Cancelled)
}
Err(CalculateLogicalSizeError::Other(err)) => {
if let Some(PageReconstructError::AncestorStopping(_)) =
err.root_cause().downcast_ref()
{
Err(BackgroundCalculationError::Cancelled)
} else {
Err(BackgroundCalculationError::Other(err))
}
}
}
}
};
let retrying = async {
let mut attempt = 0;
loop {
attempt += 1;
match try_once(attempt).await {
Ok(res) => return ControlFlow::Continue(res),
Err(BackgroundCalculationError::Cancelled) => return ControlFlow::Break(()),
Err(BackgroundCalculationError::Other(e)) => {
warn!(attempt, "initial size calculation failed: {e:?}");
// exponential back-off doesn't make sense at these long intervals;
// use fixed retry interval with generous jitter instead
let sleep_duration = Duration::from_secs(
u64::try_from(
// 1hour base
(60_i64 * 60_i64)
// 10min jitter
+ rand::thread_rng().gen_range(-10 * 60..10 * 60),
)
.expect("10min < 1hour"),
);
tokio::time::sleep(sleep_duration).await;
}
}
}
};
let (calculated_size, metrics_guard) = tokio::select! {
res = retrying => {
match res {
ControlFlow::Continue(calculated_size) => calculated_size,
ControlFlow::Break(()) => return,
}
}
_ = cancel.cancelled() => {
return;
}
};
// we cannot query current_logical_size.current_size() to know the current
// *negative* value, only truncated to u64.
let added = self
.current_logical_size
.size_added_after_initial
.load(AtomicOrdering::Relaxed);
let sum = calculated_size.saturating_add_signed(added);
// set the gauge value before it can be set in `update_current_logical_size`.
self.metrics.current_logical_size_gauge.set(sum);
self.current_logical_size
.initial_logical_size
.set((calculated_size, metrics_guard.calculation_result_saved()))
.ok()
.expect("only this task sets it");
}
pub(crate) fn spawn_ondemand_logical_size_calculation(
self: &Arc<Self>,
lsn: Lsn,
cause: LogicalSizeCalculationCause,
ctx: RequestContext,
) -> oneshot::Receiver<Result<u64, CalculateLogicalSizeError>> {
let (sender, receiver) = oneshot::channel();
let self_clone = Arc::clone(self);
// XXX if our caller loses interest, i.e., ctx is cancelled,
// we should stop the size calculation work and return an error.
// That would require restructuring this function's API to
// return the result directly, instead of a Receiver for the result.
let ctx = ctx.detached_child(
TaskKind::OndemandLogicalSizeCalculation,
DownloadBehavior::Download,
);
task_mgr::spawn(
task_mgr::BACKGROUND_RUNTIME.handle(),
task_mgr::TaskKind::OndemandLogicalSizeCalculation,
Some(self.tenant_shard_id),
Some(self.timeline_id),
"ondemand logical size calculation",
false,
async move {
let res = self_clone
.logical_size_calculation_task(lsn, cause, &ctx)
.await;
let _ = sender.send(res).ok();
Ok(()) // Receiver is responsible for handling errors
}
.in_current_span(),
);
receiver
}
/// # Cancel-Safety
///
/// This method is cancellation-safe.
#[instrument(skip_all)]
async fn logical_size_calculation_task(
self: &Arc<Self>,
lsn: Lsn,
cause: LogicalSizeCalculationCause,
ctx: &RequestContext,
) -> Result<u64, CalculateLogicalSizeError> {
crate::span::debug_assert_current_span_has_tenant_and_timeline_id();
// We should never be calculating logical sizes on shard !=0, because these shards do not have
// accurate relation sizes, and they do not emit consumption metrics.
debug_assert!(self.tenant_shard_id.is_shard_zero());
let guard = self
.gate
.enter()
.map_err(|_| CalculateLogicalSizeError::Cancelled)?;
let self_calculation = Arc::clone(self);
let mut calculation = pin!(async {
let ctx = ctx.attached_child();
self_calculation
.calculate_logical_size(lsn, cause, &guard, &ctx)
.await
});
tokio::select! {
res = &mut calculation => { res }
_ = self.cancel.cancelled() => {
debug!("cancelling logical size calculation for timeline shutdown");
calculation.await
}
}
}
/// Calculate the logical size of the database at the latest LSN.
///
/// NOTE: counted incrementally, includes ancestors. This can be a slow operation,
/// especially if we need to download remote layers.
///
/// # Cancel-Safety
///
/// This method is cancellation-safe.
async fn calculate_logical_size(
&self,
up_to_lsn: Lsn,
cause: LogicalSizeCalculationCause,
_guard: &GateGuard,
ctx: &RequestContext,
) -> Result<u64, CalculateLogicalSizeError> {
info!(
"Calculating logical size for timeline {} at {}",
self.timeline_id, up_to_lsn
);
pausable_failpoint!("timeline-calculate-logical-size-pause");
// See if we've already done the work for initial size calculation.
// This is a short-cut for timelines that are mostly unused.
if let Some(size) = self.current_logical_size.initialized_size(up_to_lsn) {
return Ok(size);
}
let storage_time_metrics = match cause {
LogicalSizeCalculationCause::Initial
| LogicalSizeCalculationCause::ConsumptionMetricsSyntheticSize
| LogicalSizeCalculationCause::TenantSizeHandler => &self.metrics.logical_size_histo,
LogicalSizeCalculationCause::EvictionTaskImitation => {
&self.metrics.imitate_logical_size_histo
}
};
let timer = storage_time_metrics.start_timer();
let logical_size = self
.get_current_logical_size_non_incremental(up_to_lsn, ctx)
.await?;
debug!("calculated logical size: {logical_size}");
timer.stop_and_record();
Ok(logical_size)
}
/// Update current logical size, adding `delta' to the old value.
fn update_current_logical_size(&self, delta: i64) {
let logical_size = &self.current_logical_size;
logical_size.increment_size(delta);
// Also set the value in the prometheus gauge. Note that
// there is a race condition here: if this is is called by two
// threads concurrently, the prometheus gauge might be set to
// one value while current_logical_size is set to the
// other.
match logical_size.current_size() {
CurrentLogicalSize::Exact(ref new_current_size) => self
.metrics
.current_logical_size_gauge
.set(new_current_size.into()),
CurrentLogicalSize::Approximate(_) => {
// don't update the gauge yet, this allows us not to update the gauge back and
// forth between the initial size calculation task.
}
}
}
pub(crate) fn update_directory_entries_count(&self, kind: DirectoryKind, count: u64) {
self.directory_metrics[kind.offset()].store(count, AtomicOrdering::Relaxed);
let aux_metric =
self.directory_metrics[DirectoryKind::AuxFiles.offset()].load(AtomicOrdering::Relaxed);
let sum_of_entries = self
.directory_metrics
.iter()
.map(|v| v.load(AtomicOrdering::Relaxed))
.sum();
// Set a high general threshold and a lower threshold for the auxiliary files,
// as we can have large numbers of relations in the db directory.
const SUM_THRESHOLD: u64 = 5000;
const AUX_THRESHOLD: u64 = 1000;
if sum_of_entries >= SUM_THRESHOLD || aux_metric >= AUX_THRESHOLD {
self.metrics
.directory_entries_count_gauge
.set(sum_of_entries);
} else if let Some(metric) = Lazy::get(&self.metrics.directory_entries_count_gauge) {
metric.set(sum_of_entries);
}
}
async fn find_layer(&self, layer_name: &LayerName) -> Option<Layer> {
let guard = self.layers.read().await;
for historic_layer in guard.layer_map().iter_historic_layers() {
let historic_layer_name = historic_layer.layer_name();
if layer_name == &historic_layer_name {
return Some(guard.get_from_desc(&historic_layer));
}
}
None
}
/// The timeline heatmap is a hint to secondary locations from the primary location,
/// indicating which layers are currently on-disk on the primary.
///
/// None is returned if the Timeline is in a state where uploading a heatmap
/// doesn't make sense, such as shutting down or initializing. The caller
/// should treat this as a cue to simply skip doing any heatmap uploading
/// for this timeline.
pub(crate) async fn generate_heatmap(&self) -> Option<HeatMapTimeline> {
// no point in heatmaps without remote client
let _remote_client = self.remote_client.as_ref()?;
if !self.is_active() {
return None;
}
let guard = self.layers.read().await;
let resident = guard.likely_resident_layers().map(|layer| {
let last_activity_ts = layer.access_stats().latest_activity_or_now();
HeatMapLayer::new(
layer.layer_desc().layer_name(),
(&layer.metadata()).into(),
last_activity_ts,
)
});
let layers = resident.collect();
Some(HeatMapTimeline::new(self.timeline_id, layers))
}
}
type TraversalId = Arc<str>;
trait TraversalLayerExt {
fn traversal_id(&self) -> TraversalId;
}
impl TraversalLayerExt for Layer {
fn traversal_id(&self) -> TraversalId {
Arc::clone(self.debug_str())
}
}
impl TraversalLayerExt for Arc<InMemoryLayer> {
fn traversal_id(&self) -> TraversalId {
Arc::clone(self.local_path_str())
}
}
impl Timeline {
///
/// Get a handle to a Layer for reading.
///
/// The returned Layer might be from an ancestor timeline, if the
/// segment hasn't been updated on this timeline yet.
///
/// This function takes the current timeline's locked LayerMap as an argument,
/// so callers can avoid potential race conditions.
///
/// # Cancel-Safety
///
/// This method is cancellation-safe.
async fn get_reconstruct_data(
&self,
key: Key,
request_lsn: Lsn,
reconstruct_state: &mut ValueReconstructState,
ctx: &RequestContext,
) -> Result<Vec<TraversalPathItem>, PageReconstructError> {
// Start from the current timeline.
let mut timeline_owned;
let mut timeline = self;
let mut read_count = scopeguard::guard(0, |cnt| {
crate::metrics::READ_NUM_LAYERS_VISITED.observe(cnt as f64)
});
// For debugging purposes, collect the path of layers that we traversed
// through. It's included in the error message if we fail to find the key.
let mut traversal_path = Vec::<TraversalPathItem>::new();
let cached_lsn = if let Some((cached_lsn, _)) = &reconstruct_state.img {
*cached_lsn
} else {
Lsn(0)
};
// 'prev_lsn' tracks the last LSN that we were at in our search. It's used
// to check that each iteration make some progress, to break infinite
// looping if something goes wrong.
let mut prev_lsn = None;
let mut result = ValueReconstructResult::Continue;
let mut cont_lsn = Lsn(request_lsn.0 + 1);
'outer: loop {
if self.cancel.is_cancelled() {
return Err(PageReconstructError::Cancelled);
}
// The function should have updated 'state'
//info!("CALLED for {} at {}: {:?} with {} records, cached {}", key, cont_lsn, result, reconstruct_state.records.len(), cached_lsn);
match result {
ValueReconstructResult::Complete => return Ok(traversal_path),
ValueReconstructResult::Continue => {
// If we reached an earlier cached page image, we're done.
if cont_lsn == cached_lsn + 1 {
MATERIALIZED_PAGE_CACHE_HIT.inc_by(1);
return Ok(traversal_path);
}
if let Some(prev) = prev_lsn {
if prev <= cont_lsn {
// Didn't make any progress in last iteration. Error out to avoid
// getting stuck in the loop.
return Err(PageReconstructError::MissingKey(MissingKeyError {
key,
shard: self.shard_identity.get_shard_number(&key),
cont_lsn: Lsn(cont_lsn.0 - 1),
request_lsn,
ancestor_lsn: Some(timeline.ancestor_lsn),
traversal_path,
backtrace: None,
}));
}
}
prev_lsn = Some(cont_lsn);
}
ValueReconstructResult::Missing => {
return Err(PageReconstructError::MissingKey(MissingKeyError {
key,
shard: self.shard_identity.get_shard_number(&key),
cont_lsn,
request_lsn,
ancestor_lsn: None,
traversal_path,
backtrace: if cfg!(test) {
Some(std::backtrace::Backtrace::force_capture())
} else {
None
},
}));
}
}
// Recurse into ancestor if needed
if is_inherited_key(key) && Lsn(cont_lsn.0 - 1) <= timeline.ancestor_lsn {
trace!(
"going into ancestor {}, cont_lsn is {}",
timeline.ancestor_lsn,
cont_lsn
);
timeline_owned = timeline.get_ready_ancestor_timeline(ctx).await?;
timeline = &*timeline_owned;
prev_lsn = None;
continue 'outer;
}
let guard = timeline.layers.read().await;
let layers = guard.layer_map();
// Check the open and frozen in-memory layers first, in order from newest
// to oldest.
if let Some(open_layer) = &layers.open_layer {
let start_lsn = open_layer.get_lsn_range().start;
if cont_lsn > start_lsn {
//info!("CHECKING for {} at {} on open layer {}", key, cont_lsn, open_layer.layer_name().display());
// Get all the data needed to reconstruct the page version from this layer.
// But if we have an older cached page image, no need to go past that.
let lsn_floor = max(cached_lsn + 1, start_lsn);
let open_layer = open_layer.clone();
drop(guard);
result = match open_layer
.get_value_reconstruct_data(
key,
lsn_floor..cont_lsn,
reconstruct_state,
ctx,
)
.await
{
Ok(result) => result,
Err(e) => return Err(PageReconstructError::from(e)),
};
cont_lsn = lsn_floor;
*read_count += 1;
traversal_path.push((result, cont_lsn, open_layer.traversal_id()));
continue 'outer;
}
}
for frozen_layer in layers.frozen_layers.iter().rev() {
let start_lsn = frozen_layer.get_lsn_range().start;
if cont_lsn > start_lsn {
//info!("CHECKING for {} at {} on frozen layer {}", key, cont_lsn, frozen_layer.layer_name().display());
let lsn_floor = max(cached_lsn + 1, start_lsn);
let frozen_layer = frozen_layer.clone();
drop(guard);
result = match frozen_layer
.get_value_reconstruct_data(
key,
lsn_floor..cont_lsn,
reconstruct_state,
ctx,
)
.await
{
Ok(result) => result,
Err(e) => return Err(PageReconstructError::from(e)),
};
cont_lsn = lsn_floor;
*read_count += 1;
traversal_path.push((result, cont_lsn, frozen_layer.traversal_id()));
continue 'outer;
}
}
if let Some(SearchResult { lsn_floor, layer }) = layers.search(key, cont_lsn) {
let layer = guard.get_from_desc(&layer);
drop(guard);
// Get all the data needed to reconstruct the page version from this layer.
// But if we have an older cached page image, no need to go past that.
let lsn_floor = max(cached_lsn + 1, lsn_floor);
result = match layer
.get_value_reconstruct_data(key, lsn_floor..cont_lsn, reconstruct_state, ctx)
.await
{
Ok(result) => result,
Err(e) => return Err(PageReconstructError::from(e)),
};
cont_lsn = lsn_floor;
*read_count += 1;
traversal_path.push((result, cont_lsn, layer.traversal_id()));
continue 'outer;
} else if timeline.ancestor_timeline.is_some() {
// Nothing on this timeline. Traverse to parent
result = ValueReconstructResult::Continue;
cont_lsn = Lsn(timeline.ancestor_lsn.0 + 1);
continue 'outer;
} else {
// Nothing found
result = ValueReconstructResult::Missing;
continue 'outer;
}
}
}
/// Get the data needed to reconstruct all keys in the provided keyspace
///
/// The algorithm is as follows:
/// 1. While some keys are still not done and there's a timeline to visit:
/// 2. Visit the timeline (see [`Timeline::get_vectored_reconstruct_data_timeline`]:
/// 2.1: Build the fringe for the current keyspace
/// 2.2 Visit the newest layer from the fringe to collect all values for the range it
/// intersects
/// 2.3. Pop the timeline from the fringe
/// 2.4. If the fringe is empty, go back to 1
async fn get_vectored_reconstruct_data(
&self,
mut keyspace: KeySpace,
request_lsn: Lsn,
reconstruct_state: &mut ValuesReconstructState,
ctx: &RequestContext,
) -> Result<(), GetVectoredError> {
let mut timeline_owned: Arc<Timeline>;
let mut timeline = self;
let mut cont_lsn = Lsn(request_lsn.0 + 1);
loop {
if self.cancel.is_cancelled() {
return Err(GetVectoredError::Cancelled);
}
let completed = Self::get_vectored_reconstruct_data_timeline(
timeline,
keyspace.clone(),
cont_lsn,
reconstruct_state,
&self.cancel,
ctx,
)
.await?;
keyspace.remove_overlapping_with(&completed);
// Do not descend into the ancestor timeline for aux files.
// We don't return a blanket [`GetVectoredError::MissingKey`] to avoid
// stalling compaction.
keyspace.remove_overlapping_with(&KeySpace {
ranges: vec![NON_INHERITED_RANGE, NON_INHERITED_SPARSE_RANGE],
});
// Keyspace is fully retrieved, no ancestor timeline, or metadata scan (where we do not look
// into ancestor timelines). TODO: is there any other metadata which we want to inherit?
if keyspace.total_raw_size() == 0 || timeline.ancestor_timeline.is_none() {
break;
}
// Take the min to avoid reconstructing a page with data newer than request Lsn.
cont_lsn = std::cmp::min(Lsn(request_lsn.0 + 1), Lsn(timeline.ancestor_lsn.0 + 1));
timeline_owned = timeline
.get_ready_ancestor_timeline(ctx)
.await
.map_err(GetVectoredError::GetReadyAncestorError)?;
timeline = &*timeline_owned;
}
if keyspace.total_raw_size() != 0 {
return Err(GetVectoredError::MissingKey(MissingKeyError {
key: keyspace.start().unwrap(), /* better if we can store the full keyspace */
shard: self
.shard_identity
.get_shard_number(&keyspace.start().unwrap()),
cont_lsn,
request_lsn,
ancestor_lsn: Some(timeline.ancestor_lsn),
traversal_path: vec![],
backtrace: None,
}));
}
Ok(())
}
/// Collect the reconstruct data for a keyspace from the specified timeline.
///
/// Maintain a fringe [`LayerFringe`] which tracks all the layers that intersect
/// the current keyspace. The current keyspace of the search at any given timeline
/// is the original keyspace minus all the keys that have been completed minus
/// any keys for which we couldn't find an intersecting layer. It's not tracked explicitly,
/// but if you merge all the keyspaces in the fringe, you get the "current keyspace".
///
/// This is basically a depth-first search visitor implementation where a vertex
/// is the (layer, lsn range, key space) tuple. The fringe acts as the stack.
///
/// At each iteration pop the top of the fringe (the layer with the highest Lsn)
/// and get all the required reconstruct data from the layer in one go.
async fn get_vectored_reconstruct_data_timeline(
timeline: &Timeline,
keyspace: KeySpace,
mut cont_lsn: Lsn,
reconstruct_state: &mut ValuesReconstructState,
cancel: &CancellationToken,
ctx: &RequestContext,
) -> Result<KeySpace, GetVectoredError> {
let mut unmapped_keyspace = keyspace.clone();
let mut fringe = LayerFringe::new();
let mut completed_keyspace = KeySpace::default();
loop {
if cancel.is_cancelled() {
return Err(GetVectoredError::Cancelled);
}
let keys_done_last_step = reconstruct_state.consume_done_keys();
unmapped_keyspace.remove_overlapping_with(&keys_done_last_step);
completed_keyspace.merge(&keys_done_last_step);
// Do not descent any further if the last layer we visited
// completed all keys in the keyspace it inspected. This is not
// required for correctness, but avoids visiting extra layers
// which turns out to be a perf bottleneck in some cases.
if !unmapped_keyspace.is_empty() {
let guard = timeline.layers.read().await;
let layers = guard.layer_map();
let in_memory_layer = layers.find_in_memory_layer(|l| {
let start_lsn = l.get_lsn_range().start;
cont_lsn > start_lsn
});
match in_memory_layer {
Some(l) => {
let lsn_range = l.get_lsn_range().start..cont_lsn;
fringe.update(
ReadableLayer::InMemoryLayer(l),
unmapped_keyspace.clone(),
lsn_range,
);
}
None => {
for range in unmapped_keyspace.ranges.iter() {
let results = layers.range_search(range.clone(), cont_lsn);
results
.found
.into_iter()
.map(|(SearchResult { layer, lsn_floor }, keyspace_accum)| {
(
ReadableLayer::PersistentLayer(guard.get_from_desc(&layer)),
keyspace_accum.to_keyspace(),
lsn_floor..cont_lsn,
)
})
.for_each(|(layer, keyspace, lsn_range)| {
fringe.update(layer, keyspace, lsn_range)
});
}
}
}
// It's safe to drop the layer map lock after planning the next round of reads.
// The fringe keeps readable handles for the layers which are safe to read even
// if layers were compacted or flushed.
//
// The more interesting consideration is: "Why is the read algorithm still correct
// if the layer map changes while it is operating?". Doing a vectored read on a
// timeline boils down to pushing an imaginary lsn boundary downwards for each range
// covered by the read. The layer map tells us how to move the lsn downwards for a
// range at *a particular point in time*. It is fine for the answer to be different
// at two different time points.
drop(guard);
}
if let Some((layer_to_read, keyspace_to_read, lsn_range)) = fringe.next_layer() {
let next_cont_lsn = lsn_range.start;
layer_to_read
.get_values_reconstruct_data(
keyspace_to_read.clone(),
lsn_range,
reconstruct_state,
ctx,
)
.await?;
unmapped_keyspace = keyspace_to_read;
cont_lsn = next_cont_lsn;
reconstruct_state.on_layer_visited();
} else {
break;
}
}
Ok(completed_keyspace)
}
/// # Cancel-safety
///
/// This method is cancellation-safe.
async fn lookup_cached_page(
&self,
key: &Key,
lsn: Lsn,
ctx: &RequestContext,
) -> Option<(Lsn, Bytes)> {
let cache = page_cache::get();
// FIXME: It's pointless to check the cache for things that are not 8kB pages.
// We should look at the key to determine if it's a cacheable object
let (lsn, read_guard) = cache
.lookup_materialized_page(self.tenant_shard_id, self.timeline_id, key, lsn, ctx)
.await?;
let img = Bytes::from(read_guard.to_vec());
Some((lsn, img))
}
async fn get_ready_ancestor_timeline(
&self,
ctx: &RequestContext,
) -> Result<Arc<Timeline>, GetReadyAncestorError> {
let ancestor = match self.get_ancestor_timeline() {
Ok(timeline) => timeline,
Err(e) => return Err(GetReadyAncestorError::from(e)),
};
// It's possible that the ancestor timeline isn't active yet, or
// is active but hasn't yet caught up to the branch point. Wait
// for it.
//
// This cannot happen while the pageserver is running normally,
// because you cannot create a branch from a point that isn't
// present in the pageserver yet. However, we don't wait for the
// branch point to be uploaded to cloud storage before creating
// a branch. I.e., the branch LSN need not be remote consistent
// for the branching operation to succeed.
//
// Hence, if we try to load a tenant in such a state where
// 1. the existence of the branch was persisted (in IndexPart and/or locally)
// 2. but the ancestor state is behind branch_lsn because it was not yet persisted
// then we will need to wait for the ancestor timeline to
// re-stream WAL up to branch_lsn before we access it.
//
// How can a tenant get in such a state?
// - ungraceful pageserver process exit
// - detach+attach => this is a bug, https://github.com/neondatabase/neon/issues/4219
//
// NB: this could be avoided by requiring
// branch_lsn >= remote_consistent_lsn
// during branch creation.
match ancestor.wait_to_become_active(ctx).await {
Ok(()) => {}
Err(TimelineState::Stopping) => {
return Err(GetReadyAncestorError::AncestorStopping(
ancestor.timeline_id,
));
}
Err(state) => {
return Err(GetReadyAncestorError::Other(anyhow::anyhow!(
"Timeline {} will not become active. Current state: {:?}",
ancestor.timeline_id,
&state,
)));
}
}
ancestor
.wait_lsn(self.ancestor_lsn, WaitLsnWaiter::Timeline(self), ctx)
.await
.map_err(|e| match e {
e @ WaitLsnError::Timeout(_) => GetReadyAncestorError::AncestorLsnTimeout(e),
WaitLsnError::Shutdown => GetReadyAncestorError::Cancelled,
e @ WaitLsnError::BadState => GetReadyAncestorError::Other(anyhow::anyhow!(e)),
})?;
Ok(ancestor)
}
pub(crate) fn get_ancestor_timeline(&self) -> anyhow::Result<Arc<Timeline>> {
let ancestor = self.ancestor_timeline.as_ref().with_context(|| {
format!(
"Ancestor is missing. Timeline id: {} Ancestor id {:?}",
self.timeline_id,
self.get_ancestor_timeline_id(),
)
})?;
Ok(Arc::clone(ancestor))
}
pub(crate) fn get_shard_identity(&self) -> &ShardIdentity {
&self.shard_identity
}
///
/// Get a handle to the latest layer for appending.
///
async fn get_layer_for_write(&self, lsn: Lsn) -> anyhow::Result<Arc<InMemoryLayer>> {
let mut guard = self.layers.write().await;
let layer = guard
.get_layer_for_write(
lsn,
self.get_last_record_lsn(),
self.conf,
self.timeline_id,
self.tenant_shard_id,
)
.await?;
Ok(layer)
}
pub(crate) fn finish_write(&self, new_lsn: Lsn) {
assert!(new_lsn.is_aligned());
self.metrics.last_record_gauge.set(new_lsn.0 as i64);
self.last_record_lsn.advance(new_lsn);
}
/// Whether there was a layer to freeze or not, return the value of get_last_record_lsn
/// before we attempted the freeze: this guarantees that ingested data is frozen up to this lsn (inclusive).
async fn freeze_inmem_layer(&self, write_lock_held: bool) -> Lsn {
// Freeze the current open in-memory layer. It will be written to disk on next
// iteration.
let _write_guard = if write_lock_held {
None
} else {
Some(self.write_lock.lock().await)
};
let to_lsn = self.get_last_record_lsn();
self.freeze_inmem_layer_at(to_lsn).await;
to_lsn
}
async fn freeze_inmem_layer_at(&self, at: Lsn) {
let mut guard = self.layers.write().await;
guard
.try_freeze_in_memory_layer(at, &self.last_freeze_at)
.await;
}
/// Layer flusher task's main loop.
async fn flush_loop(
self: &Arc<Self>,
mut layer_flush_start_rx: tokio::sync::watch::Receiver<(u64, Lsn)>,
ctx: &RequestContext,
) {
info!("started flush loop");
loop {
tokio::select! {
_ = self.cancel.cancelled() => {
info!("shutting down layer flush task due to Timeline::cancel");
break;
},
_ = layer_flush_start_rx.changed() => {}
}
trace!("waking up");
let (flush_counter, frozen_to_lsn) = *layer_flush_start_rx.borrow();
// The highest LSN to which we flushed in the loop over frozen layers
let mut flushed_to_lsn = Lsn(0);
let result = loop {
if self.cancel.is_cancelled() {
info!("dropping out of flush loop for timeline shutdown");
// Note: we do not bother transmitting into [`layer_flush_done_tx`], because
// anyone waiting on that will respect self.cancel as well: they will stop
// waiting at the same time we as drop out of this loop.
return;
}
let timer = self.metrics.flush_time_histo.start_timer();
let layer_to_flush = {
let guard = self.layers.read().await;
guard.layer_map().frozen_layers.front().cloned()
// drop 'layers' lock to allow concurrent reads and writes
};
let Some(layer_to_flush) = layer_to_flush else {
break Ok(());
};
match self.flush_frozen_layer(layer_to_flush, ctx).await {
Ok(this_layer_to_lsn) => {
flushed_to_lsn = std::cmp::max(flushed_to_lsn, this_layer_to_lsn);
}
Err(FlushLayerError::Cancelled) => {
info!("dropping out of flush loop for timeline shutdown");
return;
}
err @ Err(
FlushLayerError::Other(_) | FlushLayerError::CreateImageLayersError(_),
) => {
error!("could not flush frozen layer: {err:?}");
break err.map(|_| ());
}
}
timer.stop_and_record();
};
// Unsharded tenants should never advance their LSN beyond the end of the
// highest layer they write: such gaps between layer data and the frozen LSN
// are only legal on sharded tenants.
debug_assert!(
self.shard_identity.count.count() > 1
|| flushed_to_lsn >= frozen_to_lsn
|| !flushed_to_lsn.is_valid()
);
if flushed_to_lsn < frozen_to_lsn && self.shard_identity.count.count() > 1 {
// If our layer flushes didn't carry disk_consistent_lsn up to the `to_lsn` advertised
// to us via layer_flush_start_rx, then advance it here.
//
// This path is only taken for tenants with multiple shards: single sharded tenants should
// never encounter a gap in the wal.
let old_disk_consistent_lsn = self.disk_consistent_lsn.load();
tracing::debug!("Advancing disk_consistent_lsn across layer gap {old_disk_consistent_lsn}->{frozen_to_lsn}");
if self.set_disk_consistent_lsn(frozen_to_lsn) {
if let Err(e) = self.schedule_uploads(frozen_to_lsn, vec![]) {
tracing::warn!("Failed to schedule metadata upload after updating disk_consistent_lsn: {e}");
}
}
}
// Notify any listeners that we're done
let _ = self
.layer_flush_done_tx
.send_replace((flush_counter, result));
}
}
/// Request the flush loop to write out all frozen layers up to `to_lsn` as Delta L0 files to disk.
/// The caller is responsible for the freezing, e.g., [`Self::freeze_inmem_layer`].
///
/// `last_record_lsn` may be higher than the highest LSN of a frozen layer: if this is the case,
/// it means no data will be written between the top of the highest frozen layer and to_lsn,
/// e.g. because this tenant shard has ingested up to to_lsn and not written any data locally for that part of the WAL.
async fn flush_frozen_layers_and_wait(&self, last_record_lsn: Lsn) -> anyhow::Result<()> {
let mut rx = self.layer_flush_done_tx.subscribe();
// Increment the flush cycle counter and wake up the flush task.
// Remember the new value, so that when we listen for the flush
// to finish, we know when the flush that we initiated has
// finished, instead of some other flush that was started earlier.
let mut my_flush_request = 0;
let flush_loop_state = { *self.flush_loop_state.lock().unwrap() };
if !matches!(flush_loop_state, FlushLoopState::Running { .. }) {
anyhow::bail!("cannot flush frozen layers when flush_loop is not running, state is {flush_loop_state:?}")
}
self.layer_flush_start_tx.send_modify(|(counter, lsn)| {
my_flush_request = *counter + 1;
*counter = my_flush_request;
*lsn = std::cmp::max(last_record_lsn, *lsn);
});
loop {
{
let (last_result_counter, last_result) = &*rx.borrow();
if *last_result_counter >= my_flush_request {
if let Err(_err) = last_result {
// We already logged the original error in
// flush_loop. We cannot propagate it to the caller
// here, because it might not be Cloneable
anyhow::bail!(
"Could not flush frozen layer. Request id: {}",
my_flush_request
);
} else {
return Ok(());
}
}
}
trace!("waiting for flush to complete");
tokio::select! {
rx_e = rx.changed() => {
rx_e?;
},
// Cancellation safety: we are not leaving an I/O in-flight for the flush, we're just ignoring
// the notification from [`flush_loop`] that it completed.
_ = self.cancel.cancelled() => {
tracing::info!("Cancelled layer flush due on timeline shutdown");
return Ok(())
}
};
trace!("done")
}
}
fn flush_frozen_layers(&self) {
self.layer_flush_start_tx.send_modify(|(counter, lsn)| {
*counter += 1;
*lsn = std::cmp::max(*lsn, Lsn(self.last_freeze_at.load().0 - 1));
});
}
/// Flush one frozen in-memory layer to disk, as a new delta layer.
///
/// Return value is the last lsn (inclusive) of the layer that was frozen.
#[instrument(skip_all, fields(layer=%frozen_layer))]
async fn flush_frozen_layer(
self: &Arc<Self>,
frozen_layer: Arc<InMemoryLayer>,
ctx: &RequestContext,
) -> Result<Lsn, FlushLayerError> {
debug_assert_current_span_has_tenant_and_timeline_id();
// As a special case, when we have just imported an image into the repository,
// instead of writing out a L0 delta layer, we directly write out image layer
// files instead. This is possible as long as *all* the data imported into the
// repository have the same LSN.
let lsn_range = frozen_layer.get_lsn_range();
// Whether to directly create image layers for this flush, or flush them as delta layers
let create_image_layer =
lsn_range.start == self.initdb_lsn && lsn_range.end == Lsn(self.initdb_lsn.0 + 1);
#[cfg(test)]
{
match &mut *self.flush_loop_state.lock().unwrap() {
FlushLoopState::NotStarted | FlushLoopState::Exited => {
panic!("flush loop not running")
}
FlushLoopState::Running {
expect_initdb_optimization,
initdb_optimization_count,
..
} => {
if create_image_layer {
*initdb_optimization_count += 1;
} else {
assert!(!*expect_initdb_optimization, "expected initdb optimization");
}
}
}
}
let (layers_to_upload, delta_layer_to_add) = if create_image_layer {
// Note: The 'ctx' in use here has DownloadBehavior::Error. We should not
// require downloading anything during initial import.
let ((rel_partition, metadata_partition), _lsn) = self
.repartition(
self.initdb_lsn,
self.get_compaction_target_size(),
EnumSet::empty(),
ctx,
)
.await?;
if self.cancel.is_cancelled() {
return Err(FlushLayerError::Cancelled);
}
// For metadata, always create delta layers.
let delta_layer = if !metadata_partition.parts.is_empty() {
assert_eq!(
metadata_partition.parts.len(),
1,
"currently sparse keyspace should only contain a single aux file keyspace"
);
let metadata_keyspace = &metadata_partition.parts[0];
assert_eq!(
metadata_keyspace.0.ranges.len(),
1,
"aux file keyspace should be a single range"
);
self.create_delta_layer(
&frozen_layer,
ctx,
Some(metadata_keyspace.0.ranges[0].clone()),
)
.await?
} else {
None
};
// For image layers, we add them immediately into the layer map.
let mut layers_to_upload = Vec::new();
layers_to_upload.extend(
self.create_image_layers(
&rel_partition,
self.initdb_lsn,
ImageLayerCreationMode::Initial,
ctx,
)
.await?,
);
if let Some(delta_layer) = delta_layer {
layers_to_upload.push(delta_layer.clone());
(layers_to_upload, Some(delta_layer))
} else {
(layers_to_upload, None)
}
} else {
// Normal case, write out a L0 delta layer file.
// `create_delta_layer` will not modify the layer map.
// We will remove frozen layer and add delta layer in one atomic operation later.
let Some(layer) = self.create_delta_layer(&frozen_layer, ctx, None).await? else {
panic!("delta layer cannot be empty if no filter is applied");
};
(
// FIXME: even though we have a single image and single delta layer assumption
// we push them to vec
vec![layer.clone()],
Some(layer),
)
};
pausable_failpoint!("flush-layer-cancel-after-writing-layer-out-pausable");
if self.cancel.is_cancelled() {
return Err(FlushLayerError::Cancelled);
}
let disk_consistent_lsn = Lsn(lsn_range.end.0 - 1);
// The new on-disk layers are now in the layer map. We can remove the
// in-memory layer from the map now. The flushed layer is stored in
// the mapping in `create_delta_layer`.
{
let mut guard = self.layers.write().await;
if self.cancel.is_cancelled() {
return Err(FlushLayerError::Cancelled);
}
guard.finish_flush_l0_layer(delta_layer_to_add.as_ref(), &frozen_layer, &self.metrics);
if self.set_disk_consistent_lsn(disk_consistent_lsn) {
// Schedule remote uploads that will reflect our new disk_consistent_lsn
self.schedule_uploads(disk_consistent_lsn, layers_to_upload)?;
}
// release lock on 'layers'
};
// FIXME: between create_delta_layer and the scheduling of the upload in `update_metadata_file`,
// a compaction can delete the file and then it won't be available for uploads any more.
// We still schedule the upload, resulting in an error, but ideally we'd somehow avoid this
// race situation.
// See https://github.com/neondatabase/neon/issues/4526
pausable_failpoint!("flush-frozen-pausable");
// This failpoint is used by another test case `test_pageserver_recovery`.
fail_point!("flush-frozen-exit");
Ok(Lsn(lsn_range.end.0 - 1))
}
/// Return true if the value changed
///
/// This function must only be used from the layer flush task, and may not be called concurrently.
fn set_disk_consistent_lsn(&self, new_value: Lsn) -> bool {
// We do a simple load/store cycle: that's why this function isn't safe for concurrent use.
let old_value = self.disk_consistent_lsn.load();
if new_value != old_value {
assert!(new_value >= old_value);
self.disk_consistent_lsn.store(new_value);
true
} else {
false
}
}
/// Update metadata file
fn schedule_uploads(
&self,
disk_consistent_lsn: Lsn,
layers_to_upload: impl IntoIterator<Item = ResidentLayer>,
) -> anyhow::Result<()> {
// We can only save a valid 'prev_record_lsn' value on disk if we
// flushed *all* in-memory changes to disk. We only track
// 'prev_record_lsn' in memory for the latest processed record, so we
// don't remember what the correct value that corresponds to some old
// LSN is. But if we flush everything, then the value corresponding
// current 'last_record_lsn' is correct and we can store it on disk.
let RecordLsn {
last: last_record_lsn,
prev: prev_record_lsn,
} = self.last_record_lsn.load();
let ondisk_prev_record_lsn = if disk_consistent_lsn == last_record_lsn {
Some(prev_record_lsn)
} else {
None
};
let update = crate::tenant::metadata::MetadataUpdate::new(
disk_consistent_lsn,
ondisk_prev_record_lsn,
*self.latest_gc_cutoff_lsn.read(),
);
fail_point!("checkpoint-before-saving-metadata", |x| bail!(
"{}",
x.unwrap()
));
if let Some(remote_client) = &self.remote_client {
for layer in layers_to_upload {
remote_client.schedule_layer_file_upload(layer)?;
}
remote_client.schedule_index_upload_for_metadata_update(&update)?;
}
Ok(())
}
pub(crate) async fn preserve_initdb_archive(&self) -> anyhow::Result<()> {
if let Some(remote_client) = &self.remote_client {
remote_client
.preserve_initdb_archive(
&self.tenant_shard_id.tenant_id,
&self.timeline_id,
&self.cancel,
)
.await?;
} else {
bail!("No remote storage configured, but was asked to backup the initdb archive for {} / {}", self.tenant_shard_id.tenant_id, self.timeline_id);
}
Ok(())
}
// Write out the given frozen in-memory layer as a new L0 delta file. This L0 file will not be tracked
// in layer map immediately. The caller is responsible to put it into the layer map.
async fn create_delta_layer(
self: &Arc<Self>,
frozen_layer: &Arc<InMemoryLayer>,
ctx: &RequestContext,
key_range: Option<Range<Key>>,
) -> anyhow::Result<Option<ResidentLayer>> {
let self_clone = Arc::clone(self);
let frozen_layer = Arc::clone(frozen_layer);
let ctx = ctx.attached_child();
let work = async move {
let Some(new_delta) = frozen_layer
.write_to_disk(&self_clone, &ctx, key_range)
.await?
else {
return Ok(None);
};
// The write_to_disk() above calls writer.finish() which already did the fsync of the inodes.
// We just need to fsync the directory in which these inodes are linked,
// which we know to be the timeline directory.
//
// We use fatal_err() below because the after write_to_disk returns with success,
// the in-memory state of the filesystem already has the layer file in its final place,
// and subsequent pageserver code could think it's durable while it really isn't.
let timeline_dir = VirtualFile::open(
&self_clone
.conf
.timeline_path(&self_clone.tenant_shard_id, &self_clone.timeline_id),
)
.await
.fatal_err("VirtualFile::open for timeline dir fsync");
timeline_dir
.sync_all()
.await
.fatal_err("VirtualFile::sync_all timeline dir");
anyhow::Ok(Some(new_delta))
};
// Before tokio-epoll-uring, we ran write_to_disk & the sync_all inside spawn_blocking.
// Preserve that behavior to maintain the same behavior for `virtual_file_io_engine=std-fs`.
use crate::virtual_file::io_engine::IoEngine;
match crate::virtual_file::io_engine::get() {
IoEngine::NotSet => panic!("io engine not set"),
IoEngine::StdFs => {
let span = tracing::info_span!("blocking");
tokio::task::spawn_blocking({
move || Handle::current().block_on(work.instrument(span))
})
.await
.context("spawn_blocking")
.and_then(|x| x)
}
#[cfg(target_os = "linux")]
IoEngine::TokioEpollUring => work.await,
}
}
async fn repartition(
&self,
lsn: Lsn,
partition_size: u64,
flags: EnumSet<CompactFlags>,
ctx: &RequestContext,
) -> anyhow::Result<((KeyPartitioning, SparseKeyPartitioning), Lsn)> {
let Ok(mut partitioning_guard) = self.partitioning.try_lock() else {
// NB: there are two callers, one is the compaction task, of which there is only one per struct Tenant and hence Timeline.
// The other is the initdb optimization in flush_frozen_layer, used by `boostrap_timeline`, which runs before `.activate()`
// and hence before the compaction task starts.
anyhow::bail!("repartition() called concurrently, this should not happen");
};
let ((dense_partition, sparse_partition), partition_lsn) = &*partitioning_guard;
if lsn < *partition_lsn {
anyhow::bail!("repartition() called with LSN going backwards, this should not happen");
}
let distance = lsn.0 - partition_lsn.0;
if *partition_lsn != Lsn(0)
&& distance <= self.repartition_threshold
&& !flags.contains(CompactFlags::ForceRepartition)
{
debug!(
distance,
threshold = self.repartition_threshold,
"no repartitioning needed"
);
return Ok((
(dense_partition.clone(), sparse_partition.clone()),
*partition_lsn,
));
}
let (dense_ks, sparse_ks) = self.collect_keyspace(lsn, ctx).await?;
let dense_partitioning = dense_ks.partition(&self.shard_identity, partition_size);
let sparse_partitioning = SparseKeyPartitioning {
parts: vec![sparse_ks],
}; // no partitioning for metadata keys for now
*partitioning_guard = ((dense_partitioning, sparse_partitioning), lsn);
Ok((partitioning_guard.0.clone(), partitioning_guard.1))
}
// Is it time to create a new image layer for the given partition?
async fn time_for_new_image_layer(&self, partition: &KeySpace, lsn: Lsn) -> bool {
let threshold = self.get_image_creation_threshold();
let guard = self.layers.read().await;
let layers = guard.layer_map();
let mut max_deltas = 0;
for part_range in &partition.ranges {
let image_coverage = layers.image_coverage(part_range, lsn);
for (img_range, last_img) in image_coverage {
let img_lsn = if let Some(last_img) = last_img {
last_img.get_lsn_range().end
} else {
Lsn(0)
};
// Let's consider an example:
//
// delta layer with LSN range 71-81
// delta layer with LSN range 81-91
// delta layer with LSN range 91-101
// image layer at LSN 100
//
// If 'lsn' is still 100, i.e. no new WAL has been processed since the last image layer,
// there's no need to create a new one. We check this case explicitly, to avoid passing
// a bogus range to count_deltas below, with start > end. It's even possible that there
// are some delta layers *later* than current 'lsn', if more WAL was processed and flushed
// after we read last_record_lsn, which is passed here in the 'lsn' argument.
if img_lsn < lsn {
let num_deltas =
layers.count_deltas(&img_range, &(img_lsn..lsn), Some(threshold));
max_deltas = max_deltas.max(num_deltas);
if num_deltas >= threshold {
debug!(
"key range {}-{}, has {} deltas on this timeline in LSN range {}..{}",
img_range.start, img_range.end, num_deltas, img_lsn, lsn
);
return true;
}
}
}
}
debug!(
max_deltas,
"none of the partitioned ranges had >= {threshold} deltas"
);
false
}
#[tracing::instrument(skip_all, fields(%lsn, %mode))]
async fn create_image_layers(
self: &Arc<Timeline>,
partitioning: &KeyPartitioning,
lsn: Lsn,
mode: ImageLayerCreationMode,
ctx: &RequestContext,
) -> Result<Vec<ResidentLayer>, CreateImageLayersError> {
let timer = self.metrics.create_images_time_histo.start_timer();
let mut image_layers = Vec::new();
// We need to avoid holes between generated image layers.
// Otherwise LayerMap::image_layer_exists will return false if key range of some layer is covered by more than one
// image layer with hole between them. In this case such layer can not be utilized by GC.
//
// How such hole between partitions can appear?
// if we have relation with relid=1 and size 100 and relation with relid=2 with size 200 then result of
// KeySpace::partition may contain partitions <100000000..100000099> and <200000000..200000199>.
// If there is delta layer <100000000..300000000> then it never be garbage collected because
// image layers <100000000..100000099> and <200000000..200000199> are not completely covering it.
let mut start = Key::MIN;
let check_for_image_layers = {
let last_checks_at = self.last_image_layer_creation_check_at.load();
let distance = lsn
.checked_sub(last_checks_at)
.expect("Attempt to compact with LSN going backwards");
let min_distance = self.get_image_layer_creation_check_threshold() as u64
* self.get_checkpoint_distance();
// Skip the expensive delta layer counting if this timeline has not ingested sufficient
// WAL since the last check.
distance.0 >= min_distance
};
if check_for_image_layers {
self.last_image_layer_creation_check_at.store(lsn);
}
for partition in partitioning.parts.iter() {
let img_range = start..partition.ranges.last().unwrap().end;
if partition.overlaps(&Key::metadata_key_range()) {
// TODO(chi): The next patch will correctly create image layers for metadata keys, and it would be a
// rather big change. Keep this patch small for now.
match mode {
ImageLayerCreationMode::Force | ImageLayerCreationMode::Try => {
// skip image layer creation anyways for metadata keys.
start = img_range.end;
continue;
}
ImageLayerCreationMode::Initial => {
return Err(CreateImageLayersError::Other(anyhow::anyhow!("no image layer should be created for metadata keys when flushing frozen layers")));
}
}
} else if let ImageLayerCreationMode::Try = mode {
// check_for_image_layers = false -> skip
// check_for_image_layers = true -> check time_for_new_image_layer -> skip/generate
if !check_for_image_layers || !self.time_for_new_image_layer(partition, lsn).await {
start = img_range.end;
continue;
}
}
let mut image_layer_writer = ImageLayerWriter::new(
self.conf,
self.timeline_id,
self.tenant_shard_id,
&img_range,
lsn,
)
.await?;
fail_point!("image-layer-writer-fail-before-finish", |_| {
Err(CreateImageLayersError::Other(anyhow::anyhow!(
"failpoint image-layer-writer-fail-before-finish"
)))
});
let mut wrote_keys = false;
let mut key_request_accum = KeySpaceAccum::new();
for range in &partition.ranges {
let mut key = range.start;
while key < range.end {
// Decide whether to retain this key: usually we do, but sharded tenants may
// need to drop keys that don't belong to them. If we retain the key, add it
// to `key_request_accum` for later issuing a vectored get
if self.shard_identity.is_key_disposable(&key) {
debug!(
"Dropping key {} during compaction (it belongs on shard {:?})",
key,
self.shard_identity.get_shard_number(&key)
);
} else {
key_request_accum.add_key(key);
}
let last_key_in_range = key.next() == range.end;
key = key.next();
// Maybe flush `key_rest_accum`
if key_request_accum.raw_size() >= Timeline::MAX_GET_VECTORED_KEYS
|| last_key_in_range
{
let results = self
.get_vectored(key_request_accum.consume_keyspace(), lsn, ctx)
.await?;
for (img_key, img) in results {
let img = match img {
Ok(img) => img,
Err(err) => {
// If we fail to reconstruct a VM or FSM page, we can zero the
// page without losing any actual user data. That seems better
// than failing repeatedly and getting stuck.
//
// We had a bug at one point, where we truncated the FSM and VM
// in the pageserver, but the Postgres didn't know about that
// and continued to generate incremental WAL records for pages
// that didn't exist in the pageserver. Trying to replay those
// WAL records failed to find the previous image of the page.
// This special case allows us to recover from that situation.
// See https://github.com/neondatabase/neon/issues/2601.
//
// Unfortunately we cannot do this for the main fork, or for
// any metadata keys, keys, as that would lead to actual data
// loss.
if is_rel_fsm_block_key(img_key) || is_rel_vm_block_key(img_key)
{
warn!("could not reconstruct FSM or VM key {img_key}, filling with zeros: {err:?}");
ZERO_PAGE.clone()
} else {
return Err(CreateImageLayersError::PageReconstructError(
err,
));
}
}
};
// Write all the keys we just read into our new image layer.
image_layer_writer.put_image(img_key, img, ctx).await?;
wrote_keys = true;
}
}
}
}
if wrote_keys {
// Normal path: we have written some data into the new image layer for this
// partition, so flush it to disk.
start = img_range.end;
let image_layer = image_layer_writer.finish(self, ctx).await?;
image_layers.push(image_layer);
} else {
// Special case: the image layer may be empty if this is a sharded tenant and the
// partition does not cover any keys owned by this shard. In this case, to ensure
// we don't leave gaps between image layers, leave `start` where it is, so that the next
// layer we write will cover the key range that we just scanned.
tracing::debug!("no data in range {}-{}", img_range.start, img_range.end);
}
}
// The writer.finish() above already did the fsync of the inodes.
// We just need to fsync the directory in which these inodes are linked,
// which we know to be the timeline directory.
if !image_layers.is_empty() {
// We use fatal_err() below because the after writer.finish() returns with success,
// the in-memory state of the filesystem already has the layer file in its final place,
// and subsequent pageserver code could think it's durable while it really isn't.
let timeline_dir = VirtualFile::open(
&self
.conf
.timeline_path(&self.tenant_shard_id, &self.timeline_id),
)
.await
.fatal_err("VirtualFile::open for timeline dir fsync");
timeline_dir
.sync_all()
.await
.fatal_err("VirtualFile::sync_all timeline dir");
}
let mut guard = self.layers.write().await;
// FIXME: we could add the images to be uploaded *before* returning from here, but right
// now they are being scheduled outside of write lock
guard.track_new_image_layers(&image_layers, &self.metrics);
drop_wlock(guard);
timer.stop_and_record();
Ok(image_layers)
}
/// Wait until the background initial logical size calculation is complete, or
/// this Timeline is shut down. Calling this function will cause the initial
/// logical size calculation to skip waiting for the background jobs barrier.
pub(crate) async fn await_initial_logical_size(self: Arc<Self>) {
if let Some(await_bg_cancel) = self
.current_logical_size
.cancel_wait_for_background_loop_concurrency_limit_semaphore
.get()
{
await_bg_cancel.cancel();
} else {
// We should not wait if we were not able to explicitly instruct
// the logical size cancellation to skip the concurrency limit semaphore.
// TODO: this is an unexpected case. We should restructure so that it
// can't happen.
tracing::info!(
"await_initial_logical_size: can't get semaphore cancel token, skipping"
);
}
tokio::select!(
_ = self.current_logical_size.initialized.acquire() => {},
_ = self.cancel.cancelled() => {}
)
}
/// Detach this timeline from its ancestor by copying all of ancestors layers as this
/// Timelines layers up to the ancestor_lsn.
///
/// Requires a timeline that:
/// - has an ancestor to detach from
/// - the ancestor does not have an ancestor -- follows from the original RFC limitations, not
/// a technical requirement
/// - has prev_lsn in remote storage (temporary restriction)
///
/// After the operation has been started, it cannot be canceled. Upon restart it needs to be
/// polled again until completion.
///
/// During the operation all timelines sharing the data with this timeline will be reparented
/// from our ancestor to be branches of this timeline.
pub(crate) async fn prepare_to_detach_from_ancestor(
self: &Arc<Timeline>,
tenant: &crate::tenant::Tenant,
options: detach_ancestor::Options,
ctx: &RequestContext,
) -> Result<
(
completion::Completion,
detach_ancestor::PreparedTimelineDetach,
),
detach_ancestor::Error,
> {
detach_ancestor::prepare(self, tenant, options, ctx).await
}
/// Completes the ancestor detach. This method is to be called while holding the
/// TenantManager's tenant slot, so during this method we cannot be deleted nor can any
/// timeline be deleted. After this method returns successfully, tenant must be reloaded.
///
/// Pageserver receiving a SIGKILL during this operation is not supported (yet).
pub(crate) async fn complete_detaching_timeline_ancestor(
self: &Arc<Timeline>,
tenant: &crate::tenant::Tenant,
prepared: detach_ancestor::PreparedTimelineDetach,
ctx: &RequestContext,
) -> Result<Vec<TimelineId>, anyhow::Error> {
detach_ancestor::complete(self, tenant, prepared, ctx).await
}
}
/// Top-level failure to compact.
#[derive(Debug, thiserror::Error)]
pub(crate) enum CompactionError {
#[error("The timeline or pageserver is shutting down")]
ShuttingDown,
/// Compaction cannot be done right now; page reconstruction and so on.
#[error(transparent)]
Other(#[from] anyhow::Error),
}
impl From<CollectKeySpaceError> for CompactionError {
fn from(err: CollectKeySpaceError) -> Self {
match err {
CollectKeySpaceError::Cancelled
| CollectKeySpaceError::PageRead(PageReconstructError::Cancelled) => {
CompactionError::ShuttingDown
}
e => CompactionError::Other(e.into()),
}
}
}
#[serde_as]
#[derive(serde::Serialize)]
struct RecordedDuration(#[serde_as(as = "serde_with::DurationMicroSeconds")] Duration);
#[derive(Default)]
enum DurationRecorder {
#[default]
NotStarted,
Recorded(RecordedDuration, tokio::time::Instant),
}
impl DurationRecorder {
fn till_now(&self) -> DurationRecorder {
match self {
DurationRecorder::NotStarted => {
panic!("must only call on recorded measurements")
}
DurationRecorder::Recorded(_, ended) => {
let now = tokio::time::Instant::now();
DurationRecorder::Recorded(RecordedDuration(now - *ended), now)
}
}
}
fn into_recorded(self) -> Option<RecordedDuration> {
match self {
DurationRecorder::NotStarted => None,
DurationRecorder::Recorded(recorded, _) => Some(recorded),
}
}
}
impl Timeline {
async fn finish_compact_batch(
self: &Arc<Self>,
new_deltas: &[ResidentLayer],
new_images: &[ResidentLayer],
layers_to_remove: &[Layer],
) -> anyhow::Result<()> {
let mut guard = self.layers.write().await;
let mut duplicated_layers = HashSet::new();
let mut insert_layers = Vec::with_capacity(new_deltas.len());
for l in new_deltas {
if guard.contains(l.as_ref()) {
// expected in tests
tracing::error!(layer=%l, "duplicated L1 layer");
// good ways to cause a duplicate: we repeatedly error after taking the writelock
// `guard` on self.layers. as of writing this, there are no error returns except
// for compact_level0_phase1 creating an L0, which does not happen in practice
// because we have not implemented L0 => L0 compaction.
duplicated_layers.insert(l.layer_desc().key());
} else if LayerMap::is_l0(l.layer_desc()) {
bail!("compaction generates a L0 layer file as output, which will cause infinite compaction.");
} else {
insert_layers.push(l.clone());
}
}
// only remove those inputs which were not outputs
let remove_layers: Vec<Layer> = layers_to_remove
.iter()
.filter(|l| !duplicated_layers.contains(&l.layer_desc().key()))
.cloned()
.collect();
if !new_images.is_empty() {
guard.track_new_image_layers(new_images, &self.metrics);
}
// deletion will happen later, the layer file manager calls garbage_collect_on_drop
guard.finish_compact_l0(&remove_layers, &insert_layers, &self.metrics);
if let Some(remote_client) = self.remote_client.as_ref() {
remote_client.schedule_compaction_update(&remove_layers, new_deltas)?;
}
drop_wlock(guard);
Ok(())
}
async fn rewrite_layers(
self: &Arc<Self>,
replace_layers: Vec<(Layer, ResidentLayer)>,
drop_layers: Vec<Layer>,
) -> anyhow::Result<()> {
let mut guard = self.layers.write().await;
guard.rewrite_layers(&replace_layers, &drop_layers, &self.metrics);
let upload_layers: Vec<_> = replace_layers.into_iter().map(|r| r.1).collect();
if let Some(remote_client) = self.remote_client.as_ref() {
remote_client.schedule_compaction_update(&drop_layers, &upload_layers)?;
}
Ok(())
}
/// Schedules the uploads of the given image layers
fn upload_new_image_layers(
self: &Arc<Self>,
new_images: impl IntoIterator<Item = ResidentLayer>,
) -> anyhow::Result<()> {
let Some(remote_client) = &self.remote_client else {
return Ok(());
};
for layer in new_images {
remote_client.schedule_layer_file_upload(layer)?;
}
// should any new image layer been created, not uploading index_part will
// result in a mismatch between remote_physical_size and layermap calculated
// size, which will fail some tests, but should not be an issue otherwise.
remote_client.schedule_index_upload_for_file_changes()?;
Ok(())
}
/// Find the Lsns above which layer files need to be retained on
/// garbage collection. This is separate from actually performing the GC,
/// and is updated more frequently, so that compaction can remove obsolete
/// page versions more aggressively.
///
/// TODO: that's wishful thinking, compaction doesn't actually do that
/// currently.
///
/// The 'cutoff_horizon' point is used to retain recent versions that might still be
/// needed by read-only nodes. (As of this writing, the caller just passes
/// the latest LSN subtracted by a constant, and doesn't do anything smart
/// to figure out what read-only nodes might actually need.)
///
/// The 'pitr' duration is used to calculate a 'pitr_cutoff', which can be used to determine
/// whether a record is needed for PITR.
#[instrument(skip_all, fields(timeline_id=%self.timeline_id))]
pub(super) async fn find_gc_cutoffs(
&self,
cutoff_horizon: Lsn,
pitr: Duration,
cancel: &CancellationToken,
ctx: &RequestContext,
) -> anyhow::Result<GcCutoffs> {
let _timer = self
.metrics
.find_gc_cutoffs_histo
.start_timer()
.record_on_drop();
pausable_failpoint!("Timeline::find_gc_cutoffs-pausable");
// First, calculate pitr_cutoff_timestamp and then convert it to LSN.
//
// Some unit tests depend on garbage-collection working even when
// CLOG data is missing, so that find_lsn_for_timestamp() doesn't
// work, so avoid calling it altogether if time-based retention is not
// configured. It would be pointless anyway.
let pitr_cutoff = if pitr != Duration::ZERO {
let now = SystemTime::now();
if let Some(pitr_cutoff_timestamp) = now.checked_sub(pitr) {
let pitr_timestamp = to_pg_timestamp(pitr_cutoff_timestamp);
match self
.find_lsn_for_timestamp(pitr_timestamp, cancel, ctx)
.await?
{
LsnForTimestamp::Present(lsn) => lsn,
LsnForTimestamp::Future(lsn) => {
// The timestamp is in the future. That sounds impossible,
// but what it really means is that there hasn't been
// any commits since the cutoff timestamp.
//
// In this case we should use the LSN of the most recent commit,
// which is implicitly the last LSN in the log.
debug!("future({})", lsn);
self.get_last_record_lsn()
}
LsnForTimestamp::Past(lsn) => {
debug!("past({})", lsn);
// conservative, safe default is to remove nothing, when we
// have no commit timestamp data available
*self.get_latest_gc_cutoff_lsn()
}
LsnForTimestamp::NoData(lsn) => {
debug!("nodata({})", lsn);
// conservative, safe default is to remove nothing, when we
// have no commit timestamp data available
*self.get_latest_gc_cutoff_lsn()
}
}
} else {
// If we don't have enough data to convert to LSN,
// play safe and don't remove any layers.
*self.get_latest_gc_cutoff_lsn()
}
} else {
// No time-based retention was configured. Interpret this as "keep no history".
self.get_last_record_lsn()
};
Ok(GcCutoffs {
horizon: cutoff_horizon,
pitr: pitr_cutoff,
})
}
/// Garbage collect layer files on a timeline that are no longer needed.
///
/// Currently, we don't make any attempt at removing unneeded page versions
/// within a layer file. We can only remove the whole file if it's fully
/// obsolete.
pub(super) async fn gc(&self) -> anyhow::Result<GcResult> {
// this is most likely the background tasks, but it might be the spawned task from
// immediate_gc
let cancel = crate::task_mgr::shutdown_token();
let _g = tokio::select! {
guard = self.gc_lock.lock() => guard,
_ = self.cancel.cancelled() => return Ok(GcResult::default()),
_ = cancel.cancelled() => return Ok(GcResult::default()),
};
let timer = self.metrics.garbage_collect_histo.start_timer();
fail_point!("before-timeline-gc");
// Is the timeline being deleted?
if self.is_stopping() {
anyhow::bail!("timeline is Stopping");
}
let (horizon_cutoff, pitr_cutoff, retain_lsns) = {
let gc_info = self.gc_info.read().unwrap();
let horizon_cutoff = min(gc_info.cutoffs.horizon, self.get_disk_consistent_lsn());
let pitr_cutoff = gc_info.cutoffs.pitr;
let retain_lsns = gc_info.retain_lsns.clone();
(horizon_cutoff, pitr_cutoff, retain_lsns)
};
let new_gc_cutoff = Lsn::min(horizon_cutoff, pitr_cutoff);
let res = self
.gc_timeline(horizon_cutoff, pitr_cutoff, retain_lsns, new_gc_cutoff)
.instrument(
info_span!("gc_timeline", timeline_id = %self.timeline_id, cutoff = %new_gc_cutoff),
)
.await?;
// only record successes
timer.stop_and_record();
Ok(res)
}
async fn gc_timeline(
&self,
horizon_cutoff: Lsn,
pitr_cutoff: Lsn,
retain_lsns: Vec<Lsn>,
new_gc_cutoff: Lsn,
) -> anyhow::Result<GcResult> {
// FIXME: if there is an ongoing detach_from_ancestor, we should just skip gc
let now = SystemTime::now();
let mut result: GcResult = GcResult::default();
// Nothing to GC. Return early.
let latest_gc_cutoff = *self.get_latest_gc_cutoff_lsn();
if latest_gc_cutoff >= new_gc_cutoff {
info!(
"Nothing to GC: new_gc_cutoff_lsn {new_gc_cutoff}, latest_gc_cutoff_lsn {latest_gc_cutoff}",
);
return Ok(result);
}
// We need to ensure that no one tries to read page versions or create
// branches at a point before latest_gc_cutoff_lsn. See branch_timeline()
// for details. This will block until the old value is no longer in use.
//
// The GC cutoff should only ever move forwards.
let waitlist = {
let write_guard = self.latest_gc_cutoff_lsn.lock_for_write();
ensure!(
*write_guard <= new_gc_cutoff,
"Cannot move GC cutoff LSN backwards (was {}, new {})",
*write_guard,
new_gc_cutoff
);
write_guard.store_and_unlock(new_gc_cutoff)
};
waitlist.wait().await;
info!("GC starting");
debug!("retain_lsns: {:?}", retain_lsns);
let mut layers_to_remove = Vec::new();
// Scan all layers in the timeline (remote or on-disk).
//
// Garbage collect the layer if all conditions are satisfied:
// 1. it is older than cutoff LSN;
// 2. it is older than PITR interval;
// 3. it doesn't need to be retained for 'retain_lsns';
// 4. newer on-disk image layers cover the layer's whole key range
//
// TODO holding a write lock is too agressive and avoidable
let mut guard = self.layers.write().await;
let layers = guard.layer_map();
'outer: for l in layers.iter_historic_layers() {
result.layers_total += 1;
// 1. Is it newer than GC horizon cutoff point?
if l.get_lsn_range().end > horizon_cutoff {
debug!(
"keeping {} because it's newer than horizon_cutoff {}",
l.layer_name(),
horizon_cutoff,
);
result.layers_needed_by_cutoff += 1;
continue 'outer;
}
// 2. It is newer than PiTR cutoff point?
if l.get_lsn_range().end > pitr_cutoff {
debug!(
"keeping {} because it's newer than pitr_cutoff {}",
l.layer_name(),
pitr_cutoff,
);
result.layers_needed_by_pitr += 1;
continue 'outer;
}
// 3. Is it needed by a child branch?
// NOTE With that we would keep data that
// might be referenced by child branches forever.
// We can track this in child timeline GC and delete parent layers when
// they are no longer needed. This might be complicated with long inheritance chains.
//
// TODO Vec is not a great choice for `retain_lsns`
for retain_lsn in &retain_lsns {
// start_lsn is inclusive
if &l.get_lsn_range().start <= retain_lsn {
debug!(
"keeping {} because it's still might be referenced by child branch forked at {} is_dropped: xx is_incremental: {}",
l.layer_name(),
retain_lsn,
l.is_incremental(),
);
result.layers_needed_by_branches += 1;
continue 'outer;
}
}
// 4. Is there a later on-disk layer for this relation?
//
// The end-LSN is exclusive, while disk_consistent_lsn is
// inclusive. For example, if disk_consistent_lsn is 100, it is
// OK for a delta layer to have end LSN 101, but if the end LSN
// is 102, then it might not have been fully flushed to disk
// before crash.
//
// For example, imagine that the following layers exist:
//
// 1000 - image (A)
// 1000-2000 - delta (B)
// 2000 - image (C)
// 2000-3000 - delta (D)
// 3000 - image (E)
//
// If GC horizon is at 2500, we can remove layers A and B, but
// we cannot remove C, even though it's older than 2500, because
// the delta layer 2000-3000 depends on it.
if !layers
.image_layer_exists(&l.get_key_range(), &(l.get_lsn_range().end..new_gc_cutoff))
{
debug!("keeping {} because it is the latest layer", l.layer_name());
result.layers_not_updated += 1;
continue 'outer;
}
// We didn't find any reason to keep this file, so remove it.
debug!(
"garbage collecting {} is_dropped: xx is_incremental: {}",
l.layer_name(),
l.is_incremental(),
);
layers_to_remove.push(l);
}
if !layers_to_remove.is_empty() {
// Persist the new GC cutoff value before we actually remove anything.
// This unconditionally schedules also an index_part.json update, even though, we will
// be doing one a bit later with the unlinked gc'd layers.
let disk_consistent_lsn = self.disk_consistent_lsn.load();
self.schedule_uploads(disk_consistent_lsn, None)?;
let gc_layers = layers_to_remove
.iter()
.map(|x| guard.get_from_desc(x))
.collect::<Vec<Layer>>();
result.layers_removed = gc_layers.len() as u64;
if let Some(remote_client) = self.remote_client.as_ref() {
remote_client.schedule_gc_update(&gc_layers)?;
}
guard.finish_gc_timeline(&gc_layers);
#[cfg(feature = "testing")]
{
result.doomed_layers = gc_layers;
}
}
info!(
"GC completed removing {} layers, cutoff {}",
result.layers_removed, new_gc_cutoff
);
result.elapsed = now.elapsed()?;
Ok(result)
}
/// Reconstruct a value, using the given base image and WAL records in 'data'.
async fn reconstruct_value(
&self,
key: Key,
request_lsn: Lsn,
mut data: ValueReconstructState,
) -> Result<Bytes, PageReconstructError> {
// Perform WAL redo if needed
data.records.reverse();
// If we have a page image, and no WAL, we're all set
if data.records.is_empty() {
if let Some((img_lsn, img)) = &data.img {
trace!(
"found page image for key {} at {}, no WAL redo required, req LSN {}",
key,
img_lsn,
request_lsn,
);
Ok(img.clone())
} else {
Err(PageReconstructError::from(anyhow!(
"base image for {key} at {request_lsn} not found"
)))
}
} else {
// We need to do WAL redo.
//
// If we don't have a base image, then the oldest WAL record better initialize
// the page
if data.img.is_none() && !data.records.first().unwrap().1.will_init() {
Err(PageReconstructError::from(anyhow!(
"Base image for {} at {} not found, but got {} WAL records",
key,
request_lsn,
data.records.len()
)))
} else {
if data.img.is_some() {
trace!(
"found {} WAL records and a base image for {} at {}, performing WAL redo",
data.records.len(),
key,
request_lsn
);
} else {
trace!("found {} WAL records that will init the page for {} at {}, performing WAL redo", data.records.len(), key, request_lsn);
};
let last_rec_lsn = data.records.last().unwrap().0;
let img = match self
.walredo_mgr
.as_ref()
.context("timeline has no walredo manager")
.map_err(PageReconstructError::WalRedo)?
.request_redo(key, request_lsn, data.img, data.records, self.pg_version)
.await
.context("reconstruct a page image")
{
Ok(img) => img,
Err(e) => return Err(PageReconstructError::WalRedo(e)),
};
if img.len() == page_cache::PAGE_SZ {
let cache = page_cache::get();
if let Err(e) = cache
.memorize_materialized_page(
self.tenant_shard_id,
self.timeline_id,
key,
last_rec_lsn,
&img,
)
.await
.context("Materialized page memoization failed")
{
return Err(PageReconstructError::from(e));
}
}
Ok(img)
}
}
}
pub(crate) async fn spawn_download_all_remote_layers(
self: Arc<Self>,
request: DownloadRemoteLayersTaskSpawnRequest,
) -> Result<DownloadRemoteLayersTaskInfo, DownloadRemoteLayersTaskInfo> {
use pageserver_api::models::DownloadRemoteLayersTaskState;
// this is not really needed anymore; it has tests which really check the return value from
// http api. it would be better not to maintain this anymore.
let mut status_guard = self.download_all_remote_layers_task_info.write().unwrap();
if let Some(st) = &*status_guard {
match &st.state {
DownloadRemoteLayersTaskState::Running => {
return Err(st.clone());
}
DownloadRemoteLayersTaskState::ShutDown
| DownloadRemoteLayersTaskState::Completed => {
*status_guard = None;
}
}
}
let self_clone = Arc::clone(&self);
let task_id = task_mgr::spawn(
task_mgr::BACKGROUND_RUNTIME.handle(),
task_mgr::TaskKind::DownloadAllRemoteLayers,
Some(self.tenant_shard_id),
Some(self.timeline_id),
"download all remote layers task",
false,
async move {
self_clone.download_all_remote_layers(request).await;
let mut status_guard = self_clone.download_all_remote_layers_task_info.write().unwrap();
match &mut *status_guard {
None => {
warn!("tasks status is supposed to be Some(), since we are running");
}
Some(st) => {
let exp_task_id = format!("{}", task_mgr::current_task_id().unwrap());
if st.task_id != exp_task_id {
warn!("task id changed while we were still running, expecting {} but have {}", exp_task_id, st.task_id);
} else {
st.state = DownloadRemoteLayersTaskState::Completed;
}
}
};
Ok(())
}
.instrument(info_span!(parent: None, "download_all_remote_layers", tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))
);
let initial_info = DownloadRemoteLayersTaskInfo {
task_id: format!("{task_id}"),
state: DownloadRemoteLayersTaskState::Running,
total_layer_count: 0,
successful_download_count: 0,
failed_download_count: 0,
};
*status_guard = Some(initial_info.clone());
Ok(initial_info)
}
async fn download_all_remote_layers(
self: &Arc<Self>,
request: DownloadRemoteLayersTaskSpawnRequest,
) {
use pageserver_api::models::DownloadRemoteLayersTaskState;
let remaining = {
let guard = self.layers.read().await;
guard
.layer_map()
.iter_historic_layers()
.map(|desc| guard.get_from_desc(&desc))
.collect::<Vec<_>>()
};
let total_layer_count = remaining.len();
macro_rules! lock_status {
($st:ident) => {
let mut st = self.download_all_remote_layers_task_info.write().unwrap();
let st = st
.as_mut()
.expect("this function is only called after the task has been spawned");
assert_eq!(
st.task_id,
format!(
"{}",
task_mgr::current_task_id().expect("we run inside a task_mgr task")
)
);
let $st = st;
};
}
{
lock_status!(st);
st.total_layer_count = total_layer_count as u64;
}
let mut remaining = remaining.into_iter();
let mut have_remaining = true;
let mut js = tokio::task::JoinSet::new();
let cancel = task_mgr::shutdown_token();
let limit = request.max_concurrent_downloads;
loop {
while js.len() < limit.get() && have_remaining && !cancel.is_cancelled() {
let Some(next) = remaining.next() else {
have_remaining = false;
break;
};
let span = tracing::info_span!("download", layer = %next);
js.spawn(
async move {
let res = next.download().await;
(next, res)
}
.instrument(span),
);
}
while let Some(res) = js.join_next().await {
match res {
Ok((_, Ok(_))) => {
lock_status!(st);
st.successful_download_count += 1;
}
Ok((layer, Err(e))) => {
tracing::error!(%layer, "download failed: {e:#}");
lock_status!(st);
st.failed_download_count += 1;
}
Err(je) if je.is_cancelled() => unreachable!("not used here"),
Err(je) if je.is_panic() => {
lock_status!(st);
st.failed_download_count += 1;
}
Err(je) => tracing::warn!("unknown joinerror: {je:?}"),
}
}
if js.is_empty() && (!have_remaining || cancel.is_cancelled()) {
break;
}
}
{
lock_status!(st);
st.state = DownloadRemoteLayersTaskState::Completed;
}
}
pub(crate) fn get_download_all_remote_layers_task_info(
&self,
) -> Option<DownloadRemoteLayersTaskInfo> {
self.download_all_remote_layers_task_info
.read()
.unwrap()
.clone()
}
}
impl Timeline {
/// Returns non-remote layers for eviction.
pub(crate) async fn get_local_layers_for_disk_usage_eviction(&self) -> DiskUsageEvictionInfo {
let guard = self.layers.read().await;
let mut max_layer_size: Option<u64> = None;
let resident_layers = guard
.likely_resident_layers()
.map(|layer| {
let file_size = layer.layer_desc().file_size;
max_layer_size = max_layer_size.map_or(Some(file_size), |m| Some(m.max(file_size)));
let last_activity_ts = layer.access_stats().latest_activity_or_now();
EvictionCandidate {
layer: layer.into(),
last_activity_ts,
relative_last_activity: finite_f32::FiniteF32::ZERO,
}
})
.collect();
DiskUsageEvictionInfo {
max_layer_size,
resident_layers,
}
}
pub(crate) fn get_shard_index(&self) -> ShardIndex {
ShardIndex {
shard_number: self.tenant_shard_id.shard_number,
shard_count: self.tenant_shard_id.shard_count,
}
}
}
type TraversalPathItem = (ValueReconstructResult, Lsn, TraversalId);
struct TimelineWriterState {
open_layer: Arc<InMemoryLayer>,
current_size: u64,
// Previous Lsn which passed through
prev_lsn: Option<Lsn>,
// Largest Lsn which passed through the current writer
max_lsn: Option<Lsn>,
// Cached details of the last freeze. Avoids going trough the atomic/lock on every put.
cached_last_freeze_at: Lsn,
}
impl TimelineWriterState {
fn new(open_layer: Arc<InMemoryLayer>, current_size: u64, last_freeze_at: Lsn) -> Self {
Self {
open_layer,
current_size,
prev_lsn: None,
max_lsn: None,
cached_last_freeze_at: last_freeze_at,
}
}
}
/// Various functions to mutate the timeline.
// TODO Currently, Deref is used to allow easy access to read methods from this trait.
// This is probably considered a bad practice in Rust and should be fixed eventually,
// but will cause large code changes.
pub(crate) struct TimelineWriter<'a> {
tl: &'a Timeline,
write_guard: tokio::sync::MutexGuard<'a, Option<TimelineWriterState>>,
}
impl Deref for TimelineWriter<'_> {
type Target = Timeline;
fn deref(&self) -> &Self::Target {
self.tl
}
}
impl Drop for TimelineWriter<'_> {
fn drop(&mut self) {
self.write_guard.take();
}
}
#[derive(PartialEq)]
enum OpenLayerAction {
Roll,
Open,
None,
}
impl<'a> TimelineWriter<'a> {
/// Put a new page version that can be constructed from a WAL record
///
/// This will implicitly extend the relation, if the page is beyond the
/// current end-of-file.
pub(crate) async fn put(
&mut self,
key: Key,
lsn: Lsn,
value: &Value,
ctx: &RequestContext,
) -> anyhow::Result<()> {
// Avoid doing allocations for "small" values.
// In the regression test suite, the limit of 256 avoided allocations in 95% of cases:
// https://github.com/neondatabase/neon/pull/5056#discussion_r1301975061
let mut buf = smallvec::SmallVec::<[u8; 256]>::new();
value.ser_into(&mut buf)?;
let buf_size: u64 = buf.len().try_into().expect("oversized value buf");
let action = self.get_open_layer_action(lsn, buf_size);
let layer = self.handle_open_layer_action(lsn, action).await?;
let res = layer.put_value(key, lsn, &buf, ctx).await;
if res.is_ok() {
// Update the current size only when the entire write was ok.
// In case of failures, we may have had partial writes which
// render the size tracking out of sync. That's ok because
// the checkpoint distance should be significantly smaller
// than the S3 single shot upload limit of 5GiB.
let state = self.write_guard.as_mut().unwrap();
state.current_size += buf_size;
state.prev_lsn = Some(lsn);
state.max_lsn = std::cmp::max(state.max_lsn, Some(lsn));
}
res
}
async fn handle_open_layer_action(
&mut self,
at: Lsn,
action: OpenLayerAction,
) -> anyhow::Result<&Arc<InMemoryLayer>> {
match action {
OpenLayerAction::Roll => {
let freeze_at = self.write_guard.as_ref().unwrap().max_lsn.unwrap();
self.roll_layer(freeze_at).await?;
self.open_layer(at).await?;
}
OpenLayerAction::Open => self.open_layer(at).await?,
OpenLayerAction::None => {
assert!(self.write_guard.is_some());
}
}
Ok(&self.write_guard.as_ref().unwrap().open_layer)
}
async fn open_layer(&mut self, at: Lsn) -> anyhow::Result<()> {
let layer = self.tl.get_layer_for_write(at).await?;
let initial_size = layer.size().await?;
let last_freeze_at = self.last_freeze_at.load();
self.write_guard.replace(TimelineWriterState::new(
layer,
initial_size,
last_freeze_at,
));
Ok(())
}
async fn roll_layer(&mut self, freeze_at: Lsn) -> anyhow::Result<()> {
assert!(self.write_guard.is_some());
self.tl.freeze_inmem_layer_at(freeze_at).await;
let now = Instant::now();
*(self.last_freeze_ts.write().unwrap()) = now;
self.tl.flush_frozen_layers();
let current_size = self.write_guard.as_ref().unwrap().current_size;
if current_size > self.get_checkpoint_distance() {
warn!("Flushed oversized open layer with size {}", current_size)
}
Ok(())
}
fn get_open_layer_action(&self, lsn: Lsn, new_value_size: u64) -> OpenLayerAction {
let state = &*self.write_guard;
let Some(state) = &state else {
return OpenLayerAction::Open;
};
if state.prev_lsn == Some(lsn) {
// Rolling mid LSN is not supported by downstream code.
// Hence, only roll at LSN boundaries.
return OpenLayerAction::None;
}
if state.current_size == 0 {
// Don't roll empty layers
return OpenLayerAction::None;
}
if self.tl.should_roll(
state.current_size,
state.current_size + new_value_size,
self.get_checkpoint_distance(),
lsn,
state.cached_last_freeze_at,
state.open_layer.get_opened_at(),
) {
OpenLayerAction::Roll
} else {
OpenLayerAction::None
}
}
/// Put a batch of keys at the specified Lsns.
///
/// The batch is sorted by Lsn (enforced by usage of [`utils::vec_map::VecMap`].
pub(crate) async fn put_batch(
&mut self,
batch: VecMap<Lsn, (Key, Value)>,
ctx: &RequestContext,
) -> anyhow::Result<()> {
for (lsn, (key, val)) in batch {
self.put(key, lsn, &val, ctx).await?
}
Ok(())
}
pub(crate) async fn delete_batch(&mut self, batch: &[(Range<Key>, Lsn)]) -> anyhow::Result<()> {
if let Some((_, lsn)) = batch.first() {
let action = self.get_open_layer_action(*lsn, 0);
let layer = self.handle_open_layer_action(*lsn, action).await?;
layer.put_tombstones(batch).await?;
}
Ok(())
}
/// Track the end of the latest digested WAL record.
/// Remember the (end of) last valid WAL record remembered in the timeline.
///
/// Call this after you have finished writing all the WAL up to 'lsn'.
///
/// 'lsn' must be aligned. This wakes up any wait_lsn() callers waiting for
/// the 'lsn' or anything older. The previous last record LSN is stored alongside
/// the latest and can be read.
pub(crate) fn finish_write(&self, new_lsn: Lsn) {
self.tl.finish_write(new_lsn);
}
pub(crate) fn update_current_logical_size(&self, delta: i64) {
self.tl.update_current_logical_size(delta)
}
}
// We need TimelineWriter to be send in upcoming conversion of
// Timeline::layers to tokio::sync::RwLock.
#[test]
fn is_send() {
fn _assert_send<T: Send>() {}
_assert_send::<TimelineWriter<'_>>();
}
/// Add a suffix to a layer file's name: .{num}.old
/// Uses the first available num (starts at 0)
fn rename_to_backup(path: &Utf8Path) -> anyhow::Result<()> {
let filename = path
.file_name()
.ok_or_else(|| anyhow!("Path {path} don't have a file name"))?;
let mut new_path = path.to_owned();
for i in 0u32.. {
new_path.set_file_name(format!("{filename}.{i}.old"));
if !new_path.exists() {
std::fs::rename(path, &new_path)
.with_context(|| format!("rename {path:?} to {new_path:?}"))?;
return Ok(());
}
}
bail!("couldn't find an unused backup number for {:?}", path)
}
#[cfg(test)]
mod tests {
use utils::{id::TimelineId, lsn::Lsn};
use crate::tenant::{
harness::TenantHarness, storage_layer::Layer, timeline::EvictionError, Timeline,
};
#[tokio::test]
async fn two_layer_eviction_attempts_at_the_same_time() {
let harness =
TenantHarness::create("two_layer_eviction_attempts_at_the_same_time").unwrap();
let (tenant, ctx) = harness.load().await;
let timeline = tenant
.create_test_timeline(TimelineId::generate(), Lsn(0x10), 14, &ctx)
.await
.unwrap();
let layer = find_some_layer(&timeline).await;
let layer = layer
.keep_resident()
.await
.expect("no download => no downloading errors")
.drop_eviction_guard();
let forever = std::time::Duration::from_secs(120);
let first = layer.evict_and_wait(forever);
let second = layer.evict_and_wait(forever);
let (first, second) = tokio::join!(first, second);
let res = layer.keep_resident().await;
assert!(res.is_none(), "{res:?}");
match (first, second) {
(Ok(()), Ok(())) => {
// because there are no more timeline locks being taken on eviction path, we can
// witness all three outcomes here.
}
(Ok(()), Err(EvictionError::NotFound)) | (Err(EvictionError::NotFound), Ok(())) => {
// if one completes before the other, this is fine just as well.
}
other => unreachable!("unexpected {:?}", other),
}
}
async fn find_some_layer(timeline: &Timeline) -> Layer {
let layers = timeline.layers.read().await;
let desc = layers
.layer_map()
.iter_historic_layers()
.next()
.expect("must find one layer to evict");
layers.get_from_desc(&desc)
}
}