Files
neon/pageserver/src/virtual_file.rs
2024-03-25 11:43:02 -04:00

1474 lines
53 KiB
Rust

//!
//! VirtualFile is like a normal File, but it's not bound directly to
//! a file descriptor. Instead, the file is opened when it's read from,
//! and if too many files are open globally in the system, least-recently
//! used ones are closed.
//!
//! To track which files have been recently used, we use the clock algorithm
//! with a 'recently_used' flag on each slot.
//!
//! This is similar to PostgreSQL's virtual file descriptor facility in
//! src/backend/storage/file/fd.c
//!
use crate::metrics::{StorageIoOperation, STORAGE_IO_SIZE, STORAGE_IO_TIME_METRIC};
use crate::page_cache::PageWriteGuard;
use crate::tenant::TENANTS_SEGMENT_NAME;
use camino::{Utf8Path, Utf8PathBuf};
use once_cell::sync::OnceCell;
use pageserver_api::shard::TenantShardId;
use std::fs::File;
use std::io::{Error, ErrorKind, Seek, SeekFrom};
use tokio_epoll_uring::{BoundedBuf, IoBuf, IoBufMut, Slice};
use std::os::fd::{AsRawFd, FromRawFd, IntoRawFd, OwnedFd, RawFd};
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use tokio::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};
use tokio::time::Instant;
pub use pageserver_api::models::virtual_file as api;
pub(crate) mod io_engine;
pub use io_engine::feature_test as io_engine_feature_test;
pub use io_engine::FeatureTestResult as IoEngineFeatureTestResult;
mod metadata;
mod open_options;
pub(crate) use io_engine::IoEngineKind;
pub(crate) use metadata::Metadata;
pub(crate) use open_options::*;
#[cfg_attr(not(target_os = "linux"), allow(dead_code))]
pub(crate) mod owned_buffers_io {
//! Abstractions for IO with owned buffers.
//!
//! Not actually tied to [`crate::virtual_file`] specifically, but, it's the primary
//! reason we need this abstraction.
//!
//! Over time, this could move into the `tokio-epoll-uring` crate, maybe `uring-common`,
//! but for the time being we're proving out the primitives in the neon.git repo
//! for faster iteration.
pub(crate) mod write;
pub(crate) mod util {
pub(crate) mod size_tracking_writer;
}
}
///
/// A virtual file descriptor. You can use this just like std::fs::File, but internally
/// the underlying file is closed if the system is low on file descriptors,
/// and re-opened when it's accessed again.
///
/// Like with std::fs::File, multiple threads can read/write the file concurrently,
/// holding just a shared reference the same VirtualFile, using the read_at() / write_at()
/// functions from the FileExt trait. But the functions from the Read/Write/Seek traits
/// require a mutable reference, because they modify the "current position".
///
/// Each VirtualFile has a physical file descriptor in the global OPEN_FILES array, at the
/// slot that 'handle points to, if the underlying file is currently open. If it's not
/// currently open, the 'handle' can still point to the slot where it was last kept. The
/// 'tag' field is used to detect whether the handle still is valid or not.
///
#[derive(Debug)]
pub struct VirtualFile {
/// Lazy handle to the global file descriptor cache. The slot that this points to
/// might contain our File, or it may be empty, or it may contain a File that
/// belongs to a different VirtualFile.
handle: RwLock<SlotHandle>,
/// Current file position
pos: u64,
/// File path and options to use to open it.
///
/// Note: this only contains the options needed to re-open it. For example,
/// if a new file is created, we only pass the create flag when it's initially
/// opened, in the VirtualFile::create() function, and strip the flag before
/// storing it here.
pub path: Utf8PathBuf,
open_options: OpenOptions,
// These are strings becase we only use them for metrics, and those expect strings.
// It makes no sense for us to constantly turn the `TimelineId` and `TenantId` into
// strings.
tenant_id: String,
shard_id: String,
timeline_id: String,
}
#[derive(Debug, PartialEq, Clone, Copy)]
struct SlotHandle {
/// Index into OPEN_FILES.slots
index: usize,
/// Value of 'tag' in the slot. If slot's tag doesn't match, then the slot has
/// been recycled and no longer contains the FD for this virtual file.
tag: u64,
}
/// OPEN_FILES is the global array that holds the physical file descriptors that
/// are currently open. Each slot in the array is protected by a separate lock,
/// so that different files can be accessed independently. The lock must be held
/// in write mode to replace the slot with a different file, but a read mode
/// is enough to operate on the file, whether you're reading or writing to it.
///
/// OPEN_FILES starts in uninitialized state, and it's initialized by
/// the virtual_file::init() function. It must be called exactly once at page
/// server startup.
static OPEN_FILES: OnceCell<OpenFiles> = OnceCell::new();
struct OpenFiles {
slots: &'static [Slot],
/// clock arm for the clock algorithm
next: AtomicUsize,
}
struct Slot {
inner: RwLock<SlotInner>,
/// has this file been used since last clock sweep?
recently_used: AtomicBool,
}
struct SlotInner {
/// Counter that's incremented every time a different file is stored here.
/// To avoid the ABA problem.
tag: u64,
/// the underlying file
file: Option<OwnedFd>,
}
/// Impl of [`tokio_epoll_uring::IoBuf`] and [`tokio_epoll_uring::IoBufMut`] for [`PageWriteGuard`].
struct PageWriteGuardBuf {
page: PageWriteGuard<'static>,
init_up_to: usize,
}
// Safety: the [`PageWriteGuard`] gives us exclusive ownership of the page cache slot,
// and the location remains stable even if [`Self`] or the [`PageWriteGuard`] is moved.
unsafe impl tokio_epoll_uring::IoBuf for PageWriteGuardBuf {
fn stable_ptr(&self) -> *const u8 {
self.page.as_ptr()
}
fn bytes_init(&self) -> usize {
self.init_up_to
}
fn bytes_total(&self) -> usize {
self.page.len()
}
}
// Safety: see above, plus: the ownership of [`PageWriteGuard`] means exclusive access,
// hence it's safe to hand out the `stable_mut_ptr()`.
unsafe impl tokio_epoll_uring::IoBufMut for PageWriteGuardBuf {
fn stable_mut_ptr(&mut self) -> *mut u8 {
self.page.as_mut_ptr()
}
unsafe fn set_init(&mut self, pos: usize) {
assert!(pos <= self.page.len());
self.init_up_to = pos;
}
}
impl OpenFiles {
/// Find a slot to use, evicting an existing file descriptor if needed.
///
/// On return, we hold a lock on the slot, and its 'tag' has been updated
/// recently_used has been set. It's all ready for reuse.
async fn find_victim_slot(&self) -> (SlotHandle, RwLockWriteGuard<SlotInner>) {
//
// Run the clock algorithm to find a slot to replace.
//
let num_slots = self.slots.len();
let mut retries = 0;
let mut slot;
let mut slot_guard;
let index;
loop {
let next = self.next.fetch_add(1, Ordering::AcqRel) % num_slots;
slot = &self.slots[next];
// If the recently_used flag on this slot is set, continue the clock
// sweep. Otherwise try to use this slot. If we cannot acquire the
// lock, also continue the clock sweep.
//
// We only continue in this manner for a while, though. If we loop
// through the array twice without finding a victim, just pick the
// next slot and wait until we can reuse it. This way, we avoid
// spinning in the extreme case that all the slots are busy with an
// I/O operation.
if retries < num_slots * 2 {
if !slot.recently_used.swap(false, Ordering::Release) {
if let Ok(guard) = slot.inner.try_write() {
slot_guard = guard;
index = next;
break;
}
}
retries += 1;
} else {
slot_guard = slot.inner.write().await;
index = next;
break;
}
}
//
// We now have the victim slot locked. If it was in use previously, close the
// old file.
//
if let Some(old_file) = slot_guard.file.take() {
// the normal path of dropping VirtualFile uses "close", use "close-by-replace" here to
// distinguish the two.
STORAGE_IO_TIME_METRIC
.get(StorageIoOperation::CloseByReplace)
.observe_closure_duration(|| drop(old_file));
}
// Prepare the slot for reuse and return it
slot_guard.tag += 1;
slot.recently_used.store(true, Ordering::Relaxed);
(
SlotHandle {
index,
tag: slot_guard.tag,
},
slot_guard,
)
}
}
/// Identify error types that should alwways terminate the process. Other
/// error types may be elegible for retry.
pub(crate) fn is_fatal_io_error(e: &std::io::Error) -> bool {
use nix::errno::Errno::*;
match e.raw_os_error().map(nix::errno::from_i32) {
Some(EIO) => {
// Terminate on EIO because we no longer trust the device to store
// data safely, or to uphold persistence guarantees on fsync.
true
}
Some(EROFS) => {
// Terminate on EROFS because a filesystem is usually remounted
// readonly when it has experienced some critical issue, so the same
// logic as EIO applies.
true
}
Some(EACCES) => {
// Terminate on EACCESS because we should always have permissions
// for our own data dir: if we don't, then we can't do our job and
// need administrative intervention to fix permissions. Terminating
// is the best way to make sure we stop cleanly rather than going
// into infinite retry loops, and will make it clear to the outside
// world that we need help.
true
}
_ => {
// Treat all other local file I/O errors are retryable. This includes:
// - ENOSPC: we stay up and wait for eviction to free some space
// - EINVAL, EBADF, EBADFD: this is a code bug, not a filesystem/hardware issue
// - WriteZero, Interrupted: these are used internally VirtualFile
false
}
}
}
/// Call this when the local filesystem gives us an error with an external
/// cause: this includes EIO, EROFS, and EACCESS: all these indicate either
/// bad storage or bad configuration, and we can't fix that from inside
/// a running process.
pub(crate) fn on_fatal_io_error(e: &std::io::Error, context: &str) -> ! {
tracing::error!("Fatal I/O error: {e}: {context})");
std::process::abort();
}
pub(crate) trait MaybeFatalIo<T> {
fn maybe_fatal_err(self, context: &str) -> std::io::Result<T>;
fn fatal_err(self, context: &str) -> T;
}
impl<T> MaybeFatalIo<T> for std::io::Result<T> {
/// Terminate the process if the result is an error of a fatal type, else pass it through
///
/// This is appropriate for writes, where we typically want to die on EIO/ACCES etc, but
/// not on ENOSPC.
fn maybe_fatal_err(self, context: &str) -> std::io::Result<T> {
if let Err(e) = &self {
if is_fatal_io_error(e) {
on_fatal_io_error(e, context);
}
}
self
}
/// Terminate the process on any I/O error.
///
/// This is appropriate for reads on files that we know exist: they should always work.
fn fatal_err(self, context: &str) -> T {
match self {
Ok(v) => v,
Err(e) => {
on_fatal_io_error(&e, context);
}
}
}
}
/// Observe duration for the given storage I/O operation
///
/// Unlike `observe_closure_duration`, this supports async,
/// where "support" means that we measure wall clock time.
macro_rules! observe_duration {
($op:expr, $($body:tt)*) => {{
let instant = Instant::now();
let result = $($body)*;
let elapsed = instant.elapsed().as_secs_f64();
STORAGE_IO_TIME_METRIC
.get($op)
.observe(elapsed);
result
}}
}
macro_rules! with_file {
($this:expr, $op:expr, | $ident:ident | $($body:tt)*) => {{
let $ident = $this.lock_file().await?;
observe_duration!($op, $($body)*)
}};
($this:expr, $op:expr, | mut $ident:ident | $($body:tt)*) => {{
let mut $ident = $this.lock_file().await?;
observe_duration!($op, $($body)*)
}};
}
impl VirtualFile {
/// Open a file in read-only mode. Like File::open.
pub async fn open(path: &Utf8Path) -> Result<VirtualFile, std::io::Error> {
Self::open_with_options(path, OpenOptions::new().read(true)).await
}
/// Create a new file for writing. If the file exists, it will be truncated.
/// Like File::create.
pub async fn create(path: &Utf8Path) -> Result<VirtualFile, std::io::Error> {
Self::open_with_options(
path,
OpenOptions::new().write(true).create(true).truncate(true),
)
.await
}
/// Open a file with given options.
///
/// Note: If any custom flags were set in 'open_options' through OpenOptionsExt,
/// they will be applied also when the file is subsequently re-opened, not only
/// on the first time. Make sure that's sane!
pub async fn open_with_options(
path: &Utf8Path,
open_options: &OpenOptions,
) -> Result<VirtualFile, std::io::Error> {
let path_str = path.to_string();
let parts = path_str.split('/').collect::<Vec<&str>>();
let (tenant_id, shard_id, timeline_id) =
if parts.len() > 5 && parts[parts.len() - 5] == TENANTS_SEGMENT_NAME {
let tenant_shard_part = parts[parts.len() - 4];
let (tenant_id, shard_id) = match tenant_shard_part.parse::<TenantShardId>() {
Ok(tenant_shard_id) => (
tenant_shard_id.tenant_id.to_string(),
format!("{}", tenant_shard_id.shard_slug()),
),
Err(_) => {
// Malformed path: this ID is just for observability, so tolerate it
// and pass through
(tenant_shard_part.to_string(), "*".to_string())
}
};
(tenant_id, shard_id, parts[parts.len() - 2].to_string())
} else {
("*".to_string(), "*".to_string(), "*".to_string())
};
let (handle, mut slot_guard) = get_open_files().find_victim_slot().await;
// NB: there is also StorageIoOperation::OpenAfterReplace which is for the case
// where our caller doesn't get to use the returned VirtualFile before its
// slot gets re-used by someone else.
let file = observe_duration!(StorageIoOperation::Open, {
open_options.open(path.as_std_path()).await?
});
// Strip all options other than read and write.
//
// It would perhaps be nicer to check just for the read and write flags
// explicitly, but OpenOptions doesn't contain any functions to read flags,
// only to set them.
let mut reopen_options = open_options.clone();
reopen_options.create(false);
reopen_options.create_new(false);
reopen_options.truncate(false);
let vfile = VirtualFile {
handle: RwLock::new(handle),
pos: 0,
path: path.to_path_buf(),
open_options: reopen_options,
tenant_id,
shard_id,
timeline_id,
};
// TODO: Under pressure, it's likely the slot will get re-used and
// the underlying file closed before they get around to using it.
// => https://github.com/neondatabase/neon/issues/6065
slot_guard.file.replace(file);
Ok(vfile)
}
/// Async version of [`::utils::crashsafe::overwrite`].
///
/// # NB:
///
/// Doesn't actually use the [`VirtualFile`] file descriptor cache, but,
/// it did at an earlier time.
/// And it will use this module's [`io_engine`] in the near future, so, leaving it here.
pub async fn crashsafe_overwrite<B: BoundedBuf<Buf = Buf> + Send, Buf: IoBuf + Send>(
final_path: Utf8PathBuf,
tmp_path: Utf8PathBuf,
content: B,
) -> std::io::Result<()> {
// TODO: use tokio_epoll_uring if configured as `io_engine`.
// See https://github.com/neondatabase/neon/issues/6663
tokio::task::spawn_blocking(move || {
let slice_storage;
let content_len = content.bytes_init();
let content = if content.bytes_init() > 0 {
slice_storage = Some(content.slice(0..content_len));
slice_storage.as_deref().expect("just set it to Some()")
} else {
&[]
};
utils::crashsafe::overwrite(&final_path, &tmp_path, content)
})
.await
.expect("blocking task is never aborted")
}
/// Call File::sync_all() on the underlying File.
pub async fn sync_all(&self) -> Result<(), Error> {
with_file!(self, StorageIoOperation::Fsync, |file_guard| {
let (_file_guard, res) = io_engine::get().sync_all(file_guard).await;
res
})
}
/// Call File::sync_data() on the underlying File.
pub async fn sync_data(&self) -> Result<(), Error> {
with_file!(self, StorageIoOperation::Fsync, |file_guard| {
let (_file_guard, res) = io_engine::get().sync_data(file_guard).await;
res
})
}
pub async fn metadata(&self) -> Result<Metadata, Error> {
with_file!(self, StorageIoOperation::Metadata, |file_guard| {
let (_file_guard, res) = io_engine::get().metadata(file_guard).await;
res
})
}
/// Helper function internal to `VirtualFile` that looks up the underlying File,
/// opens it and evicts some other File if necessary. The passed parameter is
/// assumed to be a function available for the physical `File`.
///
/// We are doing it via a macro as Rust doesn't support async closures that
/// take on parameters with lifetimes.
async fn lock_file(&self) -> Result<FileGuard, Error> {
let open_files = get_open_files();
let mut handle_guard = {
// Read the cached slot handle, and see if the slot that it points to still
// contains our File.
//
// We only need to hold the handle lock while we read the current handle. If
// another thread closes the file and recycles the slot for a different file,
// we will notice that the handle we read is no longer valid and retry.
let mut handle = *self.handle.read().await;
loop {
// Check if the slot contains our File
{
let slot = &open_files.slots[handle.index];
let slot_guard = slot.inner.read().await;
if slot_guard.tag == handle.tag && slot_guard.file.is_some() {
// Found a cached file descriptor.
slot.recently_used.store(true, Ordering::Relaxed);
return Ok(FileGuard { slot_guard });
}
}
// The slot didn't contain our File. We will have to open it ourselves,
// but before that, grab a write lock on handle in the VirtualFile, so
// that no other thread will try to concurrently open the same file.
let handle_guard = self.handle.write().await;
// If another thread changed the handle while we were not holding the lock,
// then the handle might now be valid again. Loop back to retry.
if *handle_guard != handle {
handle = *handle_guard;
continue;
}
break handle_guard;
}
};
// We need to open the file ourselves. The handle in the VirtualFile is
// now locked in write-mode. Find a free slot to put it in.
let (handle, mut slot_guard) = open_files.find_victim_slot().await;
// Re-open the physical file.
// NB: we use StorageIoOperation::OpenAferReplace for this to distinguish this
// case from StorageIoOperation::Open. This helps with identifying thrashing
// of the virtual file descriptor cache.
let file = observe_duration!(StorageIoOperation::OpenAfterReplace, {
self.open_options.open(self.path.as_std_path()).await?
});
// Store the File in the slot and update the handle in the VirtualFile
// to point to it.
slot_guard.file.replace(file);
*handle_guard = handle;
return Ok(FileGuard {
slot_guard: slot_guard.downgrade(),
});
}
pub fn remove(self) {
let path = self.path.clone();
drop(self);
std::fs::remove_file(path).expect("failed to remove the virtual file");
}
pub async fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error> {
match pos {
SeekFrom::Start(offset) => {
self.pos = offset;
}
SeekFrom::End(offset) => {
self.pos = with_file!(self, StorageIoOperation::Seek, |mut file_guard| file_guard
.with_std_file_mut(|std_file| std_file.seek(SeekFrom::End(offset))))?
}
SeekFrom::Current(offset) => {
let pos = self.pos as i128 + offset as i128;
if pos < 0 {
return Err(Error::new(
ErrorKind::InvalidInput,
"offset would be negative",
));
}
if pos > u64::MAX as i128 {
return Err(Error::new(ErrorKind::InvalidInput, "offset overflow"));
}
self.pos = pos as u64;
}
}
Ok(self.pos)
}
pub async fn read_exact_at<B>(&self, buf: B, offset: u64) -> Result<B, Error>
where
B: IoBufMut + Send,
{
let (buf, res) =
read_exact_at_impl(buf, offset, None, |buf, offset| self.read_at(buf, offset)).await;
res.map(|()| buf)
}
pub async fn read_exact_at_n<B>(&self, buf: B, offset: u64, count: usize) -> Result<B, Error>
where
B: IoBufMut + Send,
{
let (buf, res) = read_exact_at_impl(buf, offset, Some(count), |buf, offset| {
self.read_at(buf, offset)
})
.await;
res.map(|()| buf)
}
/// Like [`Self::read_exact_at`] but for [`PageWriteGuard`].
pub async fn read_exact_at_page(
&self,
page: PageWriteGuard<'static>,
offset: u64,
) -> Result<PageWriteGuard<'static>, Error> {
let buf = PageWriteGuardBuf {
page,
init_up_to: 0,
};
let res = self.read_exact_at(buf, offset).await;
res.map(|PageWriteGuardBuf { page, .. }| page)
.map_err(|e| Error::new(ErrorKind::Other, e))
}
// Copied from https://doc.rust-lang.org/1.72.0/src/std/os/unix/fs.rs.html#219-235
pub async fn write_all_at<B: BoundedBuf<Buf = Buf>, Buf: IoBuf + Send>(
&self,
buf: B,
mut offset: u64,
) -> (B::Buf, Result<(), Error>) {
let buf_len = buf.bytes_init();
if buf_len == 0 {
return (Slice::into_inner(buf.slice_full()), Ok(()));
}
let mut buf = buf.slice(0..buf_len);
while !buf.is_empty() {
let res;
(buf, res) = self.write_at(buf, offset).await;
match res {
Ok(0) => {
return (
Slice::into_inner(buf),
Err(Error::new(
std::io::ErrorKind::WriteZero,
"failed to write whole buffer",
)),
);
}
Ok(n) => {
buf = buf.slice(n..);
offset += n as u64;
}
Err(e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return (Slice::into_inner(buf), Err(e)),
}
}
(Slice::into_inner(buf), Ok(()))
}
/// Writes `buf.slice(0..buf.bytes_init())`.
/// Returns the IoBuf that is underlying the BoundedBuf `buf`.
/// I.e., the returned value's `bytes_init()` method returns something different than the `bytes_init()` that was passed in.
/// It's quite brittle and easy to mis-use, so, we return the size in the Ok() variant.
pub async fn write_all<B: BoundedBuf<Buf = Buf>, Buf: IoBuf + Send>(
&mut self,
buf: B,
) -> (B::Buf, Result<usize, Error>) {
let nbytes = buf.bytes_init();
if nbytes == 0 {
return (Slice::into_inner(buf.slice_full()), Ok(0));
}
let mut buf = buf.slice(0..nbytes);
while !buf.is_empty() {
let res;
(buf, res) = self.write(buf).await;
match res {
Ok(0) => {
return (
Slice::into_inner(buf),
Err(Error::new(
std::io::ErrorKind::WriteZero,
"failed to write whole buffer",
)),
);
}
Ok(n) => {
buf = buf.slice(n..);
}
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return (Slice::into_inner(buf), Err(e)),
}
}
(Slice::into_inner(buf), Ok(nbytes))
}
async fn write<B: IoBuf + Send>(
&mut self,
buf: Slice<B>,
) -> (Slice<B>, Result<usize, std::io::Error>) {
let pos = self.pos;
let (buf, res) = self.write_at(buf, pos).await;
let n = match res {
Ok(n) => n,
Err(e) => return (buf, Err(e)),
};
self.pos += n as u64;
(buf, Ok(n))
}
pub(crate) async fn read_at<B>(&self, buf: B, offset: u64) -> (B, Result<usize, Error>)
where
B: tokio_epoll_uring::BoundedBufMut + Send,
{
let file_guard = match self.lock_file().await {
Ok(file_guard) => file_guard,
Err(e) => return (buf, Err(e)),
};
observe_duration!(StorageIoOperation::Read, {
let ((_file_guard, buf), res) = io_engine::get().read_at(file_guard, offset, buf).await;
if let Ok(size) = res {
STORAGE_IO_SIZE
.with_label_values(&[
"read",
&self.tenant_id,
&self.shard_id,
&self.timeline_id,
])
.add(size as i64);
}
(buf, res)
})
}
async fn write_at<B: IoBuf + Send>(
&self,
buf: Slice<B>,
offset: u64,
) -> (Slice<B>, Result<usize, Error>) {
let file_guard = match self.lock_file().await {
Ok(file_guard) => file_guard,
Err(e) => return (buf, Err(e)),
};
observe_duration!(StorageIoOperation::Write, {
let ((_file_guard, buf), result) =
io_engine::get().write_at(file_guard, offset, buf).await;
if let Ok(size) = result {
STORAGE_IO_SIZE
.with_label_values(&[
"write",
&self.tenant_id,
&self.shard_id,
&self.timeline_id,
])
.add(size as i64);
}
(buf, result)
})
}
}
// Adapted from https://doc.rust-lang.org/1.72.0/src/std/os/unix/fs.rs.html#117-135
pub async fn read_exact_at_impl<B, F, Fut>(
buf: B,
mut offset: u64,
count: Option<usize>,
mut read_at: F,
) -> (B, std::io::Result<()>)
where
B: IoBufMut + Send,
F: FnMut(tokio_epoll_uring::Slice<B>, u64) -> Fut,
Fut: std::future::Future<Output = (tokio_epoll_uring::Slice<B>, std::io::Result<usize>)>,
{
let mut buf: tokio_epoll_uring::Slice<B> = match count {
Some(count) => {
assert!(count <= buf.bytes_total());
assert!(count > 0);
buf.slice(..count) // may include uninitialized memory
}
None => buf.slice_full(), // includes all the uninitialized memory
};
while buf.bytes_total() != 0 {
let res;
(buf, res) = read_at(buf, offset).await;
match res {
Ok(0) => break,
Ok(n) => {
buf = buf.slice(n..);
offset += n as u64;
}
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return (buf.into_inner(), Err(e)),
}
}
// NB: don't use `buf.is_empty()` here; it is from the
// `impl Deref for Slice { Target = [u8] }`; the &[u8]
// returned by it only covers the initialized portion of `buf`.
// Whereas we're interested in ensuring that we filled the entire
// buffer that the user passed in.
if buf.bytes_total() != 0 {
(
buf.into_inner(),
Err(std::io::Error::new(
std::io::ErrorKind::UnexpectedEof,
"failed to fill whole buffer",
)),
)
} else {
assert_eq!(buf.len(), buf.bytes_total());
(buf.into_inner(), Ok(()))
}
}
#[cfg(test)]
mod test_read_exact_at_impl {
use std::{collections::VecDeque, sync::Arc};
use tokio_epoll_uring::{BoundedBuf, BoundedBufMut};
use super::read_exact_at_impl;
struct Expectation {
offset: u64,
bytes_total: usize,
result: std::io::Result<Vec<u8>>,
}
struct MockReadAt {
expectations: VecDeque<Expectation>,
}
impl MockReadAt {
async fn read_at(
&mut self,
mut buf: tokio_epoll_uring::Slice<Vec<u8>>,
offset: u64,
) -> (tokio_epoll_uring::Slice<Vec<u8>>, std::io::Result<usize>) {
let exp = self
.expectations
.pop_front()
.expect("read_at called but we have no expectations left");
assert_eq!(exp.offset, offset);
assert_eq!(exp.bytes_total, buf.bytes_total());
match exp.result {
Ok(bytes) => {
assert!(bytes.len() <= buf.bytes_total());
buf.put_slice(&bytes);
(buf, Ok(bytes.len()))
}
Err(e) => (buf, Err(e)),
}
}
}
impl Drop for MockReadAt {
fn drop(&mut self) {
assert_eq!(self.expectations.len(), 0);
}
}
#[tokio::test]
async fn test_basic() {
let buf = Vec::with_capacity(5);
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
expectations: VecDeque::from(vec![Expectation {
offset: 0,
bytes_total: 5,
result: Ok(vec![b'a', b'b', b'c', b'd', b'e']),
}]),
}));
let (buf, res) = read_exact_at_impl(buf, 0, None, |buf, offset| {
let mock_read_at = Arc::clone(&mock_read_at);
async move { mock_read_at.lock().await.read_at(buf, offset).await }
})
.await;
assert!(res.is_ok());
assert_eq!(buf, vec![b'a', b'b', b'c', b'd', b'e']);
}
#[tokio::test]
async fn test_with_count() {
let buf = Vec::with_capacity(5);
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
expectations: VecDeque::from(vec![Expectation {
offset: 0,
bytes_total: 3,
result: Ok(vec![b'a', b'b', b'c']),
}]),
}));
let (buf, res) = read_exact_at_impl(buf, 0, Some(3), |buf, offset| {
let mock_read_at = Arc::clone(&mock_read_at);
async move { mock_read_at.lock().await.read_at(buf, offset).await }
})
.await;
assert!(res.is_ok());
assert_eq!(buf, vec![b'a', b'b', b'c']);
}
#[tokio::test]
async fn test_empty_buf_issues_no_syscall() {
let buf = Vec::new();
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
expectations: VecDeque::new(),
}));
let (_buf, res) = read_exact_at_impl(buf, 0, None, |buf, offset| {
let mock_read_at = Arc::clone(&mock_read_at);
async move { mock_read_at.lock().await.read_at(buf, offset).await }
})
.await;
assert!(res.is_ok());
}
#[tokio::test]
async fn test_two_read_at_calls_needed_until_buf_filled() {
let buf = Vec::with_capacity(4);
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
expectations: VecDeque::from(vec![
Expectation {
offset: 0,
bytes_total: 4,
result: Ok(vec![b'a', b'b']),
},
Expectation {
offset: 2,
bytes_total: 2,
result: Ok(vec![b'c', b'd']),
},
]),
}));
let (buf, res) = read_exact_at_impl(buf, 0, None, |buf, offset| {
let mock_read_at = Arc::clone(&mock_read_at);
async move { mock_read_at.lock().await.read_at(buf, offset).await }
})
.await;
assert!(res.is_ok());
assert_eq!(buf, vec![b'a', b'b', b'c', b'd']);
}
#[tokio::test]
async fn test_eof_before_buffer_full() {
let buf = Vec::with_capacity(3);
let mock_read_at = Arc::new(tokio::sync::Mutex::new(MockReadAt {
expectations: VecDeque::from(vec![
Expectation {
offset: 0,
bytes_total: 3,
result: Ok(vec![b'a']),
},
Expectation {
offset: 1,
bytes_total: 2,
result: Ok(vec![b'b']),
},
Expectation {
offset: 2,
bytes_total: 1,
result: Ok(vec![]),
},
]),
}));
let (_buf, res) = read_exact_at_impl(buf, 0, None, |buf, offset| {
let mock_read_at = Arc::clone(&mock_read_at);
async move { mock_read_at.lock().await.read_at(buf, offset).await }
})
.await;
let Err(err) = res else {
panic!("should return an error");
};
assert_eq!(err.kind(), std::io::ErrorKind::UnexpectedEof);
assert_eq!(format!("{err}"), "failed to fill whole buffer");
// buffer contents on error are unspecified
}
}
struct FileGuard {
slot_guard: RwLockReadGuard<'static, SlotInner>,
}
impl AsRef<OwnedFd> for FileGuard {
fn as_ref(&self) -> &OwnedFd {
// This unwrap is safe because we only create `FileGuard`s
// if we know that the file is Some.
self.slot_guard.file.as_ref().unwrap()
}
}
impl FileGuard {
/// Soft deprecation: we'll move VirtualFile to async APIs and remove this function eventually.
fn with_std_file<F, R>(&self, with: F) -> R
where
F: FnOnce(&File) -> R,
{
// SAFETY:
// - lifetime of the fd: `file` doesn't outlive the OwnedFd stored in `self`.
// - `&` usage below: `self` is `&`, hence Rust typesystem guarantees there are is no `&mut`
let file = unsafe { File::from_raw_fd(self.as_ref().as_raw_fd()) };
let res = with(&file);
let _ = file.into_raw_fd();
res
}
/// Soft deprecation: we'll move VirtualFile to async APIs and remove this function eventually.
fn with_std_file_mut<F, R>(&mut self, with: F) -> R
where
F: FnOnce(&mut File) -> R,
{
// SAFETY:
// - lifetime of the fd: `file` doesn't outlive the OwnedFd stored in `self`.
// - &mut usage below: `self` is `&mut`, hence this call is the only task/thread that has control over the underlying fd
let mut file = unsafe { File::from_raw_fd(self.as_ref().as_raw_fd()) };
let res = with(&mut file);
let _ = file.into_raw_fd();
res
}
}
impl tokio_epoll_uring::IoFd for FileGuard {
unsafe fn as_fd(&self) -> RawFd {
let owned_fd: &OwnedFd = self.as_ref();
owned_fd.as_raw_fd()
}
}
#[cfg(test)]
impl VirtualFile {
pub(crate) async fn read_blk(
&self,
blknum: u32,
) -> Result<crate::tenant::block_io::BlockLease<'_>, std::io::Error> {
use crate::page_cache::PAGE_SZ;
let buf = vec![0; PAGE_SZ];
let buf = self
.read_exact_at(buf, blknum as u64 * (PAGE_SZ as u64))
.await?;
Ok(crate::tenant::block_io::BlockLease::Vec(buf))
}
async fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<(), Error> {
let mut tmp = vec![0; 128];
loop {
let res;
(tmp, res) = self.read_at(tmp, self.pos).await;
match res {
Ok(0) => return Ok(()),
Ok(n) => {
self.pos += n as u64;
buf.extend_from_slice(&tmp[..n]);
}
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
}
}
impl Drop for VirtualFile {
/// If a VirtualFile is dropped, close the underlying file if it was open.
fn drop(&mut self) {
let handle = self.handle.get_mut();
fn clean_slot(slot: &Slot, mut slot_guard: RwLockWriteGuard<'_, SlotInner>, tag: u64) {
if slot_guard.tag == tag {
slot.recently_used.store(false, Ordering::Relaxed);
// there is also operation "close-by-replace" for closes done on eviction for
// comparison.
if let Some(fd) = slot_guard.file.take() {
STORAGE_IO_TIME_METRIC
.get(StorageIoOperation::Close)
.observe_closure_duration(|| drop(fd));
}
}
}
// We don't have async drop so we cannot directly await the lock here.
// Instead, first do a best-effort attempt at closing the underlying
// file descriptor by using `try_write`, and if that fails, spawn
// a tokio task to do it asynchronously: we just want it to be
// cleaned up eventually.
// Most of the time, the `try_lock` should succeed though,
// as we have `&mut self` access. In other words, if the slot
// is still occupied by our file, there should be no access from
// other I/O operations; the only other possible place to lock
// the slot is the lock algorithm looking for free slots.
let slot = &get_open_files().slots[handle.index];
if let Ok(slot_guard) = slot.inner.try_write() {
clean_slot(slot, slot_guard, handle.tag);
} else {
let tag = handle.tag;
tokio::spawn(async move {
let slot_guard = slot.inner.write().await;
clean_slot(slot, slot_guard, tag);
});
};
}
}
impl OpenFiles {
fn new(num_slots: usize) -> OpenFiles {
let mut slots = Box::new(Vec::with_capacity(num_slots));
for _ in 0..num_slots {
let slot = Slot {
recently_used: AtomicBool::new(false),
inner: RwLock::new(SlotInner { tag: 0, file: None }),
};
slots.push(slot);
}
OpenFiles {
next: AtomicUsize::new(0),
slots: Box::leak(slots),
}
}
}
///
/// Initialize the virtual file module. This must be called once at page
/// server startup.
///
#[cfg(not(test))]
pub fn init(num_slots: usize, engine: IoEngineKind) {
if OPEN_FILES.set(OpenFiles::new(num_slots)).is_err() {
panic!("virtual_file::init called twice");
}
io_engine::init(engine);
crate::metrics::virtual_file_descriptor_cache::SIZE_MAX.set(num_slots as u64);
}
const TEST_MAX_FILE_DESCRIPTORS: usize = 10;
// Get a handle to the global slots array.
fn get_open_files() -> &'static OpenFiles {
//
// In unit tests, page server startup doesn't happen and no one calls
// virtual_file::init(). Initialize it here, with a small array.
//
// This applies to the virtual file tests below, but all other unit
// tests too, so the virtual file facility is always usable in
// unit tests.
//
if cfg!(test) {
OPEN_FILES.get_or_init(|| OpenFiles::new(TEST_MAX_FILE_DESCRIPTORS))
} else {
OPEN_FILES.get().expect("virtual_file::init not called yet")
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::seq::SliceRandom;
use rand::thread_rng;
use rand::Rng;
use std::future::Future;
use std::io::Write;
use std::os::unix::fs::FileExt;
use std::sync::Arc;
enum MaybeVirtualFile {
VirtualFile(VirtualFile),
File(File),
}
impl From<VirtualFile> for MaybeVirtualFile {
fn from(vf: VirtualFile) -> Self {
MaybeVirtualFile::VirtualFile(vf)
}
}
impl MaybeVirtualFile {
async fn read_exact_at(&self, mut buf: Vec<u8>, offset: u64) -> Result<Vec<u8>, Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => file.read_exact_at(buf, offset).await,
MaybeVirtualFile::File(file) => file.read_exact_at(&mut buf, offset).map(|()| buf),
}
}
async fn write_all_at<B: BoundedBuf<Buf = Buf>, Buf: IoBuf + Send>(
&self,
buf: B,
offset: u64,
) -> Result<(), Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => {
let (_buf, res) = file.write_all_at(buf, offset).await;
res
}
MaybeVirtualFile::File(file) => {
let buf_len = buf.bytes_init();
if buf_len == 0 {
return Ok(());
}
file.write_all_at(&buf.slice(0..buf_len), offset)
}
}
}
async fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => file.seek(pos).await,
MaybeVirtualFile::File(file) => file.seek(pos),
}
}
async fn write_all<B: BoundedBuf<Buf = Buf>, Buf: IoBuf + Send>(
&mut self,
buf: B,
) -> Result<(), Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => {
let (_buf, res) = file.write_all(buf).await;
res.map(|_| ())
}
MaybeVirtualFile::File(file) => {
let buf_len = buf.bytes_init();
if buf_len == 0 {
return Ok(());
}
file.write_all(&buf.slice(0..buf_len))
}
}
}
// Helper function to slurp contents of a file, starting at the current position,
// into a string
async fn read_string(&mut self) -> Result<String, Error> {
use std::io::Read;
let mut buf = String::new();
match self {
MaybeVirtualFile::VirtualFile(file) => {
let mut buf = Vec::new();
file.read_to_end(&mut buf).await?;
return Ok(String::from_utf8(buf).unwrap());
}
MaybeVirtualFile::File(file) => {
file.read_to_string(&mut buf)?;
}
}
Ok(buf)
}
// Helper function to slurp a portion of a file into a string
async fn read_string_at(&mut self, pos: u64, len: usize) -> Result<String, Error> {
let buf = vec![0; len];
let buf = self.read_exact_at(buf, pos).await?;
Ok(String::from_utf8(buf).unwrap())
}
}
#[tokio::test]
async fn test_virtual_files() -> anyhow::Result<()> {
// The real work is done in the test_files() helper function. This
// allows us to run the same set of tests against a native File, and
// VirtualFile. We trust the native Files and wouldn't need to test them,
// but this allows us to verify that the operations return the same
// results with VirtualFiles as with native Files. (Except that with
// native files, you will run out of file descriptors if the ulimit
// is low enough.)
test_files("virtual_files", |path, open_options| async move {
let vf = VirtualFile::open_with_options(&path, &open_options).await?;
Ok(MaybeVirtualFile::VirtualFile(vf))
})
.await
}
#[tokio::test]
async fn test_physical_files() -> anyhow::Result<()> {
test_files("physical_files", |path, open_options| async move {
Ok(MaybeVirtualFile::File({
let owned_fd = open_options.open(path.as_std_path()).await?;
File::from(owned_fd)
}))
})
.await
}
async fn test_files<OF, FT>(testname: &str, openfunc: OF) -> anyhow::Result<()>
where
OF: Fn(Utf8PathBuf, OpenOptions) -> FT,
FT: Future<Output = Result<MaybeVirtualFile, std::io::Error>>,
{
let testdir = crate::config::PageServerConf::test_repo_dir(testname);
std::fs::create_dir_all(&testdir)?;
let path_a = testdir.join("file_a");
let mut file_a = openfunc(
path_a.clone(),
OpenOptions::new()
.write(true)
.create(true)
.truncate(true)
.to_owned(),
)
.await?;
file_a.write_all(b"foobar".to_vec()).await?;
// cannot read from a file opened in write-only mode
let _ = file_a.read_string().await.unwrap_err();
// Close the file and re-open for reading
let mut file_a = openfunc(path_a, OpenOptions::new().read(true).to_owned()).await?;
// cannot write to a file opened in read-only mode
let _ = file_a.write_all(b"bar".to_vec()).await.unwrap_err();
// Try simple read
assert_eq!("foobar", file_a.read_string().await?);
// It's positioned at the EOF now.
assert_eq!("", file_a.read_string().await?);
// Test seeks.
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
assert_eq!("oobar", file_a.read_string().await?);
assert_eq!(file_a.seek(SeekFrom::End(-2)).await?, 4);
assert_eq!("ar", file_a.read_string().await?);
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
assert_eq!(file_a.seek(SeekFrom::Current(2)).await?, 3);
assert_eq!("bar", file_a.read_string().await?);
assert_eq!(file_a.seek(SeekFrom::Current(-5)).await?, 1);
assert_eq!("oobar", file_a.read_string().await?);
// Test erroneous seeks to before byte 0
file_a.seek(SeekFrom::End(-7)).await.unwrap_err();
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
file_a.seek(SeekFrom::Current(-2)).await.unwrap_err();
// the erroneous seek should have left the position unchanged
assert_eq!("oobar", file_a.read_string().await?);
// Create another test file, and try FileExt functions on it.
let path_b = testdir.join("file_b");
let mut file_b = openfunc(
path_b.clone(),
OpenOptions::new()
.read(true)
.write(true)
.create(true)
.truncate(true)
.to_owned(),
)
.await?;
file_b.write_all_at(b"BAR".to_vec(), 3).await?;
file_b.write_all_at(b"FOO".to_vec(), 0).await?;
assert_eq!(file_b.read_string_at(2, 3).await?, "OBA");
// Open a lot of files, enough to cause some evictions. (Or to be precise,
// open the same file many times. The effect is the same.)
//
// leave file_a positioned at offset 1 before we start
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
let mut vfiles = Vec::new();
for _ in 0..100 {
let mut vfile =
openfunc(path_b.clone(), OpenOptions::new().read(true).to_owned()).await?;
assert_eq!("FOOBAR", vfile.read_string().await?);
vfiles.push(vfile);
}
// make sure we opened enough files to definitely cause evictions.
assert!(vfiles.len() > TEST_MAX_FILE_DESCRIPTORS * 2);
// The underlying file descriptor for 'file_a' should be closed now. Try to read
// from it again. We left the file positioned at offset 1 above.
assert_eq!("oobar", file_a.read_string().await?);
// Check that all the other FDs still work too. Use them in random order for
// good measure.
vfiles.as_mut_slice().shuffle(&mut thread_rng());
for vfile in vfiles.iter_mut() {
assert_eq!("OOBAR", vfile.read_string_at(1, 5).await?);
}
Ok(())
}
/// Test using VirtualFiles from many threads concurrently. This tests both using
/// a lot of VirtualFiles concurrently, causing evictions, and also using the same
/// VirtualFile from multiple threads concurrently.
#[tokio::test]
async fn test_vfile_concurrency() -> Result<(), Error> {
const SIZE: usize = 8 * 1024;
const VIRTUAL_FILES: usize = 100;
const THREADS: usize = 100;
const SAMPLE: [u8; SIZE] = [0xADu8; SIZE];
let testdir = crate::config::PageServerConf::test_repo_dir("vfile_concurrency");
std::fs::create_dir_all(&testdir)?;
// Create a test file.
let test_file_path = testdir.join("concurrency_test_file");
{
let file = File::create(&test_file_path)?;
file.write_all_at(&SAMPLE, 0)?;
}
// Open the file many times.
let mut files = Vec::new();
for _ in 0..VIRTUAL_FILES {
let f = VirtualFile::open_with_options(&test_file_path, OpenOptions::new().read(true))
.await?;
files.push(f);
}
let files = Arc::new(files);
// Launch many threads, and use the virtual files concurrently in random order.
let rt = tokio::runtime::Builder::new_multi_thread()
.worker_threads(THREADS)
.thread_name("test_vfile_concurrency thread")
.build()
.unwrap();
let mut hdls = Vec::new();
for _threadno in 0..THREADS {
let files = files.clone();
let hdl = rt.spawn(async move {
let mut buf = vec![0u8; SIZE];
let mut rng = rand::rngs::OsRng;
for _ in 1..1000 {
let f = &files[rng.gen_range(0..files.len())];
buf = f.read_exact_at(buf, 0).await.unwrap();
assert!(buf == SAMPLE);
}
});
hdls.push(hdl);
}
for hdl in hdls {
hdl.await?;
}
std::mem::forget(rt);
Ok(())
}
#[tokio::test]
async fn test_atomic_overwrite_basic() {
let testdir = crate::config::PageServerConf::test_repo_dir("test_atomic_overwrite_basic");
std::fs::create_dir_all(&testdir).unwrap();
let path = testdir.join("myfile");
let tmp_path = testdir.join("myfile.tmp");
VirtualFile::crashsafe_overwrite(path.clone(), tmp_path.clone(), b"foo".to_vec())
.await
.unwrap();
let mut file = MaybeVirtualFile::from(VirtualFile::open(&path).await.unwrap());
let post = file.read_string().await.unwrap();
assert_eq!(post, "foo");
assert!(!tmp_path.exists());
drop(file);
VirtualFile::crashsafe_overwrite(path.clone(), tmp_path.clone(), b"bar".to_vec())
.await
.unwrap();
let mut file = MaybeVirtualFile::from(VirtualFile::open(&path).await.unwrap());
let post = file.read_string().await.unwrap();
assert_eq!(post, "bar");
assert!(!tmp_path.exists());
drop(file);
}
#[tokio::test]
async fn test_atomic_overwrite_preexisting_tmp() {
let testdir =
crate::config::PageServerConf::test_repo_dir("test_atomic_overwrite_preexisting_tmp");
std::fs::create_dir_all(&testdir).unwrap();
let path = testdir.join("myfile");
let tmp_path = testdir.join("myfile.tmp");
std::fs::write(&tmp_path, "some preexisting junk that should be removed").unwrap();
assert!(tmp_path.exists());
VirtualFile::crashsafe_overwrite(path.clone(), tmp_path.clone(), b"foo".to_vec())
.await
.unwrap();
let mut file = MaybeVirtualFile::from(VirtualFile::open(&path).await.unwrap());
let post = file.read_string().await.unwrap();
assert_eq!(post, "foo");
assert!(!tmp_path.exists());
drop(file);
}
}