Files
neon/pageserver/src/task_mgr.rs
Arpad Müller d8cee52637 Update rust to 1.86.0 (#11431)
We keep the practice of keeping the compiler up to date, pointing to the
latest release. This is done by many other projects in the Rust
ecosystem as well.

[Announcement blog
post](https://blog.rust-lang.org/2025/04/03/Rust-1.86.0.html).

Prior update was in #10914.
2025-04-03 14:53:28 +00:00

661 lines
23 KiB
Rust

//!
//! This module provides centralized handling of tokio tasks in the Page Server.
//!
//! We provide a few basic facilities:
//! - A global registry of tasks that lists what kind of tasks they are, and
//! which tenant or timeline they are working on
//!
//! - The ability to request a task to shut down.
//!
//!
//! # How it works?
//!
//! There is a global hashmap of all the tasks (`TASKS`). Whenever a new
//! task is spawned, a PageServerTask entry is added there, and when a
//! task dies, it removes itself from the hashmap. If you want to kill a
//! task, you can scan the hashmap to find it.
//!
//! # Task shutdown
//!
//! To kill a task, we rely on co-operation from the victim. Each task is
//! expected to periodically call the `is_shutdown_requested()` function, and
//! if it returns true, exit gracefully. In addition to that, when waiting for
//! the network or other long-running operation, you can use
//! `shutdown_watcher()` function to get a Future that will become ready if
//! the current task has been requested to shut down. You can use that with
//! Tokio select!().
//!
//! TODO: This would be a good place to also handle panics in a somewhat sane way.
//! Depending on what task panics, we might want to kill the whole server, or
//! only a single tenant or timeline.
//!
use std::collections::HashMap;
use std::fmt;
use std::future::Future;
use std::num::NonZeroUsize;
use std::panic::AssertUnwindSafe;
use std::str::FromStr;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::{Arc, Mutex};
use std::time::Duration;
use futures::FutureExt;
use once_cell::sync::Lazy;
use pageserver_api::shard::TenantShardId;
use tokio::task::JoinHandle;
use tokio::task_local;
use tokio_util::sync::CancellationToken;
use tracing::{debug, error, info, warn};
use utils::env;
use utils::id::TimelineId;
use crate::metrics::set_tokio_runtime_setup;
//
// There are four runtimes:
//
// Compute request runtime
// - used to handle connections from compute nodes. Any tasks related to satisfying
// GetPage requests, base backups, import, and other such compute node operations
// are handled by the Compute request runtime
// - page_service.rs
// - this includes layer downloads from remote storage, if a layer is needed to
// satisfy a GetPage request
//
// Management request runtime
// - used to handle HTTP API requests
//
// WAL receiver runtime:
// - used to handle WAL receiver connections.
// - and to receiver updates from storage_broker
//
// Background runtime
// - layer flushing
// - garbage collection
// - compaction
// - remote storage uploads
// - initial tenant loading
//
// Everything runs in a tokio task. If you spawn new tasks, spawn it using the correct
// runtime.
//
// There might be situations when one task needs to wait for a task running in another
// Runtime to finish. For example, if a background operation needs a layer from remote
// storage, it will start to download it. If a background operation needs a remote layer,
// and the download was already initiated by a GetPage request, the background task
// will wait for the download - running in the Page server runtime - to finish.
// Another example: the initial tenant loading tasks are launched in the background ops
// runtime. If a GetPage request comes in before the load of a tenant has finished, the
// GetPage request will wait for the tenant load to finish.
//
// The core Timeline code is synchronous, and uses a bunch of std Mutexes and RWLocks to
// protect data structures. Let's keep it that way. Synchronous code is easier to debug
// and analyze, and there's a lot of hairy, low-level, performance critical code there.
//
// It's nice to have different runtimes, so that you can quickly eyeball how much CPU
// time each class of operations is taking, with 'top -H' or similar.
//
// It's also good to avoid hogging all threads that would be needed to process
// other operations, if the upload tasks e.g. get blocked on locks. It shouldn't
// happen, but still.
//
pub(crate) static TOKIO_WORKER_THREADS: Lazy<NonZeroUsize> = Lazy::new(|| {
// replicates tokio-1.28.1::loom::sys::num_cpus which is not available publicly
// tokio would had already panicked for parsing errors or NotUnicode
//
// this will be wrong if any of the runtimes gets their worker threads configured to something
// else, but that has not been needed in a long time.
NonZeroUsize::new(
std::env::var("TOKIO_WORKER_THREADS")
.map(|s| s.parse::<usize>().unwrap())
.unwrap_or_else(|_e| usize::max(2, num_cpus::get())),
)
.expect("the max() ensures that this is not zero")
});
enum TokioRuntimeMode {
SingleThreaded,
MultiThreaded { num_workers: NonZeroUsize },
}
impl FromStr for TokioRuntimeMode {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"current_thread" => Ok(TokioRuntimeMode::SingleThreaded),
s => match s.strip_prefix("multi_thread:") {
Some("default") => Ok(TokioRuntimeMode::MultiThreaded {
num_workers: *TOKIO_WORKER_THREADS,
}),
Some(suffix) => {
let num_workers = suffix.parse::<NonZeroUsize>().map_err(|e| {
format!(
"invalid number of multi-threaded runtime workers ({suffix:?}): {e}",
)
})?;
Ok(TokioRuntimeMode::MultiThreaded { num_workers })
}
None => Err(format!("invalid runtime config: {s:?}")),
},
}
}
}
static TOKIO_THREAD_STACK_SIZE: Lazy<NonZeroUsize> = Lazy::new(|| {
env::var("NEON_PAGESERVER_TOKIO_THREAD_STACK_SIZE")
// the default 2MiB are insufficent, especially in debug mode
.unwrap_or_else(|| NonZeroUsize::new(4 * 1024 * 1024).unwrap())
});
static ONE_RUNTIME: Lazy<Option<tokio::runtime::Runtime>> = Lazy::new(|| {
let thread_name = "pageserver-tokio";
let Some(mode) = env::var("NEON_PAGESERVER_USE_ONE_RUNTIME") else {
// If the env var is not set, leave this static as None.
set_tokio_runtime_setup(
"multiple-runtimes",
NUM_MULTIPLE_RUNTIMES
.checked_mul(*TOKIO_WORKER_THREADS)
.unwrap(),
);
return None;
};
Some(match mode {
TokioRuntimeMode::SingleThreaded => {
set_tokio_runtime_setup("one-runtime-single-threaded", NonZeroUsize::new(1).unwrap());
tokio::runtime::Builder::new_current_thread()
.thread_name(thread_name)
.enable_all()
.thread_stack_size(TOKIO_THREAD_STACK_SIZE.get())
.build()
.expect("failed to create one single runtime")
}
TokioRuntimeMode::MultiThreaded { num_workers } => {
set_tokio_runtime_setup("one-runtime-multi-threaded", num_workers);
tokio::runtime::Builder::new_multi_thread()
.thread_name(thread_name)
.enable_all()
.worker_threads(num_workers.get())
.thread_stack_size(TOKIO_THREAD_STACK_SIZE.get())
.build()
.expect("failed to create one multi-threaded runtime")
}
})
});
/// Declare a lazy static variable named `$varname` that will resolve
/// to a tokio runtime handle. If the env var `NEON_PAGESERVER_USE_ONE_RUNTIME`
/// is set, this will resolve to `ONE_RUNTIME`. Otherwise, the macro invocation
/// declares a separate runtime and the lazy static variable `$varname`
/// will resolve to that separate runtime.
///
/// The result is is that `$varname.spawn()` will use `ONE_RUNTIME` if
/// `NEON_PAGESERVER_USE_ONE_RUNTIME` is set, and will use the separate runtime
/// otherwise.
macro_rules! pageserver_runtime {
($varname:ident, $name:literal) => {
pub static $varname: Lazy<&'static tokio::runtime::Runtime> = Lazy::new(|| {
if let Some(runtime) = &*ONE_RUNTIME {
return runtime;
}
static RUNTIME: Lazy<tokio::runtime::Runtime> = Lazy::new(|| {
tokio::runtime::Builder::new_multi_thread()
.thread_name($name)
.worker_threads(TOKIO_WORKER_THREADS.get())
.enable_all()
.thread_stack_size(TOKIO_THREAD_STACK_SIZE.get())
.build()
.expect(std::concat!("Failed to create runtime ", $name))
});
&*RUNTIME
});
};
}
pageserver_runtime!(COMPUTE_REQUEST_RUNTIME, "compute request worker");
pageserver_runtime!(MGMT_REQUEST_RUNTIME, "mgmt request worker");
pageserver_runtime!(WALRECEIVER_RUNTIME, "walreceiver worker");
pageserver_runtime!(BACKGROUND_RUNTIME, "background op worker");
// Bump this number when adding a new pageserver_runtime!
const NUM_MULTIPLE_RUNTIMES: NonZeroUsize = NonZeroUsize::new(4).unwrap();
#[derive(Debug, Clone, Copy)]
pub struct PageserverTaskId(u64);
impl fmt::Display for PageserverTaskId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
/// Each task that we track is associated with a "task ID". It's just an
/// increasing number that we assign. Note that it is different from tokio::task::Id.
static NEXT_TASK_ID: AtomicU64 = AtomicU64::new(1);
/// Global registry of tasks
static TASKS: Lazy<Mutex<HashMap<u64, Arc<PageServerTask>>>> =
Lazy::new(|| Mutex::new(HashMap::new()));
task_local! {
// This is a cancellation token which will be cancelled when a task needs to shut down. The
// root token is kept in the global registry, so that anyone can send the signal to request
// task shutdown.
static SHUTDOWN_TOKEN: CancellationToken;
// Each task holds reference to its own PageServerTask here.
static CURRENT_TASK: Arc<PageServerTask>;
}
///
/// There are many kinds of tasks in the system. Some are associated with a particular
/// tenant or timeline, while others are global.
///
/// Note that we don't try to limit how many task of a certain kind can be running
/// at the same time.
///
#[derive(
Debug,
// NB: enumset::EnumSetType derives PartialEq, Eq, Clone, Copy
enumset::EnumSetType,
enum_map::Enum,
serde::Serialize,
serde::Deserialize,
strum_macros::IntoStaticStr,
strum_macros::EnumString,
)]
pub enum TaskKind {
// Pageserver startup, i.e., `main`
Startup,
// libpq listener task. It just accepts connection and spawns a
// PageRequestHandler task for each connection.
LibpqEndpointListener,
// HTTP endpoint listener.
HttpEndpointListener,
// Task that handles a single connection. A PageRequestHandler task
// starts detached from any particular tenant or timeline, but it can be
// associated with one later, after receiving a command from the client.
PageRequestHandler,
/// Manages the WAL receiver connection for one timeline.
/// It subscribes to events from storage_broker and decides which safekeeper to connect to.
/// Once the decision has been made, it establishes the connection using the `tokio-postgres` library.
/// There is at most one connection at any given time.
///
/// That `tokio-postgres` library represents a connection as two objects: a `Client` and a `Connection`.
/// The `Client` object is what library users use to make requests & get responses.
/// Internally, `Client` hands over requests to the `Connection` object.
/// The `Connection` object is responsible for speaking the wire protocol.
///
/// Walreceiver uses a legacy abstraction called `TaskHandle` to represent the activity of establishing and handling a connection.
/// The `WalReceiverManager` task ensures that this `TaskHandle` task does not outlive the `WalReceiverManager` task.
/// For the `RequestContext` that we hand to the TaskHandle, we use the [`WalReceiverConnectionHandler`] task kind.
///
/// Once the connection is established, the `TaskHandle` task spawns a
/// [`WalReceiverConnectionPoller`] task that is responsible for polling
/// the `Connection` object.
/// A `CancellationToken` created by the `TaskHandle` task ensures
/// that the [`WalReceiverConnectionPoller`] task will cancel soon after as the `TaskHandle` is dropped.
///
/// [`WalReceiverConnectionHandler`]: Self::WalReceiverConnectionHandler
/// [`WalReceiverConnectionPoller`]: Self::WalReceiverConnectionPoller
WalReceiverManager,
/// The `TaskHandle` task that executes `handle_walreceiver_connection`.
/// See the comment on [`WalReceiverManager`].
///
/// [`WalReceiverManager`]: Self::WalReceiverManager
WalReceiverConnectionHandler,
/// The task that polls the `tokio-postgres::Connection` object.
/// Spawned by task [`WalReceiverConnectionHandler`](Self::WalReceiverConnectionHandler).
/// See the comment on [`WalReceiverManager`](Self::WalReceiverManager).
WalReceiverConnectionPoller,
// Garbage collection worker. One per tenant
GarbageCollector,
// Compaction. One per tenant.
Compaction,
// Eviction. One per timeline.
Eviction,
// Tenant housekeeping (flush idle ephemeral layers, shut down idle walredo, etc.).
TenantHousekeeping,
/// See [`crate::disk_usage_eviction_task`].
DiskUsageEviction,
/// See [`crate::tenant::secondary`].
SecondaryDownloads,
/// See [`crate::tenant::secondary`].
SecondaryUploads,
// Initial logical size calculation
InitialLogicalSizeCalculation,
OndemandLogicalSizeCalculation,
// Task that flushes frozen in-memory layers to disk
LayerFlushTask,
// Task that uploads a file to remote storage
RemoteUploadTask,
// task that handles the initial downloading of all tenants
InitialLoad,
// task that handles attaching a tenant
Attach,
// Used mostly for background deletion from s3
TimelineDeletionWorker,
// task that handhes metrics collection
MetricsCollection,
// task that drives downloading layers
DownloadAllRemoteLayers,
// Task that calculates synthetis size for all active tenants
CalculateSyntheticSize,
// A request that comes in via the pageserver HTTP API.
MgmtRequest,
DebugTool,
EphemeralFilePreWarmPageCache,
LayerDownload,
#[cfg(test)]
UnitTest,
DetachAncestor,
ImportPgdata,
}
#[derive(Default)]
struct MutableTaskState {
/// Handle for waiting for the task to exit. It can be None, if the
/// the task has already exited.
join_handle: Option<JoinHandle<()>>,
}
struct PageServerTask {
task_id: PageserverTaskId,
kind: TaskKind,
name: String,
// To request task shutdown, just cancel this token.
cancel: CancellationToken,
/// Tasks may optionally be launched for a particular tenant/timeline, enabling
/// later cancelling tasks for that tenant/timeline in [`shutdown_tasks`]
tenant_shard_id: TenantShardId,
timeline_id: Option<TimelineId>,
mutable: Mutex<MutableTaskState>,
}
/// Launch a new task
/// Note: if shutdown_process_on_error is set to true failure
/// of the task will lead to shutdown of entire process
pub fn spawn<F>(
runtime: &tokio::runtime::Handle,
kind: TaskKind,
tenant_shard_id: TenantShardId,
timeline_id: Option<TimelineId>,
name: &str,
future: F,
) -> PageserverTaskId
where
F: Future<Output = anyhow::Result<()>> + Send + 'static,
{
let cancel = CancellationToken::new();
let task_id = NEXT_TASK_ID.fetch_add(1, Ordering::Relaxed);
let task = Arc::new(PageServerTask {
task_id: PageserverTaskId(task_id),
kind,
name: name.to_string(),
cancel: cancel.clone(),
tenant_shard_id,
timeline_id,
mutable: Mutex::new(MutableTaskState { join_handle: None }),
});
TASKS.lock().unwrap().insert(task_id, Arc::clone(&task));
let mut task_mut = task.mutable.lock().unwrap();
let task_name = name.to_string();
let task_cloned = Arc::clone(&task);
let join_handle = runtime.spawn(task_wrapper(
task_name,
task_id,
task_cloned,
cancel,
future,
));
task_mut.join_handle = Some(join_handle);
drop(task_mut);
// The task is now running. Nothing more to do here
PageserverTaskId(task_id)
}
/// This wrapper function runs in a newly-spawned task. It initializes the
/// task-local variables and calls the payload function.
async fn task_wrapper<F>(
task_name: String,
task_id: u64,
task: Arc<PageServerTask>,
shutdown_token: CancellationToken,
future: F,
) where
F: Future<Output = anyhow::Result<()>> + Send + 'static,
{
debug!("Starting task '{}'", task_name);
// wrap the future so we log panics and errors
let tenant_shard_id = task.tenant_shard_id;
let timeline_id = task.timeline_id;
let fut = async move {
// We use AssertUnwindSafe here so that the payload function
// doesn't need to be UnwindSafe. We don't do anything after the
// unwinding that would expose us to unwind-unsafe behavior.
let result = AssertUnwindSafe(future).catch_unwind().await;
match result {
Ok(Ok(())) => {
debug!("Task '{}' exited normally", task_name);
}
Ok(Err(err)) => {
error!(
"Task '{}' tenant_shard_id: {:?}, timeline_id: {:?} exited with error: {:?}",
task_name, tenant_shard_id, timeline_id, err
);
}
Err(err) => {
error!(
"Task '{}' tenant_shard_id: {:?}, timeline_id: {:?} panicked: {:?}",
task_name, tenant_shard_id, timeline_id, err
);
}
}
};
// add the task-locals
let fut = CURRENT_TASK.scope(task, fut);
let fut = SHUTDOWN_TOKEN.scope(shutdown_token, fut);
// poll future to completion
fut.await;
// Remove our entry from the global hashmap.
TASKS
.lock()
.unwrap()
.remove(&task_id)
.expect("no task in registry");
}
pub async fn exit_on_panic_or_error<T, E>(
task_name: &'static str,
future: impl Future<Output = Result<T, E>>,
) -> T
where
E: std::fmt::Debug,
{
// We use AssertUnwindSafe here so that the payload function
// doesn't need to be UnwindSafe. We don't do anything after the
// unwinding that would expose us to unwind-unsafe behavior.
let result = AssertUnwindSafe(future).catch_unwind().await;
match result {
Ok(Ok(val)) => val,
Ok(Err(err)) => {
error!(
task_name,
"Task exited with error, exiting process: {err:?}"
);
std::process::exit(1);
}
Err(panic_obj) => {
error!(task_name, "Task panicked, exiting process: {panic_obj:?}");
std::process::exit(1);
}
}
}
/// Signal and wait for tasks to shut down.
///
///
/// The arguments are used to select the tasks to kill. Any None arguments are
/// ignored. For example, to shut down all WalReceiver tasks:
///
/// shutdown_tasks(Some(TaskKind::WalReceiver), None, None)
///
/// Or to shut down all tasks for given timeline:
///
/// shutdown_tasks(None, Some(tenant_shard_id), Some(timeline_id))
///
pub async fn shutdown_tasks(
kind: Option<TaskKind>,
tenant_shard_id: Option<TenantShardId>,
timeline_id: Option<TimelineId>,
) {
let mut victim_tasks = Vec::new();
{
let tasks = TASKS.lock().unwrap();
for task in tasks.values() {
if (kind.is_none() || Some(task.kind) == kind)
&& (tenant_shard_id.is_none() || Some(task.tenant_shard_id) == tenant_shard_id)
&& (timeline_id.is_none() || task.timeline_id == timeline_id)
{
task.cancel.cancel();
victim_tasks.push((
Arc::clone(task),
task.kind,
task.tenant_shard_id,
task.timeline_id,
));
}
}
}
let log_all = kind.is_none() && tenant_shard_id.is_none() && timeline_id.is_none();
for (task, task_kind, tenant_shard_id, timeline_id) in victim_tasks {
let join_handle = {
let mut task_mut = task.mutable.lock().unwrap();
task_mut.join_handle.take()
};
if let Some(mut join_handle) = join_handle {
if log_all {
// warn to catch these in tests; there shouldn't be any
warn!(name = task.name, tenant_shard_id = ?tenant_shard_id, timeline_id = ?timeline_id, kind = ?task_kind, "stopping left-over");
}
const INITIAL_COMPLAIN_TIMEOUT: Duration = Duration::from_secs(1);
const PERIODIC_COMPLAIN_TIMEOUT: Duration = Duration::from_secs(60);
if tokio::time::timeout(INITIAL_COMPLAIN_TIMEOUT, &mut join_handle)
.await
.is_err()
{
// allow some time to elapse before logging to cut down the number of log
// lines.
info!("waiting for task {} to shut down", task.name);
loop {
tokio::select! {
// we never handled this return value, but:
// - we don't deschedule which would lead to is_cancelled
// - panics are already logged (is_panicked)
// - task errors are already logged in the wrapper
_ = &mut join_handle => break,
_ = tokio::time::sleep(PERIODIC_COMPLAIN_TIMEOUT) => info!("still waiting for task {} to shut down", task.name),
}
}
info!("task {} completed", task.name);
}
} else {
// Possibly one of:
// * The task had not even fully started yet.
// * It was shut down concurrently and already exited
}
}
}
pub fn current_task_kind() -> Option<TaskKind> {
CURRENT_TASK.try_with(|ct| ct.kind).ok()
}
pub fn current_task_id() -> Option<PageserverTaskId> {
CURRENT_TASK.try_with(|ct| ct.task_id).ok()
}
/// A Future that can be used to check if the current task has been requested to
/// shut down.
pub async fn shutdown_watcher() {
let token = SHUTDOWN_TOKEN
.try_with(|t| t.clone())
.expect("shutdown_watcher() called in an unexpected task or thread");
token.cancelled().await;
}
/// Clone the current task's cancellation token, which can be moved across tasks.
///
/// When the task which is currently executing is shutdown, the cancellation token will be
/// cancelled. It can however be moved to other tasks, such as `tokio::task::spawn_blocking` or
/// `tokio::task::JoinSet::spawn`.
pub fn shutdown_token() -> CancellationToken {
let res = SHUTDOWN_TOKEN.try_with(|t| t.clone());
if cfg!(test) {
// in tests this method is called from non-taskmgr spawned tasks, and that is all ok.
res.unwrap_or_default()
} else {
res.expect("shutdown_token() called in an unexpected task or thread")
}
}
/// Has the current task been requested to shut down?
pub fn is_shutdown_requested() -> bool {
if let Ok(true_or_false) = SHUTDOWN_TOKEN.try_with(|t| t.is_cancelled()) {
true_or_false
} else {
if !cfg!(test) {
warn!("is_shutdown_requested() called in an unexpected task or thread");
}
false
}
}