Files
neon/test_runner/fixtures/benchmark_fixture.py
Joonas Koivunen d9dcbffac3 python: allow using allowed_errors.py (#7719)
See #7718. Fix it by renaming all `types.py` to `common_types.py`.

Additionally, add an advert for using `allowed_errors.py` to test any
added regex.
2024-05-13 15:16:23 +03:00

519 lines
17 KiB
Python

import calendar
import dataclasses
import enum
import json
import os
import re
import timeit
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
# Type-related stuff
from typing import Callable, ClassVar, Dict, Iterator, Optional
import allure
import pytest
from _pytest.config import Config
from _pytest.config.argparsing import Parser
from _pytest.fixtures import FixtureRequest
from _pytest.terminal import TerminalReporter
from fixtures.common_types import TenantId, TimelineId
from fixtures.log_helper import log
from fixtures.neon_fixtures import NeonPageserver
"""
This file contains fixtures for micro-benchmarks.
To use, declare the `zenbenchmark` fixture in the test function. Run the
bencmark, and then record the result by calling `zenbenchmark.record`. For example:
>>> import timeit
>>> from fixtures.neon_fixtures import NeonEnv
>>> def test_mybench(neon_simple_env: NeonEnv, zenbenchmark):
... # Initialize the test
... ...
... # Run the test, timing how long it takes
... with zenbenchmark.record_duration('test_query'):
... cur.execute('SELECT test_query(...)')
... # Record another measurement
... zenbenchmark.record('speed_of_light', 300000, 'km/s')
There's no need to import this file to use it. It should be declared as a plugin
inside `conftest.py`, and that makes it available to all tests.
You can measure multiple things in one test, and record each one with a separate
call to `zenbenchmark`. For example, you could time the bulk loading that happens
in the test initialization, or measure disk usage after the test query.
"""
@dataclasses.dataclass
class PgBenchRunResult:
number_of_clients: int
number_of_threads: int
number_of_transactions_actually_processed: int
latency_average: float
latency_stddev: Optional[float]
tps: float
run_duration: float
run_start_timestamp: int
run_end_timestamp: int
scale: int
# TODO progress
@classmethod
def parse_from_stdout(
cls,
stdout: str,
run_duration: float,
run_start_timestamp: int,
run_end_timestamp: int,
):
stdout_lines = stdout.splitlines()
latency_stddev = None
# we know significant parts of these values from test input
# but to be precise take them from output
for line in stdout_lines:
# scaling factor: 5
if line.startswith("scaling factor:"):
scale = int(line.split()[-1])
# number of clients: 1
if line.startswith("number of clients: "):
number_of_clients = int(line.split()[-1])
# number of threads: 1
if line.startswith("number of threads: "):
number_of_threads = int(line.split()[-1])
# number of transactions actually processed: 1000/1000
# OR
# number of transactions actually processed: 1000
if line.startswith("number of transactions actually processed"):
if "/" in line:
number_of_transactions_actually_processed = int(line.split("/")[1])
else:
number_of_transactions_actually_processed = int(line.split()[-1])
# latency average = 19.894 ms
if line.startswith("latency average"):
latency_average = float(line.split()[-2])
# latency stddev = 3.387 ms
# (only printed with some options)
if line.startswith("latency stddev"):
latency_stddev = float(line.split()[-2])
# Get the TPS without initial connection time. The format
# of the tps lines changed in pgbench v14, but we accept
# either format:
#
# pgbench v13 and below:
# tps = 50.219689 (including connections establishing)
# tps = 50.264435 (excluding connections establishing)
#
# pgbench v14:
# initial connection time = 3.858 ms
# tps = 309.281539 (without initial connection time)
if line.startswith("tps = ") and (
"(excluding connections establishing)" in line
or "(without initial connection time)" in line
):
tps = float(line.split()[2])
return cls(
number_of_clients=number_of_clients,
number_of_threads=number_of_threads,
number_of_transactions_actually_processed=number_of_transactions_actually_processed,
latency_average=latency_average,
latency_stddev=latency_stddev,
tps=tps,
run_duration=run_duration,
run_start_timestamp=run_start_timestamp,
run_end_timestamp=run_end_timestamp,
scale=scale,
)
@dataclasses.dataclass
class PgBenchInitResult:
# Taken from https://github.com/postgres/postgres/blob/REL_15_1/src/bin/pgbench/pgbench.c#L5144-L5171
EXTRACTORS: ClassVar[Dict[str, re.Pattern]] = { # type: ignore[type-arg]
"drop_tables": re.compile(r"drop tables (\d+\.\d+) s"),
"create_tables": re.compile(r"create tables (\d+\.\d+) s"),
"client_side_generate": re.compile(r"client-side generate (\d+\.\d+) s"),
"server_side_generate": re.compile(r"server-side generate (\d+\.\d+) s"),
"vacuum": re.compile(r"vacuum (\d+\.\d+) s"),
"primary_keys": re.compile(r"primary keys (\d+\.\d+) s"),
"foreign_keys": re.compile(r"foreign keys (\d+\.\d+) s"),
"total": re.compile(r"done in (\d+\.\d+) s"), # Total time printed by pgbench
}
total: Optional[float]
drop_tables: Optional[float]
create_tables: Optional[float]
client_side_generate: Optional[float]
server_side_generate: Optional[float]
vacuum: Optional[float]
primary_keys: Optional[float]
foreign_keys: Optional[float]
duration: float
start_timestamp: int
end_timestamp: int
@classmethod
def parse_from_stderr(
cls,
stderr: str,
duration: float,
start_timestamp: int,
end_timestamp: int,
):
# Parses pgbench initialize output
# Example: done in 5.66 s (drop tables 0.05 s, create tables 0.31 s, client-side generate 2.01 s, vacuum 0.53 s, primary keys 0.38 s).
last_line = stderr.splitlines()[-1]
timings: Dict[str, Optional[float]] = {}
last_line_items = re.split(r"\(|\)|,", last_line)
for item in last_line_items:
for key, regex in cls.EXTRACTORS.items():
if (m := regex.match(item.strip())) is not None:
if key in timings:
raise RuntimeError(
f"can't store pgbench results for repeated action `{key}`"
)
timings[key] = float(m.group(1))
if not timings or "total" not in timings:
raise RuntimeError(f"can't parse pgbench initialize results from `{last_line}`")
return cls(
total=timings["total"],
drop_tables=timings.get("drop_tables", 0.0),
create_tables=timings.get("create_tables", 0.0),
client_side_generate=timings.get("client_side_generate", 0.0),
server_side_generate=timings.get("server_side_generate", 0.0),
vacuum=timings.get("vacuum", 0.0),
primary_keys=timings.get("primary_keys", 0.0),
foreign_keys=timings.get("foreign_keys", 0.0),
duration=duration,
start_timestamp=start_timestamp,
end_timestamp=end_timestamp,
)
@enum.unique
class MetricReport(str, enum.Enum): # str is a hack to make it json serializable
# this means that this is a constant test parameter
# like number of transactions, or number of clients
TEST_PARAM = "test_param"
# reporter can use it to mark test runs with higher values as improvements
HIGHER_IS_BETTER = "higher_is_better"
# the same but for lower values
LOWER_IS_BETTER = "lower_is_better"
class NeonBenchmarker:
"""
An object for recording benchmark results. This is created for each test
function by the zenbenchmark fixture
"""
def __init__(self, property_recorder: Callable[[str, object], None]):
# property recorder here is a pytest fixture provided by junitxml module
# https://docs.pytest.org/en/6.2.x/reference.html#pytest.junitxml.record_property
self.property_recorder = property_recorder
def record(
self,
metric_name: str,
metric_value: float,
unit: str,
report: MetricReport,
):
"""
Record a benchmark result.
"""
# just to namespace the value
name = f"neon_benchmarker_{metric_name}"
self.property_recorder(
name,
{
"name": metric_name,
"value": metric_value,
"unit": unit,
"report": report,
},
)
@contextmanager
def record_duration(self, metric_name: str) -> Iterator[None]:
"""
Record a duration. Usage:
with zenbenchmark.record_duration('foobar_runtime'):
foobar() # measure this
"""
start = timeit.default_timer()
yield
end = timeit.default_timer()
self.record(
metric_name=metric_name,
metric_value=end - start,
unit="s",
report=MetricReport.LOWER_IS_BETTER,
)
def record_pg_bench_result(self, prefix: str, pg_bench_result: PgBenchRunResult):
self.record(
f"{prefix}.number_of_clients",
pg_bench_result.number_of_clients,
"",
MetricReport.TEST_PARAM,
)
self.record(
f"{prefix}.number_of_threads",
pg_bench_result.number_of_threads,
"",
MetricReport.TEST_PARAM,
)
self.record(
f"{prefix}.number_of_transactions_actually_processed",
pg_bench_result.number_of_transactions_actually_processed,
"",
# that's because this is predefined by test matrix and doesn't change across runs
report=MetricReport.TEST_PARAM,
)
self.record(
f"{prefix}.latency_average",
pg_bench_result.latency_average,
unit="ms",
report=MetricReport.LOWER_IS_BETTER,
)
if pg_bench_result.latency_stddev is not None:
self.record(
f"{prefix}.latency_stddev",
pg_bench_result.latency_stddev,
unit="ms",
report=MetricReport.LOWER_IS_BETTER,
)
self.record(f"{prefix}.tps", pg_bench_result.tps, "", report=MetricReport.HIGHER_IS_BETTER)
self.record(
f"{prefix}.run_duration",
pg_bench_result.run_duration,
unit="s",
report=MetricReport.LOWER_IS_BETTER,
)
self.record(
f"{prefix}.run_start_timestamp",
pg_bench_result.run_start_timestamp,
"",
MetricReport.TEST_PARAM,
)
self.record(
f"{prefix}.run_end_timestamp",
pg_bench_result.run_end_timestamp,
"",
MetricReport.TEST_PARAM,
)
self.record(
f"{prefix}.scale",
pg_bench_result.scale,
"",
MetricReport.TEST_PARAM,
)
def record_pg_bench_init_result(self, prefix: str, result: PgBenchInitResult):
test_params = [
"start_timestamp",
"end_timestamp",
]
for test_param in test_params:
self.record(
f"{prefix}.{test_param}", getattr(result, test_param), "", MetricReport.TEST_PARAM
)
metrics = [
"duration",
"drop_tables",
"create_tables",
"client_side_generate",
"server_side_generate",
"vacuum",
"primary_keys",
"foreign_keys",
]
for metric in metrics:
if (value := getattr(result, metric)) is not None:
self.record(
f"{prefix}.{metric}", value, unit="s", report=MetricReport.LOWER_IS_BETTER
)
def get_io_writes(self, pageserver: NeonPageserver) -> int:
"""
Fetch the "cumulative # of bytes written" metric from the pageserver
"""
return self.get_int_counter_value(
pageserver, "libmetrics_disk_io_bytes_total", {"io_operation": "write"}
)
def get_peak_mem(self, pageserver: NeonPageserver) -> int:
"""
Fetch the "maxrss" metric from the pageserver
"""
return self.get_int_counter_value(pageserver, "libmetrics_maxrss_kb")
def get_int_counter_value(
self,
pageserver: NeonPageserver,
metric_name: str,
label_filters: Optional[Dict[str, str]] = None,
) -> int:
"""Fetch the value of given int counter from pageserver metrics."""
all_metrics = pageserver.http_client().get_metrics()
sample = all_metrics.query_one(metric_name, label_filters)
return int(round(sample.value))
def get_timeline_size(
self, repo_dir: Path, tenant_id: TenantId, timeline_id: TimelineId
) -> int:
"""
Calculate the on-disk size of a timeline
"""
path = f"{repo_dir}/tenants/{tenant_id}/timelines/{timeline_id}"
totalbytes = 0
for root, _dirs, files in os.walk(path):
for name in files:
totalbytes += os.path.getsize(os.path.join(root, name))
return totalbytes
@contextmanager
def record_pageserver_writes(
self, pageserver: NeonPageserver, metric_name: str
) -> Iterator[None]:
"""
Record bytes written by the pageserver during a test.
"""
before = self.get_io_writes(pageserver)
yield
after = self.get_io_writes(pageserver)
self.record(
metric_name,
round((after - before) / (1024 * 1024)),
"MB",
report=MetricReport.LOWER_IS_BETTER,
)
@pytest.fixture(scope="function")
def zenbenchmark(
request: FixtureRequest,
record_property: Callable[[str, object], None],
) -> Iterator[NeonBenchmarker]:
"""
This is a python decorator for benchmark fixtures. It contains functions for
recording measurements, and prints them out at the end.
"""
benchmarker = NeonBenchmarker(record_property)
yield benchmarker
results = {}
for _, recorded_property in request.node.user_properties:
name = recorded_property["name"]
value = str(recorded_property["value"])
if (unit := recorded_property["unit"].strip()) != "":
value += f" {unit}"
results[name] = value
content = json.dumps(results, indent=2)
allure.attach(
content,
"benchmarks.json",
allure.attachment_type.JSON,
)
def pytest_addoption(parser: Parser):
parser.addoption(
"--out-dir",
dest="out_dir",
help="Directory to output performance tests results to.",
)
def get_out_path(target_dir: Path, revision: str) -> Path:
"""
get output file path
if running in the CI uses commit revision
to avoid duplicates uses counter
"""
# use UTC timestamp as a counter marker to avoid weird behaviour
# when for example files are deleted
ts = calendar.timegm(datetime.utcnow().utctimetuple())
path = target_dir / f"{ts}_{revision}.json"
assert not path.exists()
return path
# Hook to print the results at the end
@pytest.hookimpl(hookwrapper=True)
def pytest_terminal_summary(
terminalreporter: TerminalReporter, exitstatus: int, config: Config
) -> Iterator[None]:
yield
revision = os.getenv("GITHUB_SHA", "local")
platform = os.getenv("PLATFORM", "local")
is_header_printed = False
result = []
for test_report in terminalreporter.stats.get("passed", []):
result_entry = []
for _, recorded_property in test_report.user_properties:
if not is_header_printed:
terminalreporter.section("Benchmark results", "-")
is_header_printed = True
terminalreporter.write(f"{test_report.head_line}.{recorded_property['name']}: ")
unit = recorded_property["unit"]
value = recorded_property["value"]
if unit == "MB":
terminalreporter.write(f"{value:,.0f}", green=True)
elif unit in ("s", "ms") and isinstance(value, float):
terminalreporter.write(f"{value:,.3f}", green=True)
elif isinstance(value, float):
terminalreporter.write(f"{value:,.4f}", green=True)
else:
terminalreporter.write(str(value), green=True)
terminalreporter.line(f" {unit}")
result_entry.append(recorded_property)
result.append(
{
"suit": test_report.nodeid,
"total_duration": test_report.duration,
"data": result_entry,
}
)
out_dir = config.getoption("out_dir")
if out_dir is None:
return
if not result:
log.warning("no results to store (no passed test suites)")
return
get_out_path(Path(out_dir), revision=revision).write_text(
json.dumps({"revision": revision, "platform": platform, "result": result}, indent=4)
)