mirror of
https://github.com/neondatabase/neon.git
synced 2026-01-08 22:12:56 +00:00
## Problem ``` 2024-12-03T15:42:46.5978335Z + poetry run python /__w/neon/neon/scripts/ingest_perf_test_result.py --ingest /__w/neon/neon/test_runner/perf-report-local 2024-12-03T15:42:49.5325077Z Traceback (most recent call last): 2024-12-03T15:42:49.5325603Z File "/__w/neon/neon/scripts/ingest_perf_test_result.py", line 165, in <module> 2024-12-03T15:42:49.5326029Z main() 2024-12-03T15:42:49.5326316Z File "/__w/neon/neon/scripts/ingest_perf_test_result.py", line 155, in main 2024-12-03T15:42:49.5326739Z ingested = ingest_perf_test_result(cur, item, recorded_at_timestamp) 2024-12-03T15:42:49.5327488Z ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2024-12-03T15:42:49.5327914Z File "/__w/neon/neon/scripts/ingest_perf_test_result.py", line 99, in ingest_perf_test_result 2024-12-03T15:42:49.5328321Z psycopg2.extras.execute_values( 2024-12-03T15:42:49.5328940Z File "/github/home/.cache/pypoetry/virtualenvs/non-package-mode-_pxWMzVK-py3.11/lib/python3.11/site-packages/psycopg2/extras.py", line 1299, in execute_values 2024-12-03T15:42:49.5335618Z cur.execute(b''.join(parts)) 2024-12-03T15:42:49.5335967Z psycopg2.errors.InvalidTextRepresentation: invalid input syntax for type numeric: "concurrent-futures" 2024-12-03T15:42:49.5336287Z LINE 57: 'concurrent-futures', 2024-12-03T15:42:49.5336462Z ^ ``` ## Summary of changes - `test_page_service_batching`: save non-numeric params as `labels` - Add a runtime check that `metric_value` is NUMERIC
376 lines
13 KiB
Python
376 lines
13 KiB
Python
import dataclasses
|
|
import json
|
|
import time
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import pytest
|
|
from fixtures.benchmark_fixture import MetricReport, NeonBenchmarker
|
|
from fixtures.log_helper import log
|
|
from fixtures.neon_fixtures import NeonEnvBuilder, PgBin, wait_for_last_flush_lsn
|
|
from fixtures.utils import humantime_to_ms
|
|
|
|
TARGET_RUNTIME = 30
|
|
|
|
|
|
@dataclass
|
|
class PageServicePipeliningConfig:
|
|
pass
|
|
|
|
|
|
@dataclass
|
|
class PageServicePipeliningConfigSerial(PageServicePipeliningConfig):
|
|
mode: str = "serial"
|
|
|
|
|
|
@dataclass
|
|
class PageServicePipeliningConfigPipelined(PageServicePipeliningConfig):
|
|
max_batch_size: int
|
|
execution: str
|
|
mode: str = "pipelined"
|
|
|
|
|
|
EXECUTION = ["concurrent-futures", "tasks"]
|
|
|
|
NON_BATCHABLE: list[PageServicePipeliningConfig] = [PageServicePipeliningConfigSerial()]
|
|
for max_batch_size in [1, 32]:
|
|
for execution in EXECUTION:
|
|
NON_BATCHABLE.append(PageServicePipeliningConfigPipelined(max_batch_size, execution))
|
|
|
|
BATCHABLE: list[PageServicePipeliningConfig] = [PageServicePipeliningConfigSerial()]
|
|
for max_batch_size in [1, 2, 4, 8, 16, 32]:
|
|
for execution in EXECUTION:
|
|
BATCHABLE.append(PageServicePipeliningConfigPipelined(max_batch_size, execution))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"tablesize_mib, pipelining_config, target_runtime, effective_io_concurrency, readhead_buffer_size, name",
|
|
[
|
|
# non-batchable workloads
|
|
# (A separate benchmark will consider latency).
|
|
*[
|
|
(
|
|
50,
|
|
config,
|
|
TARGET_RUNTIME,
|
|
1,
|
|
128,
|
|
f"not batchable {dataclasses.asdict(config)}",
|
|
)
|
|
for config in NON_BATCHABLE
|
|
],
|
|
# batchable workloads should show throughput and CPU efficiency improvements
|
|
*[
|
|
(
|
|
50,
|
|
config,
|
|
TARGET_RUNTIME,
|
|
100,
|
|
128,
|
|
f"batchable {dataclasses.asdict(config)}",
|
|
)
|
|
for config in BATCHABLE
|
|
],
|
|
],
|
|
)
|
|
def test_throughput(
|
|
neon_env_builder: NeonEnvBuilder,
|
|
zenbenchmark: NeonBenchmarker,
|
|
tablesize_mib: int,
|
|
pipelining_config: PageServicePipeliningConfig,
|
|
target_runtime: int,
|
|
effective_io_concurrency: int,
|
|
readhead_buffer_size: int,
|
|
name: str,
|
|
):
|
|
"""
|
|
Do a bunch of sequential scans with varying compute and pipelining configurations.
|
|
Primary performance metrics are the achieved batching factor and throughput (wall clock time).
|
|
Resource utilization is also interesting - we currently measure CPU time.
|
|
|
|
The test is a fixed-runtime based type of test (target_runtime).
|
|
Hence, the results are normalized to the number of iterations completed within target runtime.
|
|
|
|
If the compute doesn't provide pipeline depth (effective_io_concurrency=1),
|
|
performance should be about identical in all configurations.
|
|
Pipelining can still yield improvements in these scenarios because it parses the
|
|
next request while the current one is still being executed.
|
|
|
|
If the compute provides pipeline depth (effective_io_concurrency=100), then
|
|
pipelining configs, especially with max_batch_size>1 should yield dramatic improvements
|
|
in all performance metrics.
|
|
"""
|
|
|
|
#
|
|
# record perf-related parameters as metrics to simplify processing of results
|
|
#
|
|
params: dict[str, tuple[float | int, dict[str, Any]]] = {}
|
|
|
|
params.update(
|
|
{
|
|
"tablesize_mib": (tablesize_mib, {"unit": "MiB"}),
|
|
# target_runtime is just a polite ask to the workload to run for this long
|
|
"effective_io_concurrency": (effective_io_concurrency, {}),
|
|
"readhead_buffer_size": (readhead_buffer_size, {}),
|
|
# name is not a metric, we just use it to identify the test easily in the `test_...[...]`` notation
|
|
}
|
|
)
|
|
# For storing configuration as a metric, insert a fake 0 with labels with actual data
|
|
params.update({"pipelining_config": (0, {"labels": dataclasses.asdict(pipelining_config)})})
|
|
|
|
log.info("params: %s", params)
|
|
|
|
for param, (value, kwargs) in params.items():
|
|
zenbenchmark.record(
|
|
param,
|
|
metric_value=float(value),
|
|
unit=kwargs.pop("unit", ""),
|
|
report=MetricReport.TEST_PARAM,
|
|
labels=kwargs.pop("labels", None),
|
|
**kwargs,
|
|
)
|
|
|
|
#
|
|
# Setup
|
|
#
|
|
|
|
env = neon_env_builder.init_start()
|
|
ps_http = env.pageserver.http_client()
|
|
endpoint = env.endpoints.create_start("main")
|
|
conn = endpoint.connect()
|
|
cur = conn.cursor()
|
|
|
|
cur.execute("SET max_parallel_workers_per_gather=0") # disable parallel backends
|
|
cur.execute(f"SET effective_io_concurrency={effective_io_concurrency}")
|
|
cur.execute(
|
|
f"SET neon.readahead_buffer_size={readhead_buffer_size}"
|
|
) # this is the current default value, but let's hard-code that
|
|
|
|
cur.execute("CREATE EXTENSION IF NOT EXISTS neon;")
|
|
cur.execute("CREATE EXTENSION IF NOT EXISTS neon_test_utils;")
|
|
|
|
log.info("Filling the table")
|
|
cur.execute("CREATE TABLE t (data char(1000)) with (fillfactor=10)")
|
|
tablesize = tablesize_mib * 1024 * 1024
|
|
npages = tablesize // (8 * 1024)
|
|
cur.execute("INSERT INTO t SELECT generate_series(1, %s)", (npages,))
|
|
# TODO: can we force postgres to do sequential scans?
|
|
|
|
#
|
|
# Run the workload, collect `Metrics` before and after, calculate difference, normalize.
|
|
#
|
|
|
|
@dataclass
|
|
class Metrics:
|
|
time: float
|
|
pageserver_batch_size_histo_sum: float
|
|
pageserver_batch_size_histo_count: float
|
|
compute_getpage_count: float
|
|
pageserver_cpu_seconds_total: float
|
|
|
|
def __sub__(self, other: "Metrics") -> "Metrics":
|
|
return Metrics(
|
|
time=self.time - other.time,
|
|
pageserver_batch_size_histo_sum=self.pageserver_batch_size_histo_sum
|
|
- other.pageserver_batch_size_histo_sum,
|
|
pageserver_batch_size_histo_count=self.pageserver_batch_size_histo_count
|
|
- other.pageserver_batch_size_histo_count,
|
|
compute_getpage_count=self.compute_getpage_count - other.compute_getpage_count,
|
|
pageserver_cpu_seconds_total=self.pageserver_cpu_seconds_total
|
|
- other.pageserver_cpu_seconds_total,
|
|
)
|
|
|
|
def normalize(self, by) -> "Metrics":
|
|
return Metrics(
|
|
time=self.time / by,
|
|
pageserver_batch_size_histo_sum=self.pageserver_batch_size_histo_sum / by,
|
|
pageserver_batch_size_histo_count=self.pageserver_batch_size_histo_count / by,
|
|
compute_getpage_count=self.compute_getpage_count / by,
|
|
pageserver_cpu_seconds_total=self.pageserver_cpu_seconds_total / by,
|
|
)
|
|
|
|
def get_metrics() -> Metrics:
|
|
with conn.cursor() as cur:
|
|
cur.execute(
|
|
"select value from neon_perf_counters where metric='getpage_wait_seconds_count';"
|
|
)
|
|
compute_getpage_count = cur.fetchall()[0][0]
|
|
pageserver_metrics = ps_http.get_metrics()
|
|
return Metrics(
|
|
time=time.time(),
|
|
pageserver_batch_size_histo_sum=pageserver_metrics.query_one(
|
|
"pageserver_page_service_batch_size_sum"
|
|
).value,
|
|
pageserver_batch_size_histo_count=pageserver_metrics.query_one(
|
|
"pageserver_page_service_batch_size_count"
|
|
).value,
|
|
compute_getpage_count=compute_getpage_count,
|
|
pageserver_cpu_seconds_total=pageserver_metrics.query_one(
|
|
"libmetrics_process_cpu_seconds_highres"
|
|
).value,
|
|
)
|
|
|
|
def workload() -> Metrics:
|
|
start = time.time()
|
|
iters = 0
|
|
while time.time() - start < target_runtime or iters < 2:
|
|
log.info("Seqscan %d", iters)
|
|
if iters == 1:
|
|
# round zero for warming up
|
|
before = get_metrics()
|
|
cur.execute(
|
|
"select clear_buffer_cache()"
|
|
) # TODO: what about LFC? doesn't matter right now because LFC isn't enabled by default in tests
|
|
cur.execute("select sum(data::bigint) from t")
|
|
assert cur.fetchall()[0][0] == npages * (npages + 1) // 2
|
|
iters += 1
|
|
after = get_metrics()
|
|
return (after - before).normalize(iters - 1)
|
|
|
|
env.pageserver.patch_config_toml_nonrecursive(
|
|
{"page_service_pipelining": dataclasses.asdict(pipelining_config)}
|
|
)
|
|
env.pageserver.restart()
|
|
metrics = workload()
|
|
|
|
log.info("Results: %s", metrics)
|
|
|
|
#
|
|
# Sanity-checks on the collected data
|
|
#
|
|
# assert that getpage counts roughly match between compute and ps
|
|
assert metrics.pageserver_batch_size_histo_sum == pytest.approx(
|
|
metrics.compute_getpage_count, rel=0.01
|
|
)
|
|
|
|
#
|
|
# Record the results
|
|
#
|
|
|
|
for metric, value in dataclasses.asdict(metrics).items():
|
|
zenbenchmark.record(f"counters.{metric}", value, unit="", report=MetricReport.TEST_PARAM)
|
|
|
|
zenbenchmark.record(
|
|
"perfmetric.batching_factor",
|
|
metrics.pageserver_batch_size_histo_sum / metrics.pageserver_batch_size_histo_count,
|
|
unit="",
|
|
report=MetricReport.HIGHER_IS_BETTER,
|
|
)
|
|
|
|
|
|
PRECISION_CONFIGS: list[PageServicePipeliningConfig] = [PageServicePipeliningConfigSerial()]
|
|
for max_batch_size in [1, 32]:
|
|
for execution in EXECUTION:
|
|
PRECISION_CONFIGS.append(PageServicePipeliningConfigPipelined(max_batch_size, execution))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pipelining_config,name",
|
|
[(config, f"{dataclasses.asdict(config)}") for config in PRECISION_CONFIGS],
|
|
)
|
|
def test_latency(
|
|
neon_env_builder: NeonEnvBuilder,
|
|
zenbenchmark: NeonBenchmarker,
|
|
pg_bin: PgBin,
|
|
pipelining_config: PageServicePipeliningConfig,
|
|
name: str,
|
|
):
|
|
"""
|
|
Measure the latency impact of pipelining in an un-batchable workloads.
|
|
|
|
An ideal implementation should not increase average or tail latencies for such workloads.
|
|
|
|
We don't have support in pagebench to create queue depth yet.
|
|
=> https://github.com/neondatabase/neon/issues/9837
|
|
"""
|
|
|
|
#
|
|
# Setup
|
|
#
|
|
|
|
def patch_ps_config(ps_config):
|
|
if pipelining_config is not None:
|
|
ps_config["page_service_pipelining"] = dataclasses.asdict(pipelining_config)
|
|
|
|
neon_env_builder.pageserver_config_override = patch_ps_config
|
|
|
|
env = neon_env_builder.init_start()
|
|
endpoint = env.endpoints.create_start("main")
|
|
conn = endpoint.connect()
|
|
cur = conn.cursor()
|
|
|
|
cur.execute("SET max_parallel_workers_per_gather=0") # disable parallel backends
|
|
cur.execute("SET effective_io_concurrency=1")
|
|
|
|
cur.execute("CREATE EXTENSION IF NOT EXISTS neon;")
|
|
cur.execute("CREATE EXTENSION IF NOT EXISTS neon_test_utils;")
|
|
|
|
log.info("Filling the table")
|
|
cur.execute("CREATE TABLE t (data char(1000)) with (fillfactor=10)")
|
|
tablesize = 50 * 1024 * 1024
|
|
npages = tablesize // (8 * 1024)
|
|
cur.execute("INSERT INTO t SELECT generate_series(1, %s)", (npages,))
|
|
# TODO: can we force postgres to do sequential scans?
|
|
|
|
cur.close()
|
|
conn.close()
|
|
|
|
wait_for_last_flush_lsn(env, endpoint, env.initial_tenant, env.initial_timeline)
|
|
|
|
endpoint.stop()
|
|
|
|
for sk in env.safekeepers:
|
|
sk.stop()
|
|
|
|
#
|
|
# Run single-threaded pagebench (TODO: dedup with other benchmark code)
|
|
#
|
|
|
|
env.pageserver.allowed_errors.append(
|
|
# https://github.com/neondatabase/neon/issues/6925
|
|
r".*query handler for.*pagestream.*failed: unexpected message: CopyFail during COPY.*"
|
|
)
|
|
|
|
ps_http = env.pageserver.http_client()
|
|
|
|
cmd = [
|
|
str(env.neon_binpath / "pagebench"),
|
|
"get-page-latest-lsn",
|
|
"--mgmt-api-endpoint",
|
|
ps_http.base_url,
|
|
"--page-service-connstring",
|
|
env.pageserver.connstr(password=None),
|
|
"--num-clients",
|
|
"1",
|
|
"--runtime",
|
|
"10s",
|
|
]
|
|
log.info(f"command: {' '.join(cmd)}")
|
|
basepath = pg_bin.run_capture(cmd, with_command_header=False)
|
|
results_path = Path(basepath + ".stdout")
|
|
log.info(f"Benchmark results at: {results_path}")
|
|
|
|
with open(results_path) as f:
|
|
results = json.load(f)
|
|
log.info(f"Results:\n{json.dumps(results, sort_keys=True, indent=2)}")
|
|
|
|
total = results["total"]
|
|
|
|
metric = "latency_mean"
|
|
zenbenchmark.record(
|
|
metric,
|
|
metric_value=humantime_to_ms(total[metric]),
|
|
unit="ms",
|
|
report=MetricReport.LOWER_IS_BETTER,
|
|
)
|
|
|
|
metric = "latency_percentiles"
|
|
for k, v in total[metric].items():
|
|
zenbenchmark.record(
|
|
f"{metric}.{k}",
|
|
metric_value=humantime_to_ms(v),
|
|
unit="ms",
|
|
report=MetricReport.LOWER_IS_BETTER,
|
|
)
|