Files
neon/pageserver/src/basebackup.rs
2022-10-26 17:32:31 -04:00

493 lines
17 KiB
Rust

//!
//! Generate a tarball with files needed to bootstrap ComputeNode.
//!
//! TODO: this module has nothing to do with PostgreSQL pg_basebackup.
//! It could use a better name.
//!
//! Stateless Postgres compute node is launched by sending a tarball
//! which contains non-relational data (multixacts, clog, filenodemaps, twophase files),
//! generated pg_control and dummy segment of WAL.
//! This module is responsible for creation of such tarball
//! from data stored in object storage.
//!
use anyhow::{anyhow, bail, ensure, Context, Result};
use bytes::{BufMut, BytesMut};
use fail::fail_point;
use itertools::Itertools;
use std::fmt::Write as FmtWrite;
use std::io;
use std::io::Write;
use std::sync::Arc;
use std::time::SystemTime;
use tar::{Builder, EntryType, Header};
use tracing::*;
use crate::tenant::Timeline;
use pageserver_api::reltag::{RelTag, SlruKind};
use postgres_ffi::pg_constants::{DEFAULTTABLESPACE_OID, GLOBALTABLESPACE_OID};
use postgres_ffi::pg_constants::{PGDATA_SPECIAL_FILES, PGDATA_SUBDIRS, PG_HBA};
use postgres_ffi::TransactionId;
use postgres_ffi::XLogFileName;
use postgres_ffi::PG_TLI;
use postgres_ffi::{BLCKSZ, RELSEG_SIZE, WAL_SEGMENT_SIZE};
use utils::lsn::Lsn;
/// This is short-living object only for the time of tarball creation,
/// created mostly to avoid passing a lot of parameters between various functions
/// used for constructing tarball.
pub struct Basebackup<'a, W>
where
W: Write,
{
ar: Builder<AbortableWrite<W>>,
timeline: &'a Arc<Timeline>,
pub lsn: Lsn,
prev_record_lsn: Lsn,
full_backup: bool,
finished: bool,
}
// Create basebackup with non-rel data in it.
// Only include relational data if 'full_backup' is true.
//
// Currently we use empty lsn in two cases:
// * During the basebackup right after timeline creation
// * When working without safekeepers. In this situation it is important to match the lsn
// we are taking basebackup on with the lsn that is used in pageserver's walreceiver
// to start the replication.
impl<'a, W> Basebackup<'a, W>
where
W: Write,
{
pub fn new(
write: W,
timeline: &'a Arc<Timeline>,
req_lsn: Option<Lsn>,
prev_lsn: Option<Lsn>,
full_backup: bool,
) -> Result<Basebackup<'a, W>> {
// Compute postgres doesn't have any previous WAL files, but the first
// record that it's going to write needs to include the LSN of the
// previous record (xl_prev). We include prev_record_lsn in the
// "zenith.signal" file, so that postgres can read it during startup.
//
// We don't keep full history of record boundaries in the page server,
// however, only the predecessor of the latest record on each
// timeline. So we can only provide prev_record_lsn when you take a
// base backup at the end of the timeline, i.e. at last_record_lsn.
// Even at the end of the timeline, we sometimes don't have a valid
// prev_lsn value; that happens if the timeline was just branched from
// an old LSN and it doesn't have any WAL of its own yet. We will set
// prev_lsn to Lsn(0) if we cannot provide the correct value.
let (backup_prev, backup_lsn) = if let Some(req_lsn) = req_lsn {
// Backup was requested at a particular LSN. The caller should've
// already checked that it's a valid LSN.
// If the requested point is the end of the timeline, we can
// provide prev_lsn. (get_last_record_rlsn() might return it as
// zero, though, if no WAL has been generated on this timeline
// yet.)
let end_of_timeline = timeline.get_last_record_rlsn();
if req_lsn == end_of_timeline.last {
(end_of_timeline.prev, req_lsn)
} else {
(Lsn(0), req_lsn)
}
} else {
// Backup was requested at end of the timeline.
let end_of_timeline = timeline.get_last_record_rlsn();
(end_of_timeline.prev, end_of_timeline.last)
};
// Consolidate the derived and the provided prev_lsn values
let prev_lsn = if let Some(provided_prev_lsn) = prev_lsn {
if backup_prev != Lsn(0) {
ensure!(backup_prev == provided_prev_lsn)
}
provided_prev_lsn
} else {
backup_prev
};
info!(
"taking basebackup lsn={}, prev_lsn={} (full_backup={})",
backup_lsn, prev_lsn, full_backup
);
Ok(Basebackup {
ar: Builder::new(AbortableWrite::new(write)),
timeline,
lsn: backup_lsn,
prev_record_lsn: prev_lsn,
full_backup,
finished: false,
})
}
pub fn send_tarball(mut self) -> anyhow::Result<()> {
// TODO include checksum
// Create pgdata subdirs structure
for dir in PGDATA_SUBDIRS.iter() {
let header = new_tar_header_dir(*dir)?;
self.ar.append(&header, &mut io::empty())?;
}
// Send empty config files.
for filepath in PGDATA_SPECIAL_FILES.iter() {
if *filepath == "pg_hba.conf" {
let data = PG_HBA.as_bytes();
let header = new_tar_header(filepath, data.len() as u64)?;
self.ar.append(&header, data)?;
} else {
let header = new_tar_header(filepath, 0)?;
self.ar.append(&header, &mut io::empty())?;
}
}
// Gather non-relational files from object storage pages.
for kind in [
SlruKind::Clog,
SlruKind::MultiXactOffsets,
SlruKind::MultiXactMembers,
] {
for segno in self.timeline.list_slru_segments(kind, self.lsn)? {
self.add_slru_segment(kind, segno)?;
}
}
// Create tablespace directories
for ((spcnode, dbnode), has_relmap_file) in self.timeline.list_dbdirs(self.lsn)? {
self.add_dbdir(spcnode, dbnode, has_relmap_file)?;
// Gather and send relational files in each database if full backup is requested.
if self.full_backup {
for rel in self.timeline.list_rels(spcnode, dbnode, self.lsn)? {
self.add_rel(rel)?;
}
}
}
for xid in self.timeline.list_twophase_files(self.lsn)? {
self.add_twophase_file(xid)?;
}
fail_point!("basebackup-before-control-file", |_| {
bail!("failpoint basebackup-before-control-file")
});
// Generate pg_control and bootstrap WAL segment.
self.add_pgcontrol_file()?;
self.ar.finish()?;
self.finished = true;
debug!("all tarred up!");
Ok(())
}
fn add_rel(&mut self, tag: RelTag) -> anyhow::Result<()> {
let nblocks = self.timeline.get_rel_size(tag, self.lsn, false)?;
// Function that adds relation segment data to archive
let mut add_file = |segment_index, data: &Vec<u8>| -> anyhow::Result<()> {
let file_name = tag.to_segfile_name(segment_index as u32);
let header = new_tar_header(&file_name, data.len() as u64)?;
self.ar.append(&header, data.as_slice())?;
Ok(())
};
// If the relation is empty, create an empty file
if nblocks == 0 {
add_file(0, &vec![])?;
return Ok(());
}
// Add a file for each chunk of blocks (aka segment)
let chunks = (0..nblocks).chunks(RELSEG_SIZE as usize);
for (seg, blocks) in chunks.into_iter().enumerate() {
let mut segment_data: Vec<u8> = vec![];
for blknum in blocks {
let img = self
.timeline
.get_rel_page_at_lsn(tag, blknum, self.lsn, false)?;
segment_data.extend_from_slice(&img[..]);
}
add_file(seg, &segment_data)?;
}
Ok(())
}
//
// Generate SLRU segment files from repository.
//
fn add_slru_segment(&mut self, slru: SlruKind, segno: u32) -> anyhow::Result<()> {
let nblocks = self.timeline.get_slru_segment_size(slru, segno, self.lsn)?;
let mut slru_buf: Vec<u8> = Vec::with_capacity(nblocks as usize * BLCKSZ as usize);
for blknum in 0..nblocks {
let img = self
.timeline
.get_slru_page_at_lsn(slru, segno, blknum, self.lsn)?;
if slru == SlruKind::Clog {
ensure!(img.len() == BLCKSZ as usize || img.len() == BLCKSZ as usize + 8);
} else {
ensure!(img.len() == BLCKSZ as usize);
}
slru_buf.extend_from_slice(&img[..BLCKSZ as usize]);
}
let segname = format!("{}/{:>04X}", slru.to_str(), segno);
let header = new_tar_header(&segname, slru_buf.len() as u64)?;
self.ar.append(&header, slru_buf.as_slice())?;
trace!("Added to basebackup slru {} relsize {}", segname, nblocks);
Ok(())
}
//
// Include database/tablespace directories.
//
// Each directory contains a PG_VERSION file, and the default database
// directories also contain pg_filenode.map files.
//
fn add_dbdir(
&mut self,
spcnode: u32,
dbnode: u32,
has_relmap_file: bool,
) -> anyhow::Result<()> {
let relmap_img = if has_relmap_file {
let img = self.timeline.get_relmap_file(spcnode, dbnode, self.lsn)?;
ensure!(img.len() == 512);
Some(img)
} else {
None
};
if spcnode == GLOBALTABLESPACE_OID {
let pg_version_str = self.timeline.pg_version.to_string();
let header = new_tar_header("PG_VERSION", pg_version_str.len() as u64)?;
self.ar.append(&header, pg_version_str.as_bytes())?;
info!("timeline.pg_version {}", self.timeline.pg_version);
if let Some(img) = relmap_img {
// filenode map for global tablespace
let header = new_tar_header("global/pg_filenode.map", img.len() as u64)?;
self.ar.append(&header, &img[..])?;
} else {
warn!("global/pg_filenode.map is missing");
}
} else {
// User defined tablespaces are not supported. However, as
// a special case, if a tablespace/db directory is
// completely empty, we can leave it out altogether. This
// makes taking a base backup after the 'tablespace'
// regression test pass, because the test drops the
// created tablespaces after the tests.
//
// FIXME: this wouldn't be necessary, if we handled
// XLOG_TBLSPC_DROP records. But we probably should just
// throw an error on CREATE TABLESPACE in the first place.
if !has_relmap_file
&& self
.timeline
.list_rels(spcnode, dbnode, self.lsn)?
.is_empty()
{
return Ok(());
}
// User defined tablespaces are not supported
ensure!(spcnode == DEFAULTTABLESPACE_OID);
// Append dir path for each database
let path = format!("base/{}", dbnode);
let header = new_tar_header_dir(&path)?;
self.ar.append(&header, &mut io::empty())?;
if let Some(img) = relmap_img {
let dst_path = format!("base/{}/PG_VERSION", dbnode);
let pg_version_str = self.timeline.pg_version.to_string();
let header = new_tar_header(&dst_path, pg_version_str.len() as u64)?;
self.ar.append(&header, pg_version_str.as_bytes())?;
let relmap_path = format!("base/{}/pg_filenode.map", dbnode);
let header = new_tar_header(&relmap_path, img.len() as u64)?;
self.ar.append(&header, &img[..])?;
}
};
Ok(())
}
//
// Extract twophase state files
//
fn add_twophase_file(&mut self, xid: TransactionId) -> anyhow::Result<()> {
let img = self.timeline.get_twophase_file(xid, self.lsn)?;
let mut buf = BytesMut::new();
buf.extend_from_slice(&img[..]);
let crc = crc32c::crc32c(&img[..]);
buf.put_u32_le(crc);
let path = format!("pg_twophase/{:>08X}", xid);
let header = new_tar_header(&path, buf.len() as u64)?;
self.ar.append(&header, &buf[..])?;
Ok(())
}
//
// Add generated pg_control file and bootstrap WAL segment.
// Also send zenith.signal file with extra bootstrap data.
//
fn add_pgcontrol_file(&mut self) -> anyhow::Result<()> {
// add zenith.signal file
let mut zenith_signal = String::new();
if self.prev_record_lsn == Lsn(0) {
if self.lsn == self.timeline.get_ancestor_lsn() {
write!(zenith_signal, "PREV LSN: none")?;
} else {
write!(zenith_signal, "PREV LSN: invalid")?;
}
} else {
write!(zenith_signal, "PREV LSN: {}", self.prev_record_lsn)?;
}
self.ar.append(
&new_tar_header("zenith.signal", zenith_signal.len() as u64)?,
zenith_signal.as_bytes(),
)?;
let checkpoint_bytes = self
.timeline
.get_checkpoint(self.lsn)
.context("failed to get checkpoint bytes")?;
let pg_control_bytes = self
.timeline
.get_control_file(self.lsn)
.context("failed get control bytes")?;
let (pg_control_bytes, system_identifier) = postgres_ffi::generate_pg_control(
&pg_control_bytes,
&checkpoint_bytes,
self.lsn,
self.timeline.pg_version,
)?;
//send pg_control
let header = new_tar_header("global/pg_control", pg_control_bytes.len() as u64)?;
self.ar.append(&header, &pg_control_bytes[..])?;
//send wal segment
let segno = self.lsn.segment_number(WAL_SEGMENT_SIZE);
let wal_file_name = XLogFileName(PG_TLI, segno, WAL_SEGMENT_SIZE);
let wal_file_path = format!("pg_wal/{}", wal_file_name);
let header = new_tar_header(&wal_file_path, WAL_SEGMENT_SIZE as u64)?;
let wal_seg =
postgres_ffi::generate_wal_segment(segno, system_identifier, self.timeline.pg_version)
.map_err(|e| anyhow!(e).context("Failed generating wal segment"))?;
ensure!(wal_seg.len() == WAL_SEGMENT_SIZE);
self.ar.append(&header, &wal_seg[..])?;
Ok(())
}
}
impl<'a, W> Drop for Basebackup<'a, W>
where
W: Write,
{
/// If the basebackup was not finished, prevent the Archive::drop() from
/// writing the end-of-archive marker.
fn drop(&mut self) {
if !self.finished {
self.ar.get_mut().abort();
}
}
}
//
// Create new tarball entry header
//
fn new_tar_header(path: &str, size: u64) -> anyhow::Result<Header> {
let mut header = Header::new_gnu();
header.set_size(size);
header.set_path(path)?;
header.set_mode(0b110000000); // -rw-------
header.set_mtime(
// use currenttime as last modified time
SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap()
.as_secs(),
);
header.set_cksum();
Ok(header)
}
fn new_tar_header_dir(path: &str) -> anyhow::Result<Header> {
let mut header = Header::new_gnu();
header.set_size(0);
header.set_path(path)?;
header.set_mode(0o755); // -rw-------
header.set_entry_type(EntryType::dir());
header.set_mtime(
// use currenttime as last modified time
SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap()
.as_secs(),
);
header.set_cksum();
Ok(header)
}
/// A wrapper that passes through all data to the underlying Write,
/// until abort() is called.
///
/// tar::Builder has an annoying habit of finishing the archive with
/// a valid tar end-of-archive marker (two 512-byte sectors of zeros),
/// even if an error occurs and we don't finish building the archive.
/// We'd rather abort writing the tarball immediately than construct
/// a seemingly valid but incomplete archive. This wrapper allows us
/// to swallow the end-of-archive marker that Builder::drop() emits,
/// without writing it to the underlying sink.
///
struct AbortableWrite<W> {
w: W,
aborted: bool,
}
impl<W> AbortableWrite<W> {
pub fn new(w: W) -> Self {
AbortableWrite { w, aborted: false }
}
pub fn abort(&mut self) {
self.aborted = true;
}
}
impl<W> Write for AbortableWrite<W>
where
W: Write,
{
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
if self.aborted {
Ok(data.len())
} else {
self.w.write(data)
}
}
fn flush(&mut self) -> io::Result<()> {
if self.aborted {
Ok(())
} else {
self.w.flush()
}
}
}