Files
neon/test_runner/performance/test_sharded_ingest.py
Erik Grinaker 0058eb09df test_runner/performance: add sharded ingest benchmark (#9591)
Adds a Python benchmark for sharded ingestion. This ingests 7 GB of WAL
(100M rows) into a Safekeeper and fans out to 10 shards running on 10
different pageservers. The ingest volume and duration is recorded.
2024-11-02 16:42:10 +00:00

72 lines
2.8 KiB
Python

from __future__ import annotations
from contextlib import closing
import pytest
from fixtures.benchmark_fixture import MetricReport, NeonBenchmarker
from fixtures.common_types import Lsn, TenantShardId
from fixtures.log_helper import log
from fixtures.neon_fixtures import (
NeonEnvBuilder,
tenant_get_shards,
wait_for_last_flush_lsn,
)
@pytest.mark.timeout(600)
@pytest.mark.parametrize("shard_count", [1, 8, 32])
def test_sharded_ingest(
neon_env_builder: NeonEnvBuilder,
zenbenchmark: NeonBenchmarker,
shard_count: int,
):
"""
Benchmarks sharded ingestion throughput, by ingesting a large amount of WAL into a Safekeeper
and fanning out to a large number of shards on dedicated Pageservers. Comparing the base case
(shard_count=1) to the sharded case indicates the overhead of sharding.
"""
ROW_COUNT = 100_000_000 # about 7 GB of WAL
neon_env_builder.num_pageservers = shard_count
env = neon_env_builder.init_start()
# Create a sharded tenant and timeline, and migrate it to the respective pageservers. Ensure
# the storage controller doesn't mess with shard placements.
#
# TODO: there should be a way to disable storage controller background reconciliations.
# Currently, disabling reconciliation also disables foreground operations.
tenant_id, timeline_id = env.create_tenant(shard_count=shard_count)
for shard_number in range(0, shard_count):
tenant_shard_id = TenantShardId(tenant_id, shard_number, shard_count)
pageserver_id = shard_number + 1
env.storage_controller.tenant_shard_migrate(tenant_shard_id, pageserver_id)
shards = tenant_get_shards(env, tenant_id)
env.storage_controller.reconcile_until_idle()
assert tenant_get_shards(env, tenant_id) == shards, "shards moved"
# Start the endpoint.
endpoint = env.endpoints.create_start("main", tenant_id=tenant_id)
start_lsn = Lsn(endpoint.safe_psql("select pg_current_wal_lsn()")[0][0])
# Ingest data and measure WAL volume and duration.
with closing(endpoint.connect()) as conn:
with conn.cursor() as cur:
log.info("Ingesting data")
cur.execute("set statement_timeout = 0")
cur.execute("create table huge (i int, j int)")
with zenbenchmark.record_duration("pageserver_ingest"):
with zenbenchmark.record_duration("wal_ingest"):
cur.execute(f"insert into huge values (generate_series(1, {ROW_COUNT}), 0)")
wait_for_last_flush_lsn(env, endpoint, tenant_id, timeline_id)
end_lsn = Lsn(endpoint.safe_psql("select pg_current_wal_lsn()")[0][0])
wal_written_mb = round((end_lsn - start_lsn) / (1024 * 1024))
zenbenchmark.record("wal_written", wal_written_mb, "MB", MetricReport.TEST_PARAM)
assert tenant_get_shards(env, tenant_id) == shards, "shards moved"