Files
neon/pageserver/src/virtual_file.rs
2023-09-07 19:25:56 +02:00

886 lines
32 KiB
Rust

//!
//! VirtualFile is like a normal File, but it's not bound directly to
//! a file descriptor. Instead, the file is opened when it's read from,
//! and if too many files are open globally in the system, least-recently
//! used ones are closed.
//!
//! To track which files have been recently used, we use the clock algorithm
//! with a 'recently_used' flag on each slot.
//!
//! This is similar to PostgreSQL's virtual file descriptor facility in
//! src/backend/storage/file/fd.c
//!
use crate::metrics::{STORAGE_IO_SIZE, STORAGE_IO_TIME};
use crate::tenant::TENANTS_SEGMENT_NAME;
use once_cell::sync::OnceCell;
use std::fs::{self, File, OpenOptions};
use std::io::{Error, ErrorKind, Seek, SeekFrom};
use std::os::unix::fs::FileExt;
use std::path::{Path, PathBuf};
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::{RwLock, RwLockWriteGuard};
///
/// A virtual file descriptor. You can use this just like std::fs::File, but internally
/// the underlying file is closed if the system is low on file descriptors,
/// and re-opened when it's accessed again.
///
/// Like with std::fs::File, multiple threads can read/write the file concurrently,
/// holding just a shared reference the same VirtualFile, using the read_at() / write_at()
/// functions from the FileExt trait. But the functions from the Read/Write/Seek traits
/// require a mutable reference, because they modify the "current position".
///
/// Each VirtualFile has a physical file descriptor in the global OPEN_FILES array, at the
/// slot that 'handle points to, if the underlying file is currently open. If it's not
/// currently open, the 'handle' can still point to the slot where it was last kept. The
/// 'tag' field is used to detect whether the handle still is valid or not.
///
#[derive(Debug)]
pub struct VirtualFile {
/// Lazy handle to the global file descriptor cache. The slot that this points to
/// might contain our File, or it may be empty, or it may contain a File that
/// belongs to a different VirtualFile.
handle: RwLock<SlotHandle>,
/// Current file position
pos: u64,
/// File path and options to use to open it.
///
/// Note: this only contains the options needed to re-open it. For example,
/// if a new file is created, we only pass the create flag when it's initially
/// opened, in the VirtualFile::create() function, and strip the flag before
/// storing it here.
pub path: PathBuf,
open_options: OpenOptions,
// These are strings becase we only use them for metrics, and those expect strings.
// It makes no sense for us to constantly turn the `TimelineId` and `TenantId` into
// strings.
tenant_id: String,
timeline_id: String,
}
#[derive(Debug, PartialEq, Clone, Copy)]
struct SlotHandle {
/// Index into OPEN_FILES.slots
index: usize,
/// Value of 'tag' in the slot. If slot's tag doesn't match, then the slot has
/// been recycled and no longer contains the FD for this virtual file.
tag: u64,
}
/// OPEN_FILES is the global array that holds the physical file descriptors that
/// are currently open. Each slot in the array is protected by a separate lock,
/// so that different files can be accessed independently. The lock must be held
/// in write mode to replace the slot with a different file, but a read mode
/// is enough to operate on the file, whether you're reading or writing to it.
///
/// OPEN_FILES starts in uninitialized state, and it's initialized by
/// the virtual_file::init() function. It must be called exactly once at page
/// server startup.
static OPEN_FILES: OnceCell<OpenFiles> = OnceCell::new();
struct OpenFiles {
slots: &'static [Slot],
/// clock arm for the clock algorithm
next: AtomicUsize,
}
struct Slot {
inner: RwLock<SlotInner>,
/// has this file been used since last clock sweep?
recently_used: AtomicBool,
}
struct SlotInner {
/// Counter that's incremented every time a different file is stored here.
/// To avoid the ABA problem.
tag: u64,
/// the underlying file
file: Option<File>,
}
impl OpenFiles {
/// Find a slot to use, evicting an existing file descriptor if needed.
///
/// On return, we hold a lock on the slot, and its 'tag' has been updated
/// recently_used has been set. It's all ready for reuse.
fn find_victim_slot(&self) -> (SlotHandle, RwLockWriteGuard<SlotInner>) {
//
// Run the clock algorithm to find a slot to replace.
//
let num_slots = self.slots.len();
let mut retries = 0;
let mut slot;
let mut slot_guard;
let index;
loop {
let next = self.next.fetch_add(1, Ordering::AcqRel) % num_slots;
slot = &self.slots[next];
// If the recently_used flag on this slot is set, continue the clock
// sweep. Otherwise try to use this slot. If we cannot acquire the
// lock, also continue the clock sweep.
//
// We only continue in this manner for a while, though. If we loop
// through the array twice without finding a victim, just pick the
// next slot and wait until we can reuse it. This way, we avoid
// spinning in the extreme case that all the slots are busy with an
// I/O operation.
if retries < num_slots * 2 {
if !slot.recently_used.swap(false, Ordering::Release) {
if let Ok(guard) = slot.inner.try_write() {
slot_guard = guard;
index = next;
break;
}
}
retries += 1;
} else {
slot_guard = slot.inner.write().unwrap();
index = next;
break;
}
}
//
// We now have the victim slot locked. If it was in use previously, close the
// old file.
//
if let Some(old_file) = slot_guard.file.take() {
// the normal path of dropping VirtualFile uses "close", use "close-by-replace" here to
// distinguish the two.
STORAGE_IO_TIME
.with_label_values(&["close-by-replace"])
.observe_closure_duration(|| drop(old_file));
}
// Prepare the slot for reuse and return it
slot_guard.tag += 1;
slot.recently_used.store(true, Ordering::Relaxed);
(
SlotHandle {
index,
tag: slot_guard.tag,
},
slot_guard,
)
}
}
#[derive(Debug, thiserror::Error)]
pub enum CrashsafeOverwriteError {
#[error("final path has no parent dir")]
FinalPathHasNoParentDir,
#[error("remove tempfile: {0}")]
RemovePreviousTempfile(#[source] std::io::Error),
#[error("create tempfile: {0}")]
CreateTempfile(#[source] std::io::Error),
#[error("write tempfile: {0}")]
WriteContents(#[source] std::io::Error),
#[error("sync tempfile: {0}")]
SyncTempfile(#[source] std::io::Error),
#[error("rename tempfile to final path: {0}")]
RenameTempfileToFinalPath(#[source] std::io::Error),
#[error("open final path parent dir: {0}")]
OpenFinalPathParentDir(#[source] std::io::Error),
#[error("sync final path parent dir: {0}")]
SyncFinalPathParentDir(#[source] std::io::Error),
}
impl CrashsafeOverwriteError {
/// Returns true iff the new contents are durably stored.
pub fn are_new_contents_durable(&self) -> bool {
match self {
Self::FinalPathHasNoParentDir => false,
Self::RemovePreviousTempfile(_) => false,
Self::CreateTempfile(_) => false,
Self::WriteContents(_) => false,
Self::SyncTempfile(_) => false,
Self::RenameTempfileToFinalPath(_) => false,
Self::OpenFinalPathParentDir(_) => false,
Self::SyncFinalPathParentDir(_) => true,
}
}
}
impl VirtualFile {
/// Open a file in read-only mode. Like File::open.
pub async fn open(path: &Path) -> Result<VirtualFile, std::io::Error> {
Self::open_with_options(path, OpenOptions::new().read(true)).await
}
/// Create a new file for writing. If the file exists, it will be truncated.
/// Like File::create.
pub async fn create(path: &Path) -> Result<VirtualFile, std::io::Error> {
Self::open_with_options(
path,
OpenOptions::new().write(true).create(true).truncate(true),
)
.await
}
/// Open a file with given options.
///
/// Note: If any custom flags were set in 'open_options' through OpenOptionsExt,
/// they will be applied also when the file is subsequently re-opened, not only
/// on the first time. Make sure that's sane!
pub async fn open_with_options(
path: &Path,
open_options: &OpenOptions,
) -> Result<VirtualFile, std::io::Error> {
let path_str = path.to_string_lossy();
let parts = path_str.split('/').collect::<Vec<&str>>();
let tenant_id;
let timeline_id;
if parts.len() > 5 && parts[parts.len() - 5] == TENANTS_SEGMENT_NAME {
tenant_id = parts[parts.len() - 4].to_string();
timeline_id = parts[parts.len() - 2].to_string();
} else {
tenant_id = "*".to_string();
timeline_id = "*".to_string();
}
let (handle, mut slot_guard) = get_open_files().find_victim_slot();
let file = STORAGE_IO_TIME
.with_label_values(&["open"])
.observe_closure_duration(|| open_options.open(path))?;
// Strip all options other than read and write.
//
// It would perhaps be nicer to check just for the read and write flags
// explicitly, but OpenOptions doesn't contain any functions to read flags,
// only to set them.
let mut reopen_options = open_options.clone();
reopen_options.create(false);
reopen_options.create_new(false);
reopen_options.truncate(false);
let vfile = VirtualFile {
handle: RwLock::new(handle),
pos: 0,
path: path.to_path_buf(),
open_options: reopen_options,
tenant_id,
timeline_id,
};
slot_guard.file.replace(file);
Ok(vfile)
}
/// Writes a file to the specified `final_path` in a crash safe fasion
///
/// The file is first written to the specified tmp_path, and in a second
/// step, the tmp path is renamed to the final path. As renames are
/// atomic, a crash during the write operation will never leave behind a
/// partially written file.
pub async fn crashsafe_overwrite(
final_path: &Path,
tmp_path: &Path,
content: &[u8],
) -> Result<(), CrashsafeOverwriteError> {
let Some(final_path_parent) = final_path.parent() else {
return Err(CrashsafeOverwriteError::FinalPathHasNoParentDir);
};
match std::fs::remove_file(tmp_path) {
Ok(()) => {}
Err(e) if e.kind() == std::io::ErrorKind::NotFound => {}
Err(e) => return Err(CrashsafeOverwriteError::RemovePreviousTempfile(e)),
}
let mut file = Self::open_with_options(
tmp_path,
OpenOptions::new()
.write(true)
// Use `create_new` so that, if we race with ourselves or something else,
// we bail out instead of causing damage.
.create_new(true),
)
.await
.map_err(CrashsafeOverwriteError::CreateTempfile)?;
file.write_all(content)
.await
.map_err(CrashsafeOverwriteError::WriteContents)?;
file.sync_all()
.await
.map_err(CrashsafeOverwriteError::SyncTempfile)?;
drop(file); // before the rename, that's important!
// renames are atomic
std::fs::rename(tmp_path, final_path)
.map_err(CrashsafeOverwriteError::RenameTempfileToFinalPath)?;
// Only open final path parent dirfd now, so that this operation only
// ever holds one VirtualFile fd at a time. That's important because
// the current `find_victim_slot` impl might pick the same slot for both
// VirtualFile., and it eventually does a blocking write lock instead of
// try_lock.
let final_parent_dirfd =
Self::open_with_options(final_path_parent, OpenOptions::new().read(true))
.await
.map_err(CrashsafeOverwriteError::OpenFinalPathParentDir)?;
final_parent_dirfd
.sync_all()
.await
.map_err(CrashsafeOverwriteError::SyncFinalPathParentDir)?;
Ok(())
}
/// Call File::sync_all() on the underlying File.
pub async fn sync_all(&self) -> Result<(), Error> {
self.with_file("fsync", |file| file.sync_all()).await?
}
pub async fn metadata(&self) -> Result<fs::Metadata, Error> {
self.with_file("metadata", |file| file.metadata()).await?
}
/// Helper function that looks up the underlying File for this VirtualFile,
/// opening it and evicting some other File if necessary. It calls 'func'
/// with the physical File.
async fn with_file<F, R>(&self, op: &str, mut func: F) -> Result<R, Error>
where
F: FnMut(&File) -> R,
{
let open_files = get_open_files();
let mut handle_guard = {
// Read the cached slot handle, and see if the slot that it points to still
// contains our File.
//
// We only need to hold the handle lock while we read the current handle. If
// another thread closes the file and recycles the slot for a different file,
// we will notice that the handle we read is no longer valid and retry.
let mut handle = *self.handle.read().unwrap();
loop {
// Check if the slot contains our File
{
let slot = &open_files.slots[handle.index];
let slot_guard = slot.inner.read().unwrap();
if slot_guard.tag == handle.tag {
if let Some(file) = &slot_guard.file {
// Found a cached file descriptor.
slot.recently_used.store(true, Ordering::Relaxed);
return Ok(STORAGE_IO_TIME
.with_label_values(&[op])
.observe_closure_duration(|| func(file)));
}
}
}
// The slot didn't contain our File. We will have to open it ourselves,
// but before that, grab a write lock on handle in the VirtualFile, so
// that no other thread will try to concurrently open the same file.
let handle_guard = self.handle.write().unwrap();
// If another thread changed the handle while we were not holding the lock,
// then the handle might now be valid again. Loop back to retry.
if *handle_guard != handle {
handle = *handle_guard;
continue;
}
break handle_guard;
}
};
// We need to open the file ourselves. The handle in the VirtualFile is
// now locked in write-mode. Find a free slot to put it in.
let (handle, mut slot_guard) = open_files.find_victim_slot();
// Open the physical file
let file = STORAGE_IO_TIME
.with_label_values(&["open"])
.observe_closure_duration(|| self.open_options.open(&self.path))?;
// Perform the requested operation on it
let result = STORAGE_IO_TIME
.with_label_values(&[op])
.observe_closure_duration(|| func(&file));
// Store the File in the slot and update the handle in the VirtualFile
// to point to it.
slot_guard.file.replace(file);
*handle_guard = handle;
Ok(result)
}
pub fn remove(self) {
let path = self.path.clone();
drop(self);
std::fs::remove_file(path).expect("failed to remove the virtual file");
}
pub async fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error> {
match pos {
SeekFrom::Start(offset) => {
self.pos = offset;
}
SeekFrom::End(offset) => {
self.pos = self
.with_file("seek", |mut file| file.seek(SeekFrom::End(offset)))
.await??
}
SeekFrom::Current(offset) => {
let pos = self.pos as i128 + offset as i128;
if pos < 0 {
return Err(Error::new(
ErrorKind::InvalidInput,
"offset would be negative",
));
}
if pos > u64::MAX as i128 {
return Err(Error::new(ErrorKind::InvalidInput, "offset overflow"));
}
self.pos = pos as u64;
}
}
Ok(self.pos)
}
// Copied from https://doc.rust-lang.org/1.72.0/src/std/os/unix/fs.rs.html#117-135
pub async fn read_exact_at(&self, mut buf: &mut [u8], mut offset: u64) -> Result<(), Error> {
while !buf.is_empty() {
match self.read_at(buf, offset).await {
Ok(0) => {
return Err(Error::new(
std::io::ErrorKind::UnexpectedEof,
"failed to fill whole buffer",
))
}
Ok(n) => {
buf = &mut buf[n..];
offset += n as u64;
}
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
// Copied from https://doc.rust-lang.org/1.72.0/src/std/os/unix/fs.rs.html#219-235
pub async fn write_all_at(&self, mut buf: &[u8], mut offset: u64) -> Result<(), Error> {
while !buf.is_empty() {
match self.write_at(buf, offset).await {
Ok(0) => {
return Err(Error::new(
std::io::ErrorKind::WriteZero,
"failed to write whole buffer",
));
}
Ok(n) => {
buf = &buf[n..];
offset += n as u64;
}
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
pub async fn write_all(&mut self, mut buf: &[u8]) -> Result<(), Error> {
while !buf.is_empty() {
match self.write(buf).await {
Ok(0) => {
return Err(Error::new(
std::io::ErrorKind::WriteZero,
"failed to write whole buffer",
));
}
Ok(n) => {
buf = &buf[n..];
}
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
async fn write(&mut self, buf: &[u8]) -> Result<usize, std::io::Error> {
let pos = self.pos;
let n = self.write_at(buf, pos).await?;
self.pos += n as u64;
Ok(n)
}
pub async fn read_at(&self, buf: &mut [u8], offset: u64) -> Result<usize, Error> {
let result = self
.with_file("read", |file| file.read_at(buf, offset))
.await?;
if let Ok(size) = result {
STORAGE_IO_SIZE
.with_label_values(&["read", &self.tenant_id, &self.timeline_id])
.add(size as i64);
}
result
}
async fn write_at(&self, buf: &[u8], offset: u64) -> Result<usize, Error> {
let result = self
.with_file("write", |file| file.write_at(buf, offset))
.await?;
if let Ok(size) = result {
STORAGE_IO_SIZE
.with_label_values(&["write", &self.tenant_id, &self.timeline_id])
.add(size as i64);
}
result
}
}
#[cfg(test)]
impl VirtualFile {
pub(crate) async fn read_blk(
&self,
blknum: u32,
) -> Result<crate::tenant::block_io::BlockLease<'_>, std::io::Error> {
use crate::page_cache::PAGE_SZ;
let mut buf = [0; PAGE_SZ];
self.read_exact_at(&mut buf, blknum as u64 * (PAGE_SZ as u64))
.await?;
Ok(std::sync::Arc::new(buf).into())
}
async fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<(), Error> {
loop {
let mut tmp = [0; 128];
match self.read_at(&mut tmp, self.pos).await {
Ok(0) => return Ok(()),
Ok(n) => {
self.pos += n as u64;
buf.extend_from_slice(&tmp[..n]);
}
Err(ref e) if e.kind() == std::io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
}
}
impl Drop for VirtualFile {
/// If a VirtualFile is dropped, close the underlying file if it was open.
fn drop(&mut self) {
let handle = self.handle.get_mut().unwrap();
// We could check with a read-lock first, to avoid waiting on an
// unrelated I/O.
let slot = &get_open_files().slots[handle.index];
let mut slot_guard = slot.inner.write().unwrap();
if slot_guard.tag == handle.tag {
slot.recently_used.store(false, Ordering::Relaxed);
// there is also operation "close-by-replace" for closes done on eviction for
// comparison.
STORAGE_IO_TIME
.with_label_values(&["close"])
.observe_closure_duration(|| drop(slot_guard.file.take()));
}
}
}
impl OpenFiles {
fn new(num_slots: usize) -> OpenFiles {
let mut slots = Box::new(Vec::with_capacity(num_slots));
for _ in 0..num_slots {
let slot = Slot {
recently_used: AtomicBool::new(false),
inner: RwLock::new(SlotInner { tag: 0, file: None }),
};
slots.push(slot);
}
OpenFiles {
next: AtomicUsize::new(0),
slots: Box::leak(slots),
}
}
}
///
/// Initialize the virtual file module. This must be called once at page
/// server startup.
///
pub fn init(num_slots: usize) {
if OPEN_FILES.set(OpenFiles::new(num_slots)).is_err() {
panic!("virtual_file::init called twice");
}
}
const TEST_MAX_FILE_DESCRIPTORS: usize = 10;
// Get a handle to the global slots array.
fn get_open_files() -> &'static OpenFiles {
//
// In unit tests, page server startup doesn't happen and no one calls
// virtual_file::init(). Initialize it here, with a small array.
//
// This applies to the virtual file tests below, but all other unit
// tests too, so the virtual file facility is always usable in
// unit tests.
//
if cfg!(test) {
OPEN_FILES.get_or_init(|| OpenFiles::new(TEST_MAX_FILE_DESCRIPTORS))
} else {
OPEN_FILES.get().expect("virtual_file::init not called yet")
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::seq::SliceRandom;
use rand::thread_rng;
use rand::Rng;
use std::future::Future;
use std::io::Write;
use std::sync::Arc;
enum MaybeVirtualFile {
VirtualFile(VirtualFile),
File(File),
}
impl MaybeVirtualFile {
async fn read_exact_at(&self, buf: &mut [u8], offset: u64) -> Result<(), Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => file.read_exact_at(buf, offset).await,
MaybeVirtualFile::File(file) => file.read_exact_at(buf, offset),
}
}
async fn write_all_at(&self, buf: &[u8], offset: u64) -> Result<(), Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => file.write_all_at(buf, offset).await,
MaybeVirtualFile::File(file) => file.write_all_at(buf, offset),
}
}
async fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => file.seek(pos).await,
MaybeVirtualFile::File(file) => file.seek(pos),
}
}
async fn write_all(&mut self, buf: &[u8]) -> Result<(), Error> {
match self {
MaybeVirtualFile::VirtualFile(file) => file.write_all(buf).await,
MaybeVirtualFile::File(file) => file.write_all(buf),
}
}
// Helper function to slurp contents of a file, starting at the current position,
// into a string
async fn read_string(&mut self) -> Result<String, Error> {
use std::io::Read;
let mut buf = String::new();
match self {
MaybeVirtualFile::VirtualFile(file) => {
let mut buf = Vec::new();
file.read_to_end(&mut buf).await?;
return Ok(String::from_utf8(buf).unwrap());
}
MaybeVirtualFile::File(file) => {
file.read_to_string(&mut buf)?;
}
}
Ok(buf)
}
// Helper function to slurp a portion of a file into a string
async fn read_string_at(&mut self, pos: u64, len: usize) -> Result<String, Error> {
let mut buf = vec![0; len];
self.read_exact_at(&mut buf, pos).await?;
Ok(String::from_utf8(buf).unwrap())
}
}
#[tokio::test]
async fn test_virtual_files() -> Result<(), Error> {
// The real work is done in the test_files() helper function. This
// allows us to run the same set of tests against a native File, and
// VirtualFile. We trust the native Files and wouldn't need to test them,
// but this allows us to verify that the operations return the same
// results with VirtualFiles as with native Files. (Except that with
// native files, you will run out of file descriptors if the ulimit
// is low enough.)
test_files("virtual_files", |path, open_options| async move {
let vf = VirtualFile::open_with_options(&path, &open_options).await?;
Ok(MaybeVirtualFile::VirtualFile(vf))
})
.await
}
#[tokio::test]
async fn test_physical_files() -> Result<(), Error> {
test_files("physical_files", |path, open_options| async move {
Ok(MaybeVirtualFile::File(open_options.open(path)?))
})
.await
}
async fn test_files<OF, FT>(testname: &str, openfunc: OF) -> Result<(), Error>
where
OF: Fn(PathBuf, OpenOptions) -> FT,
FT: Future<Output = Result<MaybeVirtualFile, std::io::Error>>,
{
let testdir = crate::config::PageServerConf::test_repo_dir(testname);
std::fs::create_dir_all(&testdir)?;
let path_a = testdir.join("file_a");
let mut file_a = openfunc(
path_a.clone(),
OpenOptions::new()
.write(true)
.create(true)
.truncate(true)
.to_owned(),
)
.await?;
file_a.write_all(b"foobar").await?;
// cannot read from a file opened in write-only mode
let _ = file_a.read_string().await.unwrap_err();
// Close the file and re-open for reading
let mut file_a = openfunc(path_a, OpenOptions::new().read(true).to_owned()).await?;
// cannot write to a file opened in read-only mode
let _ = file_a.write_all(b"bar").await.unwrap_err();
// Try simple read
assert_eq!("foobar", file_a.read_string().await?);
// It's positioned at the EOF now.
assert_eq!("", file_a.read_string().await?);
// Test seeks.
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
assert_eq!("oobar", file_a.read_string().await?);
assert_eq!(file_a.seek(SeekFrom::End(-2)).await?, 4);
assert_eq!("ar", file_a.read_string().await?);
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
assert_eq!(file_a.seek(SeekFrom::Current(2)).await?, 3);
assert_eq!("bar", file_a.read_string().await?);
assert_eq!(file_a.seek(SeekFrom::Current(-5)).await?, 1);
assert_eq!("oobar", file_a.read_string().await?);
// Test erroneous seeks to before byte 0
file_a.seek(SeekFrom::End(-7)).await.unwrap_err();
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
file_a.seek(SeekFrom::Current(-2)).await.unwrap_err();
// the erroneous seek should have left the position unchanged
assert_eq!("oobar", file_a.read_string().await?);
// Create another test file, and try FileExt functions on it.
let path_b = testdir.join("file_b");
let mut file_b = openfunc(
path_b.clone(),
OpenOptions::new()
.read(true)
.write(true)
.create(true)
.truncate(true)
.to_owned(),
)
.await?;
file_b.write_all_at(b"BAR", 3).await?;
file_b.write_all_at(b"FOO", 0).await?;
assert_eq!(file_b.read_string_at(2, 3).await?, "OBA");
// Open a lot of files, enough to cause some evictions. (Or to be precise,
// open the same file many times. The effect is the same.)
//
// leave file_a positioned at offset 1 before we start
assert_eq!(file_a.seek(SeekFrom::Start(1)).await?, 1);
let mut vfiles = Vec::new();
for _ in 0..100 {
let mut vfile =
openfunc(path_b.clone(), OpenOptions::new().read(true).to_owned()).await?;
assert_eq!("FOOBAR", vfile.read_string().await?);
vfiles.push(vfile);
}
// make sure we opened enough files to definitely cause evictions.
assert!(vfiles.len() > TEST_MAX_FILE_DESCRIPTORS * 2);
// The underlying file descriptor for 'file_a' should be closed now. Try to read
// from it again. We left the file positioned at offset 1 above.
assert_eq!("oobar", file_a.read_string().await?);
// Check that all the other FDs still work too. Use them in random order for
// good measure.
vfiles.as_mut_slice().shuffle(&mut thread_rng());
for vfile in vfiles.iter_mut() {
assert_eq!("OOBAR", vfile.read_string_at(1, 5).await?);
}
Ok(())
}
/// Test using VirtualFiles from many threads concurrently. This tests both using
/// a lot of VirtualFiles concurrently, causing evictions, and also using the same
/// VirtualFile from multiple threads concurrently.
#[tokio::test]
async fn test_vfile_concurrency() -> Result<(), Error> {
const SIZE: usize = 8 * 1024;
const VIRTUAL_FILES: usize = 100;
const THREADS: usize = 100;
const SAMPLE: [u8; SIZE] = [0xADu8; SIZE];
let testdir = crate::config::PageServerConf::test_repo_dir("vfile_concurrency");
std::fs::create_dir_all(&testdir)?;
// Create a test file.
let test_file_path = testdir.join("concurrency_test_file");
{
let file = File::create(&test_file_path)?;
file.write_all_at(&SAMPLE, 0)?;
}
// Open the file many times.
let mut files = Vec::new();
for _ in 0..VIRTUAL_FILES {
let f = VirtualFile::open_with_options(&test_file_path, OpenOptions::new().read(true))
.await?;
files.push(f);
}
let files = Arc::new(files);
// Launch many threads, and use the virtual files concurrently in random order.
let rt = tokio::runtime::Builder::new_multi_thread()
.worker_threads(THREADS)
.thread_name("test_vfile_concurrency thread")
.build()
.unwrap();
let mut hdls = Vec::new();
for _threadno in 0..THREADS {
let files = files.clone();
let hdl = rt.spawn(async move {
let mut buf = [0u8; SIZE];
let mut rng = rand::rngs::OsRng;
for _ in 1..1000 {
let f = &files[rng.gen_range(0..files.len())];
f.read_exact_at(&mut buf, 0).await.unwrap();
assert!(buf == SAMPLE);
}
});
hdls.push(hdl);
}
for hdl in hdls {
hdl.await?;
}
std::mem::forget(rt);
Ok(())
}
}