Files
neon/test_runner/performance/test_ingest_insert_bulk.py
Erik Grinaker 14c4fae64a test_runner/performance: add improved bulk insert benchmark (#9812)
Adds an improved bulk insert benchmark, including S3 uploads.

Touches #9789.
2024-12-06 15:17:15 +00:00

143 lines
6.0 KiB
Python

from __future__ import annotations
import random
from concurrent.futures import ThreadPoolExecutor
import pytest
from fixtures.benchmark_fixture import MetricReport, NeonBenchmarker
from fixtures.common_types import Lsn
from fixtures.log_helper import log
from fixtures.neon_fixtures import (
NeonEnvBuilder,
wait_for_last_flush_lsn,
)
from fixtures.pageserver.utils import (
wait_for_last_record_lsn,
wait_for_upload,
wait_for_upload_queue_empty,
)
from fixtures.remote_storage import s3_storage
@pytest.mark.timeout(900)
@pytest.mark.parametrize("size", [8, 1024, 8192])
@pytest.mark.parametrize("s3", [True, False], ids=["s3", "local"])
@pytest.mark.parametrize("backpressure", [True, False], ids=["backpressure", "nobackpressure"])
@pytest.mark.parametrize("fsync", [True, False], ids=["fsync", "nofsync"])
def test_ingest_insert_bulk(
request: pytest.FixtureRequest,
neon_env_builder: NeonEnvBuilder,
zenbenchmark: NeonBenchmarker,
fsync: bool,
backpressure: bool,
s3: bool,
size: int,
):
"""
Benchmarks ingestion of 5 GB of sequential insert WAL. Measures ingestion and S3 upload
separately. Also does a Safekeeper→Pageserver re-ingestion to measure Pageserver ingestion in
isolation.
"""
CONCURRENCY = 1 # 1 is optimal without fsync or backpressure
VOLUME = 5 * 1024**3
rows = VOLUME // (size + 64) # +64 roughly accounts for per-row WAL overhead
neon_env_builder.safekeepers_enable_fsync = fsync
if s3:
neon_env_builder.enable_pageserver_remote_storage(s3_storage())
# NB: don't use S3 for Safekeeper. It doesn't affect throughput (no backpressure), but it
# would compete with Pageserver for bandwidth.
# neon_env_builder.enable_safekeeper_remote_storage(s3_storage())
neon_env_builder.disable_scrub_on_exit() # immediate shutdown may leave stray layers
env = neon_env_builder.init_start()
endpoint = env.endpoints.create_start(
"main",
config_lines=[
f"fsync = {fsync}",
"max_replication_apply_lag = 0",
f"max_replication_flush_lag = {'10GB' if backpressure else '0'}",
# NB: neon_local defaults to 15MB, which is too slow -- production uses 500MB.
f"max_replication_write_lag = {'500MB' if backpressure else '0'}",
],
)
endpoint.safe_psql("create extension neon")
# Wait for the timeline to be propagated to the pageserver.
wait_for_last_flush_lsn(env, endpoint, env.initial_tenant, env.initial_timeline)
# Ingest rows.
log.info("Ingesting data")
start_lsn = Lsn(endpoint.safe_psql("select pg_current_wal_lsn()")[0][0])
def insert_rows(endpoint, table, count, value):
with endpoint.connect().cursor() as cur:
cur.execute("set statement_timeout = 0")
cur.execute(f"create table {table} (id int, data bytea)")
cur.execute(f"insert into {table} values (generate_series(1, {count}), %s)", (value,))
with zenbenchmark.record_duration("upload"):
with zenbenchmark.record_duration("ingest"):
with ThreadPoolExecutor(max_workers=CONCURRENCY) as pool:
for i in range(CONCURRENCY):
# Write a random value for all rows. This is sufficient to prevent compression,
# e.g. in TOAST. Randomly generating every row is too slow.
value = random.randbytes(size)
worker_rows = rows / CONCURRENCY
pool.submit(insert_rows, endpoint, f"table{i}", worker_rows, value)
end_lsn = Lsn(endpoint.safe_psql("select pg_current_wal_lsn()")[0][0])
# Wait for pageserver to ingest the WAL.
client = env.pageserver.http_client()
wait_for_last_record_lsn(client, env.initial_tenant, env.initial_timeline, end_lsn)
# Wait for pageserver S3 upload. Checkpoint to flush the last in-memory layer.
client.timeline_checkpoint(
env.initial_tenant,
env.initial_timeline,
compact=False,
wait_until_flushed=False,
)
wait_for_upload(client, env.initial_tenant, env.initial_timeline, end_lsn, timeout=600)
# Empty out upload queue for next benchmark.
wait_for_upload_queue_empty(client, env.initial_tenant, env.initial_timeline)
backpressure_time = endpoint.safe_psql("select backpressure_throttling_time()")[0][0]
# Now that all data is ingested, delete and recreate the tenant in the pageserver. This will
# reingest all the WAL directly from the safekeeper. This gives us a baseline of how fast the
# pageserver can ingest this WAL in isolation.
status = env.storage_controller.inspect(tenant_shard_id=env.initial_tenant)
assert status is not None
endpoint.stop() # avoid spurious getpage errors
client.tenant_delete(env.initial_tenant)
env.pageserver.tenant_create(tenant_id=env.initial_tenant, generation=status[0])
with zenbenchmark.record_duration("recover"):
log.info("Recovering WAL into pageserver")
client.timeline_create(env.pg_version, env.initial_tenant, env.initial_timeline)
wait_for_last_record_lsn(client, env.initial_tenant, env.initial_timeline, end_lsn)
# Emit metrics.
wal_written_mb = round((end_lsn - start_lsn) / (1024 * 1024))
zenbenchmark.record("wal_written", wal_written_mb, "MB", MetricReport.TEST_PARAM)
zenbenchmark.record("row_count", rows, "rows", MetricReport.TEST_PARAM)
zenbenchmark.record("concurrency", CONCURRENCY, "clients", MetricReport.TEST_PARAM)
zenbenchmark.record(
"backpressure_time", backpressure_time // 1000, "ms", MetricReport.LOWER_IS_BETTER
)
props = {p["name"]: p["value"] for _, p in request.node.user_properties}
for name in ("ingest", "upload", "recover"):
throughput = int(wal_written_mb / props[name])
zenbenchmark.record(f"{name}_throughput", throughput, "MB/s", MetricReport.HIGHER_IS_BETTER)
# Pageserver shutdown will likely get stuck on the upload queue, just shut it down immediately.
env.stop(immediate=True)