Files
neon/pageserver/src/disk_usage_eviction_task.rs
John Spray 85cd97af61 pageserver: add InProgress tenant map state, use a sync lock for the map (#5367)
## Problem

Follows on from #5299 
- We didn't have a generic way to protect a tenant undergoing changes:
`Tenant` had states, but for our arbitrary transitions between
secondary/attached, we need a general way to say "reserve this tenant
ID, and don't allow any other ops on it, but don't try and report it as
being in any particular state".
- The TenantsMap structure was behind an async RwLock, but it was never
correct to hold it across await points: that would block any other
changes for all tenants.


## Summary of changes

- Add the `TenantSlot::InProgress` value.  This means:
  - Incoming administrative operations on the tenant should retry later
- Anything trying to read the live state of the tenant (e.g. a page
service reader) should retry later or block.
- Store TenantsMap in `std::sync::RwLock`
- Provide an extended `get_active_tenant_with_timeout` for page_service
to use, which will wait on InProgress slots as well as non-active
tenants.

Closes: https://github.com/neondatabase/neon/issues/5378

---------

Co-authored-by: Christian Schwarz <christian@neon.tech>
2023-11-06 14:03:22 +00:00

787 lines
28 KiB
Rust

//! This module implements the pageserver-global disk-usage-based layer eviction task.
//!
//! # Mechanics
//!
//! Function `launch_disk_usage_global_eviction_task` starts a pageserver-global background
//! loop that evicts layers in response to a shortage of available bytes
//! in the $repo/tenants directory's filesystem.
//!
//! The loop runs periodically at a configurable `period`.
//!
//! Each loop iteration uses `statvfs` to determine filesystem-level space usage.
//! It compares the returned usage data against two different types of thresholds.
//! The iteration tries to evict layers until app-internal accounting says we should be below the thresholds.
//! We cross-check this internal accounting with the real world by making another `statvfs` at the end of the iteration.
//! We're good if that second statvfs shows that we're _actually_ below the configured thresholds.
//! If we're still above one or more thresholds, we emit a warning log message, leaving it to the operator to investigate further.
//!
//! # Eviction Policy
//!
//! There are two thresholds:
//! `max_usage_pct` is the relative available space, expressed in percent of the total filesystem space.
//! If the actual usage is higher, the threshold is exceeded.
//! `min_avail_bytes` is the absolute available space in bytes.
//! If the actual usage is lower, the threshold is exceeded.
//! If either of these thresholds is exceeded, the system is considered to have "disk pressure", and eviction
//! is performed on the next iteration, to release disk space and bring the usage below the thresholds again.
//! The iteration evicts layers in LRU fashion, but, with a weak reservation per tenant.
//! The reservation is to keep the most recently accessed X bytes per tenant resident.
//! If we cannot relieve pressure by evicting layers outside of the reservation, we
//! start evicting layers that are part of the reservation, LRU first.
//!
//! The value for the per-tenant reservation is referred to as `tenant_min_resident_size`
//! throughout the code, but, no actual variable carries that name.
//! The per-tenant default value is the `max(tenant's layer file sizes, regardless of local or remote)`.
//! The idea is to allow at least one layer to be resident per tenant, to ensure it can make forward progress
//! during page reconstruction.
//! An alternative default for all tenants can be specified in the `tenant_config` section of the config.
//! Lastly, each tenant can have an override in their respective tenant config (`min_resident_size_override`).
// Implementation notes:
// - The `#[allow(dead_code)]` above various structs are to suppress warnings about only the Debug impl
// reading these fields. We use the Debug impl for semi-structured logging, though.
use std::{
collections::HashMap,
sync::Arc,
time::{Duration, SystemTime},
};
use anyhow::Context;
use camino::Utf8Path;
use remote_storage::GenericRemoteStorage;
use serde::{Deserialize, Serialize};
use tokio::time::Instant;
use tokio_util::sync::CancellationToken;
use tracing::{debug, error, info, instrument, warn, Instrument};
use utils::completion;
use utils::serde_percent::Percent;
use crate::{
config::PageServerConf,
task_mgr::{self, TaskKind, BACKGROUND_RUNTIME},
tenant::{
self,
storage_layer::{AsLayerDesc, EvictionError, Layer},
Timeline,
},
};
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct DiskUsageEvictionTaskConfig {
pub max_usage_pct: Percent,
pub min_avail_bytes: u64,
#[serde(with = "humantime_serde")]
pub period: Duration,
#[cfg(feature = "testing")]
pub mock_statvfs: Option<crate::statvfs::mock::Behavior>,
}
#[derive(Default)]
pub struct State {
/// Exclude http requests and background task from running at the same time.
mutex: tokio::sync::Mutex<()>,
}
pub fn launch_disk_usage_global_eviction_task(
conf: &'static PageServerConf,
storage: GenericRemoteStorage,
state: Arc<State>,
background_jobs_barrier: completion::Barrier,
) -> anyhow::Result<()> {
let Some(task_config) = &conf.disk_usage_based_eviction else {
info!("disk usage based eviction task not configured");
return Ok(());
};
info!("launching disk usage based eviction task");
task_mgr::spawn(
BACKGROUND_RUNTIME.handle(),
TaskKind::DiskUsageEviction,
None,
None,
"disk usage based eviction",
false,
async move {
let cancel = task_mgr::shutdown_token();
// wait until initial load is complete, because we cannot evict from loading tenants.
tokio::select! {
_ = cancel.cancelled() => { return Ok(()); },
_ = background_jobs_barrier.wait() => { }
};
disk_usage_eviction_task(&state, task_config, &storage, &conf.tenants_path(), cancel)
.await;
Ok(())
},
);
Ok(())
}
#[instrument(skip_all)]
async fn disk_usage_eviction_task(
state: &State,
task_config: &DiskUsageEvictionTaskConfig,
_storage: &GenericRemoteStorage,
tenants_dir: &Utf8Path,
cancel: CancellationToken,
) {
scopeguard::defer! {
info!("disk usage based eviction task finishing");
};
use crate::tenant::tasks::random_init_delay;
{
if random_init_delay(task_config.period, &cancel)
.await
.is_err()
{
return;
}
}
let mut iteration_no = 0;
loop {
iteration_no += 1;
let start = Instant::now();
async {
let res =
disk_usage_eviction_task_iteration(state, task_config, tenants_dir, &cancel).await;
match res {
Ok(()) => {}
Err(e) => {
// these stat failures are expected to be very rare
warn!("iteration failed, unexpected error: {e:#}");
}
}
}
.instrument(tracing::info_span!("iteration", iteration_no))
.await;
let sleep_until = start + task_config.period;
if tokio::time::timeout_at(sleep_until, cancel.cancelled())
.await
.is_ok()
{
break;
}
}
}
pub trait Usage: Clone + Copy + std::fmt::Debug {
fn has_pressure(&self) -> bool;
fn add_available_bytes(&mut self, bytes: u64);
}
async fn disk_usage_eviction_task_iteration(
state: &State,
task_config: &DiskUsageEvictionTaskConfig,
tenants_dir: &Utf8Path,
cancel: &CancellationToken,
) -> anyhow::Result<()> {
let usage_pre = filesystem_level_usage::get(tenants_dir, task_config)
.context("get filesystem-level disk usage before evictions")?;
let res = disk_usage_eviction_task_iteration_impl(state, usage_pre, cancel).await;
match res {
Ok(outcome) => {
debug!(?outcome, "disk_usage_eviction_iteration finished");
match outcome {
IterationOutcome::NoPressure | IterationOutcome::Cancelled => {
// nothing to do, select statement below will handle things
}
IterationOutcome::Finished(outcome) => {
// Verify with statvfs whether we made any real progress
let after = filesystem_level_usage::get(tenants_dir, task_config)
// It's quite unlikely to hit the error here. Keep the code simple and bail out.
.context("get filesystem-level disk usage after evictions")?;
debug!(?after, "disk usage");
if after.has_pressure() {
// Don't bother doing an out-of-order iteration here now.
// In practice, the task period is set to a value in the tens-of-seconds range,
// which will cause another iteration to happen soon enough.
// TODO: deltas between the three different usages would be helpful,
// consider MiB, GiB, TiB
warn!(?outcome, ?after, "disk usage still high");
} else {
info!(?outcome, ?after, "disk usage pressure relieved");
}
}
}
}
Err(e) => {
error!("disk_usage_eviction_iteration failed: {:#}", e);
}
}
Ok(())
}
#[derive(Debug, Serialize)]
#[allow(clippy::large_enum_variant)]
pub enum IterationOutcome<U> {
NoPressure,
Cancelled,
Finished(IterationOutcomeFinished<U>),
}
#[allow(dead_code)]
#[derive(Debug, Serialize)]
pub struct IterationOutcomeFinished<U> {
/// The actual usage observed before we started the iteration.
before: U,
/// The expected value for `after`, according to internal accounting, after phase 1.
planned: PlannedUsage<U>,
/// The outcome of phase 2, where we actually do the evictions.
///
/// If all layers that phase 1 planned to evict _can_ actually get evicted, this will
/// be the same as `planned`.
assumed: AssumedUsage<U>,
}
#[derive(Debug, Serialize)]
#[allow(dead_code)]
struct AssumedUsage<U> {
/// The expected value for `after`, after phase 2.
projected_after: U,
/// The layers we failed to evict during phase 2.
failed: LayerCount,
}
#[allow(dead_code)]
#[derive(Debug, Serialize)]
struct PlannedUsage<U> {
respecting_tenant_min_resident_size: U,
fallback_to_global_lru: Option<U>,
}
#[allow(dead_code)]
#[derive(Debug, Default, Serialize)]
struct LayerCount {
file_sizes: u64,
count: usize,
}
pub async fn disk_usage_eviction_task_iteration_impl<U: Usage>(
state: &State,
usage_pre: U,
cancel: &CancellationToken,
) -> anyhow::Result<IterationOutcome<U>> {
// use tokio's mutex to get a Sync guard (instead of std::sync::Mutex)
let _g = state
.mutex
.try_lock()
.map_err(|_| anyhow::anyhow!("iteration is already executing"))?;
debug!(?usage_pre, "disk usage");
if !usage_pre.has_pressure() {
return Ok(IterationOutcome::NoPressure);
}
warn!(
?usage_pre,
"running disk usage based eviction due to pressure"
);
let candidates = match collect_eviction_candidates(cancel).await? {
EvictionCandidates::Cancelled => {
return Ok(IterationOutcome::Cancelled);
}
EvictionCandidates::Finished(partitioned) => partitioned,
};
// Debug-log the list of candidates
let now = SystemTime::now();
for (i, (partition, candidate)) in candidates.iter().enumerate() {
let desc = candidate.layer.layer_desc();
debug!(
"cand {}/{}: size={}, no_access_for={}us, partition={:?}, {}/{}/{}",
i + 1,
candidates.len(),
desc.file_size,
now.duration_since(candidate.last_activity_ts)
.unwrap()
.as_micros(),
partition,
desc.tenant_id,
desc.timeline_id,
candidate.layer,
);
}
// phase1: select victims to relieve pressure
//
// Walk through the list of candidates, until we have accumulated enough layers to get
// us back under the pressure threshold. 'usage_planned' is updated so that it tracks
// how much disk space would be used after evicting all the layers up to the current
// point in the list. The layers are collected in 'batched', grouped per timeline.
//
// If we get far enough in the list that we start to evict layers that are below
// the tenant's min-resident-size threshold, print a warning, and memorize the disk
// usage at that point, in 'usage_planned_min_resident_size_respecting'.
let mut batched: HashMap<_, Vec<_>> = HashMap::new();
let mut warned = None;
let mut usage_planned = usage_pre;
let mut max_batch_size = 0;
for (i, (partition, candidate)) in candidates.into_iter().enumerate() {
if !usage_planned.has_pressure() {
debug!(
no_candidates_evicted = i,
"took enough candidates for pressure to be relieved"
);
break;
}
if partition == MinResidentSizePartition::Below && warned.is_none() {
warn!(?usage_pre, ?usage_planned, candidate_no=i, "tenant_min_resident_size-respecting LRU would not relieve pressure, evicting more following global LRU policy");
warned = Some(usage_planned);
}
usage_planned.add_available_bytes(candidate.layer.layer_desc().file_size);
// FIXME: batching makes no sense anymore because of no layermap locking, should just spawn
// tasks to evict all seen layers until we have evicted enough
let batch = batched.entry(TimelineKey(candidate.timeline)).or_default();
// semaphore will later be used to limit eviction concurrency, and we can express at
// most u32 number of permits. unlikely we would have u32::MAX layers to be evicted,
// but fail gracefully by not making batches larger.
if batch.len() < u32::MAX as usize {
batch.push(candidate.layer);
max_batch_size = max_batch_size.max(batch.len());
}
}
let usage_planned = match warned {
Some(respecting_tenant_min_resident_size) => PlannedUsage {
respecting_tenant_min_resident_size,
fallback_to_global_lru: Some(usage_planned),
},
None => PlannedUsage {
respecting_tenant_min_resident_size: usage_planned,
fallback_to_global_lru: None,
},
};
debug!(?usage_planned, "usage planned");
// phase2: evict victims batched by timeline
let mut js = tokio::task::JoinSet::new();
// ratelimit to 1k files or any higher max batch size
let limit = Arc::new(tokio::sync::Semaphore::new(1000.max(max_batch_size)));
for (timeline, batch) in batched {
let tenant_id = timeline.tenant_id;
let timeline_id = timeline.timeline_id;
let batch_size =
u32::try_from(batch.len()).expect("batch size limited to u32::MAX during partitioning");
// I dislike naming of `available_permits` but it means current total amount of permits
// because permits can be added
assert!(batch_size as usize <= limit.available_permits());
debug!(%timeline_id, "evicting batch for timeline");
let evict = {
let limit = limit.clone();
let cancel = cancel.clone();
async move {
let mut evicted_bytes = 0;
let mut evictions_failed = LayerCount::default();
let Ok(_permit) = limit.acquire_many_owned(batch_size).await else {
// semaphore closing means cancelled
return (evicted_bytes, evictions_failed);
};
let results = timeline.evict_layers(&batch).await;
match results {
Ok(results) => {
assert_eq!(results.len(), batch.len());
for (result, layer) in results.into_iter().zip(batch.iter()) {
let file_size = layer.layer_desc().file_size;
match result {
Some(Ok(())) => {
evicted_bytes += file_size;
}
Some(Err(EvictionError::NotFound | EvictionError::Downloaded)) => {
evictions_failed.file_sizes += file_size;
evictions_failed.count += 1;
}
None => {
assert!(cancel.is_cancelled());
}
}
}
}
Err(e) => {
warn!("failed to evict batch: {:#}", e);
}
}
(evicted_bytes, evictions_failed)
}
}
.instrument(tracing::info_span!("evict_batch", %tenant_id, %timeline_id, batch_size));
js.spawn(evict);
// spwaning multiple thousands of these is essentially blocking, so give already spawned a
// chance of making progress
tokio::task::yield_now().await;
}
let join_all = async move {
// After the evictions, `usage_assumed` is the post-eviction usage,
// according to internal accounting.
let mut usage_assumed = usage_pre;
let mut evictions_failed = LayerCount::default();
while let Some(res) = js.join_next().await {
match res {
Ok((evicted_bytes, failed)) => {
usage_assumed.add_available_bytes(evicted_bytes);
evictions_failed.file_sizes += failed.file_sizes;
evictions_failed.count += failed.count;
}
Err(je) if je.is_cancelled() => unreachable!("not used"),
Err(je) if je.is_panic() => { /* already logged */ }
Err(je) => tracing::error!("unknown JoinError: {je:?}"),
}
}
(usage_assumed, evictions_failed)
};
let (usage_assumed, evictions_failed) = tokio::select! {
tuple = join_all => { tuple },
_ = cancel.cancelled() => {
// close the semaphore to stop any pending acquires
limit.close();
return Ok(IterationOutcome::Cancelled);
}
};
Ok(IterationOutcome::Finished(IterationOutcomeFinished {
before: usage_pre,
planned: usage_planned,
assumed: AssumedUsage {
projected_after: usage_assumed,
failed: evictions_failed,
},
}))
}
#[derive(Clone)]
struct EvictionCandidate {
timeline: Arc<Timeline>,
layer: Layer,
last_activity_ts: SystemTime,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum MinResidentSizePartition {
Above,
Below,
}
enum EvictionCandidates {
Cancelled,
Finished(Vec<(MinResidentSizePartition, EvictionCandidate)>),
}
/// Gather the eviction candidates.
///
/// The returned `Ok(EvictionCandidates::Finished(candidates))` is sorted in eviction
/// order. A caller that evicts in that order, until pressure is relieved, implements
/// the eviction policy outlined in the module comment.
///
/// # Example
///
/// Imagine that there are two tenants, A and B, with five layers each, a-e.
/// Each layer has size 100, and both tenant's min_resident_size is 150.
/// The eviction order would be
///
/// ```text
/// partition last_activity_ts tenant/layer
/// Above 18:30 A/c
/// Above 19:00 A/b
/// Above 18:29 B/c
/// Above 19:05 B/b
/// Above 20:00 B/a
/// Above 20:03 A/a
/// Below 20:30 A/d
/// Below 20:40 B/d
/// Below 20:45 B/e
/// Below 20:58 A/e
/// ```
///
/// Now, if we need to evict 300 bytes to relieve pressure, we'd evict `A/c, A/b, B/c`.
/// They are all in the `Above` partition, so, we respected each tenant's min_resident_size.
///
/// But, if we need to evict 900 bytes to relieve pressure, we'd evict
/// `A/c, A/b, B/c, B/b, B/a, A/a, A/d, B/d, B/e`, reaching into the `Below` partition
/// after exhauting the `Above` partition.
/// So, we did not respect each tenant's min_resident_size.
async fn collect_eviction_candidates(
cancel: &CancellationToken,
) -> anyhow::Result<EvictionCandidates> {
// get a snapshot of the list of tenants
let tenants = tenant::mgr::list_tenants()
.await
.context("get list of tenants")?;
let mut candidates = Vec::new();
for (tenant_id, _state) in &tenants {
if cancel.is_cancelled() {
return Ok(EvictionCandidates::Cancelled);
}
let tenant = match tenant::mgr::get_tenant(*tenant_id, true) {
Ok(tenant) => tenant,
Err(e) => {
// this can happen if tenant has lifecycle transition after we fetched it
debug!("failed to get tenant: {e:#}");
continue;
}
};
if tenant.cancel.is_cancelled() {
info!(%tenant_id, "Skipping tenant for eviction, it is shutting down");
continue;
}
// collect layers from all timelines in this tenant
//
// If one of the timelines becomes `!is_active()` during the iteration,
// for example because we're shutting down, then `max_layer_size` can be too small.
// That's OK. This code only runs under a disk pressure situation, and being
// a little unfair to tenants during shutdown in such a situation is tolerable.
let mut tenant_candidates = Vec::new();
let mut max_layer_size = 0;
for tl in tenant.list_timelines() {
if !tl.is_active() {
continue;
}
let info = tl.get_local_layers_for_disk_usage_eviction().await;
debug!(tenant_id=%tl.tenant_id, timeline_id=%tl.timeline_id, "timeline resident layers count: {}", info.resident_layers.len());
tenant_candidates.extend(
info.resident_layers
.into_iter()
.map(|layer_infos| (tl.clone(), layer_infos)),
);
max_layer_size = max_layer_size.max(info.max_layer_size.unwrap_or(0));
if cancel.is_cancelled() {
return Ok(EvictionCandidates::Cancelled);
}
}
// `min_resident_size` defaults to maximum layer file size of the tenant.
// This ensures that each tenant can have at least one layer resident at a given time,
// ensuring forward progress for a single Timeline::get in that tenant.
// It's a questionable heuristic since, usually, there are many Timeline::get
// requests going on for a tenant, and, at least in Neon prod, the median
// layer file size is much smaller than the compaction target size.
// We could be better here, e.g., sum of all L0 layers + most recent L1 layer.
// That's what's typically used by the various background loops.
//
// The default can be overridden with a fixed value in the tenant conf.
// A default override can be put in the default tenant conf in the pageserver.toml.
let min_resident_size = if let Some(s) = tenant.get_min_resident_size_override() {
debug!(
tenant_id=%tenant.tenant_id(),
overridden_size=s,
"using overridden min resident size for tenant"
);
s
} else {
debug!(
tenant_id=%tenant.tenant_id(),
max_layer_size,
"using max layer size as min_resident_size for tenant",
);
max_layer_size
};
// Sort layers most-recently-used first, then partition by
// cumsum above/below min_resident_size.
tenant_candidates
.sort_unstable_by_key(|(_, layer_info)| std::cmp::Reverse(layer_info.last_activity_ts));
let mut cumsum: i128 = 0;
for (timeline, layer_info) in tenant_candidates.into_iter() {
let file_size = layer_info.file_size();
let candidate = EvictionCandidate {
timeline,
last_activity_ts: layer_info.last_activity_ts,
layer: layer_info.layer,
};
let partition = if cumsum > min_resident_size as i128 {
MinResidentSizePartition::Above
} else {
MinResidentSizePartition::Below
};
candidates.push((partition, candidate));
cumsum += i128::from(file_size);
}
}
debug_assert!(MinResidentSizePartition::Above < MinResidentSizePartition::Below,
"as explained in the function's doc comment, layers that aren't in the tenant's min_resident_size are evicted first");
candidates
.sort_unstable_by_key(|(partition, candidate)| (*partition, candidate.last_activity_ts));
Ok(EvictionCandidates::Finished(candidates))
}
struct TimelineKey(Arc<Timeline>);
impl PartialEq for TimelineKey {
fn eq(&self, other: &Self) -> bool {
Arc::ptr_eq(&self.0, &other.0)
}
}
impl Eq for TimelineKey {}
impl std::hash::Hash for TimelineKey {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
Arc::as_ptr(&self.0).hash(state);
}
}
impl std::ops::Deref for TimelineKey {
type Target = Timeline;
fn deref(&self) -> &Self::Target {
self.0.as_ref()
}
}
mod filesystem_level_usage {
use anyhow::Context;
use camino::Utf8Path;
use crate::statvfs::Statvfs;
use super::DiskUsageEvictionTaskConfig;
#[derive(Debug, Clone, Copy)]
#[allow(dead_code)]
pub struct Usage<'a> {
config: &'a DiskUsageEvictionTaskConfig,
/// Filesystem capacity
total_bytes: u64,
/// Free filesystem space
avail_bytes: u64,
}
impl super::Usage for Usage<'_> {
fn has_pressure(&self) -> bool {
let usage_pct =
(100.0 * (1.0 - ((self.avail_bytes as f64) / (self.total_bytes as f64)))) as u64;
let pressures = [
(
"min_avail_bytes",
self.avail_bytes < self.config.min_avail_bytes,
),
(
"max_usage_pct",
usage_pct >= self.config.max_usage_pct.get() as u64,
),
];
pressures.into_iter().any(|(_, has_pressure)| has_pressure)
}
fn add_available_bytes(&mut self, bytes: u64) {
self.avail_bytes += bytes;
}
}
pub fn get<'a>(
tenants_dir: &Utf8Path,
config: &'a DiskUsageEvictionTaskConfig,
) -> anyhow::Result<Usage<'a>> {
let mock_config = {
#[cfg(feature = "testing")]
{
config.mock_statvfs.as_ref()
}
#[cfg(not(feature = "testing"))]
{
None
}
};
let stat = Statvfs::get(tenants_dir, mock_config)
.context("statvfs failed, presumably directory got unlinked")?;
// https://unix.stackexchange.com/a/703650
let blocksize = if stat.fragment_size() > 0 {
stat.fragment_size()
} else {
stat.block_size()
};
// use blocks_available (b_avail) since, pageserver runs as unprivileged user
let avail_bytes = stat.blocks_available() * blocksize;
let total_bytes = stat.blocks() * blocksize;
Ok(Usage {
config,
total_bytes,
avail_bytes,
})
}
#[test]
fn max_usage_pct_pressure() {
use super::Usage as _;
use std::time::Duration;
use utils::serde_percent::Percent;
let mut usage = Usage {
config: &DiskUsageEvictionTaskConfig {
max_usage_pct: Percent::new(85).unwrap(),
min_avail_bytes: 0,
period: Duration::MAX,
#[cfg(feature = "testing")]
mock_statvfs: None,
},
total_bytes: 100_000,
avail_bytes: 0,
};
assert!(usage.has_pressure(), "expected pressure at 100%");
usage.add_available_bytes(14_000);
assert!(usage.has_pressure(), "expected pressure at 86%");
usage.add_available_bytes(999);
assert!(usage.has_pressure(), "expected pressure at 85.001%");
usage.add_available_bytes(1);
assert!(usage.has_pressure(), "expected pressure at precisely 85%");
usage.add_available_bytes(1);
assert!(!usage.has_pressure(), "no pressure at 84.999%");
usage.add_available_bytes(999);
assert!(!usage.has_pressure(), "no pressure at 84%");
usage.add_available_bytes(16_000);
assert!(!usage.has_pressure());
}
}