mirror of
https://github.com/neodyland/sbv2-api.git
synced 2026-01-06 14:32:57 +00:00
refactor
This commit is contained in:
106
crates/sbv2_wasm/src-js/index.ts
Normal file
106
crates/sbv2_wasm/src-js/index.ts
Normal file
@@ -0,0 +1,106 @@
|
||||
import * as wasm from "../pkg/sbv2_wasm.js";
|
||||
import { InferenceSession, Tensor } from "onnxruntime-web";
|
||||
|
||||
export class ModelHolder {
|
||||
private models: Map<string, [InferenceSession, wasm.StyleVectorWrap]> =
|
||||
new Map();
|
||||
constructor(
|
||||
private tok: wasm.TokenizerWrap,
|
||||
private deberta: InferenceSession,
|
||||
) {}
|
||||
public static async globalInit(buf: ArrayBufferLike) {
|
||||
await wasm.default(buf);
|
||||
}
|
||||
public static async create(tok: string, deberta: ArrayBufferLike) {
|
||||
return new ModelHolder(
|
||||
wasm.load_tokenizer(tok),
|
||||
await InferenceSession.create(deberta, {
|
||||
executionProviders: ["webnn", "webgpu", "wasm", "cpu"],
|
||||
graphOptimizationLevel: "all",
|
||||
}),
|
||||
);
|
||||
}
|
||||
public async synthesize(
|
||||
name: string,
|
||||
text: string,
|
||||
style_id: number = 0,
|
||||
style_weight: number = 1.0,
|
||||
sdp_ratio: number = 0.4,
|
||||
speed: number = 1.0,
|
||||
) {
|
||||
const mod = this.models.get(name);
|
||||
if (!mod) throw new Error(`No model named ${name}`);
|
||||
const [vits2, style] = mod;
|
||||
return wasm.synthesize(
|
||||
text,
|
||||
this.tok,
|
||||
async (a: BigInt64Array, b: BigInt64Array) => {
|
||||
try {
|
||||
const res = (
|
||||
await this.deberta.run({
|
||||
input_ids: new Tensor("int64", a, [1, a.length]),
|
||||
attention_mask: new Tensor("int64", b, [1, b.length]),
|
||||
})
|
||||
)["output"];
|
||||
return [new Uint32Array(res.dims), await res.getData(true)];
|
||||
} catch (e) {
|
||||
console.warn(e);
|
||||
throw e;
|
||||
}
|
||||
},
|
||||
async (
|
||||
[a_shape, a_array]: any,
|
||||
b_d: any,
|
||||
c_d: any,
|
||||
d_d: any,
|
||||
e_d: any,
|
||||
f: number,
|
||||
g: number,
|
||||
) => {
|
||||
try {
|
||||
const a = new Tensor("float32", a_array, [1, ...a_shape]);
|
||||
const b = new Tensor("int64", b_d, [1, b_d.length]);
|
||||
const c = new Tensor("int64", c_d, [1, c_d.length]);
|
||||
const d = new Tensor("int64", d_d, [1, d_d.length]);
|
||||
const e = new Tensor("float32", e_d, [1, e_d.length]);
|
||||
const res = (
|
||||
await vits2.run({
|
||||
x_tst: b,
|
||||
x_tst_lengths: new Tensor("int64", [b_d.length]),
|
||||
sid: new Tensor("int64", [0]),
|
||||
tones: c,
|
||||
language: d,
|
||||
bert: a,
|
||||
style_vec: e,
|
||||
sdp_ratio: new Tensor("float32", [f]),
|
||||
length_scale: new Tensor("float32", [g]),
|
||||
})
|
||||
).output;
|
||||
return [new Uint32Array(res.dims), await res.getData(true)];
|
||||
} catch (e) {
|
||||
console.warn(e);
|
||||
throw e;
|
||||
}
|
||||
},
|
||||
sdp_ratio,
|
||||
1.0 / speed,
|
||||
style_id,
|
||||
style_weight,
|
||||
style,
|
||||
);
|
||||
}
|
||||
public async load(name: string, b: Uint8Array) {
|
||||
const [style, vits2_b] = wasm.load_sbv2file(b);
|
||||
const vits2 = await InferenceSession.create(vits2_b as Uint8Array, {
|
||||
executionProviders: ["webnn", "webgpu", "wasm", "cpu"],
|
||||
graphOptimizationLevel: "all",
|
||||
});
|
||||
this.models.set(name, [vits2, style]);
|
||||
}
|
||||
public async unload(name: string) {
|
||||
return this.models.delete(name);
|
||||
}
|
||||
public modelList() {
|
||||
return this.models.keys();
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user