Merge branch 'main' of https://github.com/tuna2134/sbv2-api into python

This commit is contained in:
tuna2134
2024-09-11 05:33:46 +00:00
29 changed files with 626 additions and 24610 deletions

6
.dockerignore Normal file
View File

@@ -0,0 +1,6 @@
target/
models/
docker/
.env*
renovate.json
*.py

6
.env.sample Normal file
View File

@@ -0,0 +1,6 @@
BERT_MODEL_PATH=models/deberta.onnx
MODEL_PATH=models/model_tsukuyomi.onnx
MODELS_PATH=models
STYLE_VECTORS_PATH=models/style_vectors.json
TOKENIZER_PATH=models/tokenizer.json
ADDR=localhost:3000

36
.github/workflows/build.yml vendored Normal file
View File

@@ -0,0 +1,36 @@
name: Push to github container register
on:
release:
types: [created]
workflow_dispatch:
jobs:
push-docker:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
strategy:
matrix:
tag: [cpu, cuda]
steps:
- uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to GitHub Container Registry
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push image
uses: docker/build-push-action@v6
with:
context: .
push: true
tags: |
ghcr.io/${{ github.repository }}:${{ matrix.tag }}
file: docker/${{ matrix.tag }}.Dockerfile

3
.gitignore vendored
View File

@@ -1,5 +1,6 @@
target
models/*.onnx
models/*.json
venv
venv/
.env
output.wav

2360
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,11 @@
[workspace]
resolver = "2"
<<<<<<< HEAD
members = [ "sbv2_api","sbv2_core", "sbv2_bindings"]
=======
members = ["sbv2_api", "sbv2_core"]
>>>>>>> cfea5d735aeb7d0abad5b913a3dda3810d8e59f8
[workspace.dependencies]
anyhow = "1.0.86"
dotenvy = "0.15.7"

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2024 コマリン親衛隊
Copyright (c) 2024 tuna2134
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -1,24 +1,51 @@
# sbv2-api
このプロジェクトはStyle-Bert-ViTS2をONNX化したものをRustで実行するのを目的としています。つまり推論しか行いません。
このプロジェクトはStyle-Bert-ViTS2をONNX化したものをRustで実行するのを目的としています。
学習したいのであれば、Style-Bert-ViT2で調べてやってください
学習したい場合は、Style-Bert-ViTS2 学習方法 などで調べるとよいかもしれません
注意:JP-Extraしか対応していません。
JP-Extraしか対応していません。(基本的に対応する予定もありません)
## ONNX化する方法
dabertaとstbv2本体をonnx化する必要があります。
あくまで推奨ですが、onnxsimを使うことをお勧めします。
onnxsim使うことでモデルのサイズを軽くすることができます。
## onnxモデルの配置方法
- `models/daberta.onnx` - DaBertaのonnxモデル
- `models/sbv2.onnx` - `Style-Bert-ViT2`の本体
```sh
cd convert
# (何かしらの方法でvenv作成(推奨))
pip install -r requirements.txt
python convert_deberta.py
python convert_model.py --style_file ../../style-bert-vits2/model_assets/something/style_vectors.npy --config_file ../../style-bert-vits2/model_assets/something/config.json --model_file ../../style-bert-vits2/model_assets/something/something_eXXX_sXXXX.safetensors
```
## Todo
- [x] WebAPIの実装
- [x] Rustライブラリの実装
- [ ] 余裕があればPyO3使ってPythonで利用可能にする
- [x] GPU対応(優先的にCUDA)
- [ ] WASM変換(ortがサポートやめたので、中止)
## 構造説明
- `sbv2_api` - 推論用 REST API
- `sbv2_core` - 推論コア部分
- `docker` - dockerビルドスクリプト
## APIの起動方法
```sh
cargo run -p sbv2_api -r
```
### CUDAでの起動
```sh
cargo run -p sbv2_api -r -F cuda,cuda_tf32
```
### Dynamic Linkサポート
```sh
ORT_DYLIB_PATH=./libonnxruntime.dll cargo run -p sbv2_api -r -F dynamic
```
### テストコマンド
```sh
curl -XPOST -H "Content-type: application/json" -d '{"text": "こんにちは","ident": "something"}' 'http://localhost:3000/synthesize'
curl http://localhost:3000/models
```
## 謝辞
- [litagin02/Style-Bert-VITS2](https://github.com/litagin02/Style-Bert-VITS2) - このコードの書くにあたり、ベースとなる部分を参考にさせていただきました。

View File

@@ -0,0 +1,50 @@
from transformers.convert_slow_tokenizer import BertConverter
from style_bert_vits2.nlp import bert_models
from style_bert_vits2.constants import Languages
from transformers import AutoModelForMaskedLM, AutoTokenizer
import torch
from torch import nn
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--model", default="ku-nlp/deberta-v2-large-japanese-char-wwm")
args = parser.parse_args()
model_name = args.model
bert_models.load_tokenizer(Languages.JP, model_name)
tokenizer = bert_models.load_tokenizer(Languages.JP)
converter = BertConverter(tokenizer)
tokenizer = converter.converted()
tokenizer.save("../models/tokenizer.json")
class ORTDeberta(nn.Module):
def __init__(self, model_name):
super(ORTDeberta, self).__init__()
self.model = AutoModelForMaskedLM.from_pretrained(model_name)
def forward(self, input_ids, token_type_ids, attention_mask):
inputs = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
res = self.model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
return res
model = ORTDeberta(model_name)
inputs = AutoTokenizer.from_pretrained(model_name)(
"今日はいい天気ですね", return_tensors="pt"
)
torch.onnx.export(
model,
(inputs["input_ids"], inputs["token_type_ids"], inputs["attention_mask"]),
"../models/deberta.onnx",
input_names=["input_ids", "token_type_ids", "attention_mask"],
output_names=["output"],
verbose=True,
dynamic_axes={"input_ids": {1: "batch_size"}, "attention_mask": {1: "batch_size"}},
)

143
convert/convert_model.py Normal file
View File

@@ -0,0 +1,143 @@
import numpy as np
import json
from style_bert_vits2.nlp import bert_models
from style_bert_vits2.constants import Languages
from style_bert_vits2.models.infer import get_net_g, get_text
from style_bert_vits2.models.hyper_parameters import HyperParameters
import torch
from style_bert_vits2.constants import (
DEFAULT_ASSIST_TEXT_WEIGHT,
DEFAULT_STYLE,
DEFAULT_STYLE_WEIGHT,
Languages,
)
from style_bert_vits2.tts_model import TTSModel
import numpy as np
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--style_file", required=True)
parser.add_argument("--config_file", required=True)
parser.add_argument("--model_file", required=True)
args = parser.parse_args()
style_file = args.style_file
config_file = args.config_file
model_file = args.model_file
bert_models.load_model(Languages.JP, "ku-nlp/deberta-v2-large-japanese-char-wwm")
bert_models.load_tokenizer(Languages.JP, "ku-nlp/deberta-v2-large-japanese-char-wwm")
array = np.load(style_file)
data = array.tolist()
hyper_parameters = HyperParameters.load_from_json(config_file)
out_name = hyper_parameters.model_name
with open(f"../models/style_vectors_{out_name}.json", "w") as f:
json.dump(
{
"data": data,
"shape": array.shape,
},
f,
)
text = "今日はいい天気ですね。"
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
Languages.JP,
hyper_parameters,
"cpu",
assist_text=None,
assist_text_weight=DEFAULT_ASSIST_TEXT_WEIGHT,
given_phone=None,
given_tone=None,
)
tts_model = TTSModel(
model_path=model_file,
config_path=config_file,
style_vec_path=style_file,
device="cpu",
)
device = "cpu"
style_id = tts_model.style2id[DEFAULT_STYLE]
def get_style_vector(style_id, weight):
style_vectors = np.load(style_file)
mean = style_vectors[0]
style_vec = style_vectors[style_id]
style_vec = mean + (style_vec - mean) * weight
return style_vec
style_vector = get_style_vector(style_id, DEFAULT_STYLE_WEIGHT)
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
style_vec_tensor = torch.from_numpy(style_vector).to(device).unsqueeze(0)
model = get_net_g(
model_file,
hyper_parameters.version,
device,
hyper_parameters,
)
def forward(x, x_len, sid, tone, lang, bert, style, length_scale, sdp_ratio):
return model.infer(
x,
x_len,
sid,
tone,
lang,
bert,
style,
sdp_ratio=sdp_ratio,
length_scale=length_scale,
)
model.forward = forward
torch.onnx.export(
model,
(
x_tst,
x_tst_lengths,
torch.LongTensor([0]).to(device),
tones,
lang_ids,
bert,
style_vec_tensor,
torch.tensor(1.0),
torch.tensor(0.0),
),
f"../models/model_{out_name}.onnx",
verbose=True,
dynamic_axes={
"x_tst": {1: "batch_size"},
"x_tst_lengths": {0: "batch_size"},
"tones": {1: "batch_size"},
"language": {1: "batch_size"},
"bert": {2: "batch_size"},
},
input_names=[
"x_tst",
"x_tst_lengths",
"sid",
"tones",
"language",
"bert",
"style_vec",
"length_scale",
"sdp_ratio",
],
output_names=["output"],
)

3
convert/requirements.txt Normal file
View File

@@ -0,0 +1,3 @@
style-bert-vits2
onnxsim
numpy<3

9
docker/cpu.Dockerfile Normal file
View File

@@ -0,0 +1,9 @@
FROM rust AS builder
WORKDIR /work
COPY . .
RUN cargo build -r --bin sbv2_api
FROM gcr.io/distroless/cc-debian12
WORKDIR /work
COPY --from=builder /work/target/release/sbv2_api /work/main
COPY --from=builder /work/target/release/*.so /work
CMD ["/work/main"]

10
docker/cuda.Dockerfile Normal file
View File

@@ -0,0 +1,10 @@
FROM rust AS builder
WORKDIR /work
COPY . .
RUN cargo build -r --bin sbv2_api -F cuda,cuda_tf32
FROM nvidia/cuda:12.6.1-cudnn-runtime-ubuntu24.04
WORKDIR /work
COPY --from=builder /work/target/release/sbv2_api /work/main
COPY --from=builder /work/target/release/*.so /work
CMD ["/work/main"]

1
docker/run.sh Normal file
View File

@@ -0,0 +1 @@
docker run -it --rm -p 3000:3000 --name sbv2 -v ./models:/work/models --env-file .env sbv2

Binary file not shown.

View File

@@ -6,7 +6,14 @@ edition = "2021"
[dependencies]
anyhow.workspace = true
axum = "0.7.5"
dotenvy = "0.15.7"
dotenvy.workspace = true
env_logger = "0.11.5"
log = "0.4.22"
sbv2_core = { version = "0.1.0", path = "../sbv2_core" }
serde = { version = "1.0.210", features = ["derive"] }
tokio = { version = "1.40.0", features = ["full"] }
[features]
cuda = ["sbv2_core/cuda"]
cuda_tf32 = ["sbv2_core/cuda_tf32"]
dynamic = ["sbv2_core/dynamic"]

View File

@@ -5,58 +5,130 @@ use axum::{
routing::{get, post},
Json, Router,
};
use sbv2_core::tts::TTSModel;
use sbv2_core::tts::TTSModelHolder;
use serde::Deserialize;
use std::env;
use std::sync::Arc;
use tokio::fs;
use tokio::sync::Mutex;
mod error;
use crate::error::AppResult;
async fn models(State(state): State<AppState>) -> AppResult<impl IntoResponse> {
Ok(Json(state.tts_model.lock().await.models()))
}
fn sdp_default() -> f32 {
0.0
}
fn length_default() -> f32 {
1.0
}
#[derive(Deserialize)]
struct SynthesizeRequest {
text: String,
ident: String,
#[serde(default = "sdp_default")]
sdp_ratio: f32,
#[serde(default = "length_default")]
length_scale: f32,
}
async fn synthesize(
State(state): State<Arc<AppState>>,
Json(SynthesizeRequest { text }): Json<SynthesizeRequest>,
State(state): State<AppState>,
Json(SynthesizeRequest {
text,
ident,
sdp_ratio,
length_scale,
}): Json<SynthesizeRequest>,
) -> AppResult<impl IntoResponse> {
log::debug!("processing request: text={text}, ident={ident}, sdp_ratio={sdp_ratio}, length_scale={length_scale}");
let buffer = {
let mut tts_model = state.tts_model.lock().await;
let tts_model = if let Some(tts_model) = &*tts_model {
tts_model
} else {
*tts_model = Some(TTSModel::new(
&env::var("BERT_MODEL_PATH")?,
&env::var("MAIN_MODEL_PATH")?,
&env::var("STYLE_VECTORS_PATH")?,
)?);
tts_model.as_ref().unwrap()
};
let tts_model = state.tts_model.lock().await;
let (bert_ori, phones, tones, lang_ids) = tts_model.parse_text(&text)?;
let style_vector = tts_model.get_style_vector(0, 1.0)?;
tts_model.synthesize(bert_ori.to_owned(), phones, tones, lang_ids, style_vector)?
let style_vector = tts_model.get_style_vector(&ident, 0, 1.0)?;
tts_model.synthesize(
ident,
bert_ori.to_owned(),
phones,
tones,
lang_ids,
style_vector,
sdp_ratio,
length_scale,
)?
};
Ok(([(CONTENT_TYPE, "audio/wav")], buffer))
}
#[derive(Clone)]
struct AppState {
tts_model: Arc<Mutex<Option<TTSModel>>>,
tts_model: Arc<Mutex<TTSModelHolder>>,
}
impl AppState {
pub async fn new() -> anyhow::Result<Self> {
let mut tts_model = TTSModelHolder::new(
&fs::read(env::var("BERT_MODEL_PATH")?).await?,
&fs::read(env::var("TOKENIZER_PATH")?).await?,
)?;
let models = env::var("MODELS_PATH").unwrap_or("models".to_string());
let mut f = fs::read_dir(&models).await?;
let mut entries = vec![];
while let Ok(Some(e)) = f.next_entry().await {
let name = e.file_name().to_string_lossy().to_string();
if name.ends_with(".onnx") && name.starts_with("model_") {
let name_len = name.len();
let name = name.chars();
entries.push(
name.collect::<Vec<_>>()[6..name_len - 5]
.iter()
.collect::<String>(),
);
}
}
for entry in entries {
log::info!("Try loading: {entry}");
let style_vectors_bytes =
match fs::read(format!("{models}/style_vectors_{entry}.json")).await {
Ok(b) => b,
Err(e) => {
log::warn!("Error loading style_vectors_bytes from file {entry}: {e}");
continue;
}
};
let vits2_bytes = match fs::read(format!("{models}/model_{entry}.onnx")).await {
Ok(b) => b,
Err(e) => {
log::warn!("Error loading vits2_bytes from file {entry}: {e}");
continue;
}
};
if let Err(e) = tts_model.load(&entry, style_vectors_bytes, vits2_bytes) {
log::warn!("Error loading {entry}: {e}");
};
}
Ok(Self {
tts_model: Arc::new(Mutex::new(tts_model)),
})
}
}
#[tokio::main]
async fn main() -> anyhow::Result<()> {
dotenvy::dotenv().ok();
env_logger::init();
let app = Router::new()
.route("/", get(|| async { "Hello, World!" }))
.route("/synthesize", post(synthesize))
.with_state(Arc::new(AppState {
tts_model: Arc::new(Mutex::new(None)),
}));
let listener = tokio::net::TcpListener::bind("0.0.0.0:3000").await?;
.route("/models", get(models))
.with_state(AppState::new().await?);
let addr = env::var("ADDR").unwrap_or("0.0.0.0:3000".to_string());
let listener = tokio::net::TcpListener::bind(&addr).await?;
log::info!("Listening on {addr}");
axum::serve(listener, app).await?;
Ok(())

View File

@@ -5,14 +5,20 @@ edition = "2021"
[dependencies]
anyhow.workspace = true
dotenvy.workspace = true
hound = "3.5.1"
jpreprocess = { version = "0.10.0", features = ["naist-jdic"] }
ndarray = "0.16.1"
num_cpus = "1.16.0"
once_cell = "1.19.0"
ort = { git = "https://github.com/pykeio/ort.git", version = "2.0.0-rc.5" }
ort = { git = "https://github.com/pykeio/ort.git", version = "2.0.0-rc.6" }
regex = "1.10.6"
serde = { version = "1.0.210", features = ["derive"] }
serde_json = "1.0.128"
thiserror = "1.0.63"
tokenizers = "0.20.0"
[features]
cuda = ["ort/cuda"]
cuda_tf32 = []
dynamic = ["ort/load-dynamic"]

View File

@@ -18,6 +18,8 @@ pub enum Error {
IoError(#[from] std::io::Error),
#[error("hound error: {0}")]
HoundError(#[from] hound::Error),
#[error("model not found error")]
ModelNotFoundError(String),
}
pub type Result<T> = std::result::Result<T, Error>;

View File

@@ -4,13 +4,13 @@ use crate::norm::{replace_punctuation, PUNCTUATIONS};
use jpreprocess::*;
use once_cell::sync::Lazy;
use regex::Regex;
use std::cmp::Reverse;
use std::collections::HashSet;
use std::sync::Arc;
use tokenizers::Tokenizer;
type JPreprocessType = JPreprocess<DefaultFetcher>;
fn get_jtalk() -> Result<JPreprocessType> {
fn initialize_jtalk() -> Result<JPreprocessType> {
let config = JPreprocessConfig {
dictionary: SystemDictionaryConfig::Bundled(kind::JPreprocessDictionaryKind::NaistJdic),
user_dictionary: None,
@@ -50,7 +50,7 @@ pub struct JTalk {
impl JTalk {
pub fn new() -> Result<Self> {
let jpreprocess = Arc::new(get_jtalk()?);
let jpreprocess = Arc::new(initialize_jtalk()?);
Ok(Self { jpreprocess })
}
@@ -64,7 +64,7 @@ impl JTalk {
static KATAKANA_PATTERN: Lazy<Regex> = Lazy::new(|| Regex::new(r"[\u30A0-\u30FF]+").unwrap());
static MORA_PATTERN: Lazy<Vec<String>> = Lazy::new(|| {
let mut sorted_keys: Vec<String> = MORA_KATA_TO_MORA_PHONEMES.keys().cloned().collect();
sorted_keys.sort_by(|a, b| b.len().cmp(&a.len()));
sorted_keys.sort_by_key(|b| Reverse(b.len()));
sorted_keys
});
static LONG_PATTERN: Lazy<Regex> = Lazy::new(|| Regex::new(r"(\w)(ー*)").unwrap());
@@ -128,8 +128,8 @@ impl JTalkProcess {
JTalkProcess::align_tones(phone_w_punct, phone_tone_list_wo_punct)?;
let mut sep_tokenized: Vec<Vec<String>> = Vec::new();
for i in 0..seq_text.len() {
let text = seq_text[i].clone();
for seq_text_item in &seq_text {
let text = seq_text_item.clone();
if !PUNCTUATIONS.contains(&text.as_str()) {
sep_tokenized.push(text.chars().map(|x| x.to_string()).collect());
} else {
@@ -390,22 +390,3 @@ impl JTalkProcess {
Ok(phones)
}
}
pub fn get_tokenizer() -> Result<Tokenizer> {
let tokenizer = Tokenizer::from_file("tokenizer.json")?;
Ok(tokenizer)
}
pub fn tokenize(text: &str, tokenizer: &Tokenizer) -> Result<(Vec<i64>, Vec<i64>)> {
let mut token_ids = vec![1];
let mut attention_masks = vec![1];
for content in text.chars() {
let token = tokenizer.encode(content.to_string(), false)?;
let ids = token.get_ids();
token_ids.extend(ids.iter().map(|&x| x as i64));
attention_masks.extend(token.get_attention_mask().iter().map(|&x| x as i64));
}
token_ids.push(2);
attention_masks.push(1);
Ok((token_ids, attention_masks))
}

View File

@@ -6,20 +6,6 @@ pub mod mora;
pub mod nlp;
pub mod norm;
pub mod style;
pub mod tokenizer;
pub mod tts;
pub mod utils;
pub fn add(left: usize, right: usize) -> usize {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

View File

@@ -1,20 +1,49 @@
use sbv2_core::{error, tts};
use std::{fs, time::Instant};
fn main() -> error::Result<()> {
use sbv2_core::tts;
use std::env;
fn main() -> anyhow::Result<()> {
dotenvy::dotenv().ok();
let text = "眠たい";
let tts_model = tts::TTSModel::new(
"models/debert.onnx",
"models/model_opt.onnx",
"models/style_vectors.json",
let ident = "aaa";
let mut tts_holder = tts::TTSModelHolder::new(
&fs::read(env::var("BERT_MODEL_PATH")?)?,
&fs::read(env::var("TOKENIZER_PATH")?)?,
)?;
tts_holder.load(
ident,
fs::read(env::var("STYLE_VECTORS_PATH")?)?,
fs::read(env::var("MODEL_PATH")?)?,
)?;
let (bert_ori, phones, tones, lang_ids) = tts_model.parse_text(text)?;
let style_vector = tts_model.get_style_vector(0, 1.0)?;
let data = tts_model.synthesize(bert_ori.to_owned(), phones, tones, lang_ids, style_vector)?;
let (bert_ori, phones, tones, lang_ids) = tts_holder.parse_text(text)?;
let style_vector = tts_holder.get_style_vector(ident, 0, 1.0)?;
let data = tts_holder.synthesize(
ident,
bert_ori.to_owned(),
phones.clone(),
tones.clone(),
lang_ids.clone(),
style_vector.clone(),
0.0,
0.5,
)?;
std::fs::write("output.wav", data)?;
let now = Instant::now();
for _ in 0..10 {
tts_holder.synthesize(
ident,
bert_ori.to_owned(),
phones.clone(),
tones.clone(),
lang_ids.clone(),
style_vector.clone(),
0.0,
1.0,
)?;
}
println!("Time taken: {}", now.elapsed().as_millis());
Ok(())
}

View File

@@ -4,17 +4,29 @@ use ndarray::{array, s, Array1, Array2, Axis};
use ort::{GraphOptimizationLevel, Session};
use std::io::Cursor;
pub fn load_model(model_file: &str) -> Result<Session> {
let session = Session::builder()?
#[allow(clippy::vec_init_then_push)]
pub fn load_model<P: AsRef<[u8]>>(model_file: P) -> Result<Session> {
let mut exp = Vec::new();
#[cfg(feature = "cuda")]
{
let mut cuda = ort::CUDAExecutionProvider::default()
.with_conv_algorithm_search(ort::CUDAExecutionProviderCuDNNConvAlgoSearch::Default);
#[cfg(feature = "cuda_tf32")]
{
cuda = cuda.with_tf32(true);
}
exp.push(cuda.build());
}
exp.push(ort::CPUExecutionProvider::default().build());
Ok(Session::builder()?
.with_execution_providers(exp)?
.with_optimization_level(GraphOptimizationLevel::Level3)?
.with_intra_threads(1)?
.with_intra_threads(num_cpus::get_physical())?
.with_parallel_execution(true)?
.with_inter_threads(num_cpus::get_physical())?
.commit_from_file(model_file)?;
Ok(session)
.commit_from_memory(model_file.as_ref())?)
}
#[allow(clippy::too_many_arguments)]
pub fn synthesize(
session: &Session,
bert_ori: Array2<f32>,
@@ -22,6 +34,8 @@ pub fn synthesize(
tones: Array1<i64>,
lang_ids: Array1<i64>,
style_vector: Array1<f32>,
sdp_ratio: f32,
length_scale: f32,
) -> Result<Vec<u8>> {
let bert = bert_ori.insert_axis(Axis(0));
let x_tst_lengths: Array1<i64> = array![x_tst.shape()[0] as i64];
@@ -36,7 +50,9 @@ pub fn synthesize(
"tones" => tones,
"language" => lang_ids,
"bert" => bert,
"ja_bert" => style_vector,
"style_vec" => style_vector,
"sdp_ratio" => array![sdp_ratio],
"length_scale" => array![length_scale],
}?)?;
let audio_array = outputs

View File

@@ -8,8 +8,8 @@ pub struct Data {
pub data: Vec<Vec<f32>>,
}
pub fn load_style(path: &str) -> Result<Array2<f32>> {
let data: Data = serde_json::from_str(&std::fs::read_to_string(path)?)?;
pub fn load_style<P: AsRef<[u8]>>(path: P) -> Result<Array2<f32>> {
let data: Data = serde_json::from_slice(path.as_ref())?;
Ok(Array2::from_shape_vec(
data.shape,
data.data.iter().flatten().copied().collect(),
@@ -17,7 +17,7 @@ pub fn load_style(path: &str) -> Result<Array2<f32>> {
}
pub fn get_style_vector(
style_vectors: Array2<f32>,
style_vectors: &Array2<f32>,
style_id: i32,
weight: f32,
) -> Result<Array1<f32>> {

View File

@@ -0,0 +1,21 @@
use crate::error::Result;
use tokenizers::Tokenizer;
pub fn get_tokenizer<P: AsRef<[u8]>>(p: P) -> Result<Tokenizer> {
let tokenizer = Tokenizer::from_bytes(p)?;
Ok(tokenizer)
}
pub fn tokenize(text: &str, tokenizer: &Tokenizer) -> Result<(Vec<i64>, Vec<i64>)> {
let mut token_ids = vec![1];
let mut attention_masks = vec![1];
for content in text.chars() {
let token = tokenizer.encode(content.to_string(), false)?;
let ids = token.get_ids();
token_ids.extend(ids.iter().map(|&x| x as i64));
attention_masks.extend(token.get_attention_mask().iter().map(|&x| x as i64));
}
token_ids.push(2);
attention_masks.push(1);
Ok((token_ids, attention_masks))
}

View File

@@ -1,33 +1,91 @@
use crate::error::Result;
use crate::{bert, jtalk, model, nlp, norm, style, utils};
use crate::error::{Error, Result};
use crate::{bert, jtalk, model, nlp, norm, style, tokenizer, utils};
use ndarray::{concatenate, s, Array, Array1, Array2, Axis};
use ort::Session;
use tokenizers::Tokenizer;
#[derive(PartialEq, Eq, Clone)]
pub struct TTSIdent(String);
impl std::fmt::Display for TTSIdent {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&self.0)?;
Ok(())
}
}
impl<S> From<S> for TTSIdent
where
S: AsRef<str>,
{
fn from(value: S) -> Self {
TTSIdent(value.as_ref().to_string())
}
}
pub struct TTSModel {
bert: Session,
vits2: Session,
style_vectors: Array2<f32>,
ident: TTSIdent,
}
pub struct TTSModelHolder {
tokenizer: Tokenizer,
bert: Session,
models: Vec<TTSModel>,
jtalk: jtalk::JTalk,
}
impl TTSModel {
pub fn new(
bert_model_path: &str,
main_model_path: &str,
style_vector_path: &str,
) -> Result<Self> {
let bert = model::load_model(bert_model_path)?;
let vits2 = model::load_model(main_model_path)?;
let style_vectors = style::load_style(style_vector_path)?;
impl TTSModelHolder {
pub fn new<P: AsRef<[u8]>>(bert_model_bytes: P, tokenizer_bytes: P) -> Result<Self> {
let bert = model::load_model(bert_model_bytes)?;
let jtalk = jtalk::JTalk::new()?;
Ok(TTSModel {
let tokenizer = tokenizer::get_tokenizer(tokenizer_bytes)?;
Ok(TTSModelHolder {
bert,
vits2,
style_vectors,
models: vec![],
jtalk,
tokenizer,
})
}
pub fn models(&self) -> Vec<String> {
self.models.iter().map(|m| m.ident.to_string()).collect()
}
pub fn load<I: Into<TTSIdent>, P: AsRef<[u8]>>(
&mut self,
ident: I,
style_vectors_bytes: P,
vits2_bytes: P,
) -> Result<()> {
let ident = ident.into();
if self.find_model(ident.clone()).is_err() {
self.models.push(TTSModel {
vits2: model::load_model(vits2_bytes)?,
style_vectors: style::load_style(style_vectors_bytes)?,
ident,
})
}
Ok(())
}
pub fn unload<I: Into<TTSIdent>>(&mut self, ident: I) -> bool {
let ident = ident.into();
if let Some((i, _)) = self
.models
.iter()
.enumerate()
.find(|(_, m)| m.ident == ident)
{
self.models.remove(i);
true
} else {
false
}
}
#[allow(clippy::type_complexity)]
pub fn parse_text(
&self,
text: &str,
@@ -40,13 +98,11 @@ impl TTSModel {
let phones = utils::intersperse(&phones, 0);
let tones = utils::intersperse(&tones, 0);
let lang_ids = utils::intersperse(&lang_ids, 0);
for i in 0..word2ph.len() {
word2ph[i] *= 2;
for item in &mut word2ph {
*item *= 2;
}
word2ph[0] += 1;
let tokenizer = jtalk::get_tokenizer()?;
let (token_ids, attention_masks) = jtalk::tokenize(&normalized_text, &tokenizer)?;
let (token_ids, attention_masks) = tokenizer::tokenize(&normalized_text, &self.tokenizer)?;
let bert_content = bert::predict(&self.bert, token_ids, attention_masks)?;
@@ -58,9 +114,9 @@ impl TTSModel {
);
let mut phone_level_feature = vec![];
for i in 0..word2ph.len() {
for (i, reps) in word2ph.iter().enumerate() {
let repeat_feature = {
let (reps_rows, reps_cols) = (word2ph[i], 1);
let (reps_rows, reps_cols) = (*reps, 1);
let arr_len = bert_content.slice(s![i, ..]).len();
let mut results: Array2<f32> =
@@ -92,25 +148,44 @@ impl TTSModel {
))
}
pub fn get_style_vector(&self, style_id: i32, weight: f32) -> Result<Array1<f32>> {
style::get_style_vector(self.style_vectors.clone(), style_id, weight)
fn find_model<I: Into<TTSIdent>>(&self, ident: I) -> Result<&TTSModel> {
let ident = ident.into();
self.models
.iter()
.find(|m| m.ident == ident)
.ok_or(Error::ModelNotFoundError(ident.to_string()))
}
pub fn synthesize(
pub fn get_style_vector<I: Into<TTSIdent>>(
&self,
ident: I,
style_id: i32,
weight: f32,
) -> Result<Array1<f32>> {
style::get_style_vector(&self.find_model(ident)?.style_vectors, style_id, weight)
}
#[allow(clippy::too_many_arguments)]
pub fn synthesize<I: Into<TTSIdent>>(
&self,
ident: I,
bert_ori: Array2<f32>,
phones: Array1<i64>,
tones: Array1<i64>,
lang_ids: Array1<i64>,
style_vector: Array1<f32>,
sdp_ratio: f32,
length_scale: f32,
) -> Result<Vec<u8>> {
let buffer = model::synthesize(
&self.vits2,
&self.find_model(ident)?.vits2,
bert_ori.to_owned(),
phones,
tones,
lang_ids,
style_vector,
sdp_ratio,
length_scale,
)?;
Ok(buffer)
}

10
test.py
View File

@@ -1,8 +1,8 @@
import requests
res = requests.post('http://localhost:3000/synthesize', json={
"text": "初めて神戸に移り住んだ時に地元の人に教わった「阪急はオシャレして乗らなあかん。阪神はスリッパで乗っていい。JRは早い。」、好きすぎていまだに東京の人に説明するとき使ってる。"
})
with open('output.wav', 'wb') as f:
res = requests.post(
"http://localhost:3001/synthesize",
json={"text": "おはようございます", "ident": "tsukuyomi"},
)
with open("output.wav", "wb") as f:
f.write(res.content)

File diff suppressed because it is too large Load Diff