Files
sbv2-api/crates/sbv2_core/src/tts.rs
kono-dada 3c8efc716c Fix: Load model in-place and safely evict sessions without removing entries
- Avoid removing and re-inserting model entries during load
- Preserve metadata (bytes, style_vectors) when evicting
- Ensure eviction targets a different loaded model, not always the first
- Reduce unnecessary memory allocations and keep list order stable
2025-08-11 16:31:57 +08:00

471 lines
15 KiB
Rust

use crate::error::{Error, Result};
use crate::{jtalk, model, style, tokenizer, tts_util};
#[cfg(feature = "aivmx")]
use base64::prelude::{Engine as _, BASE64_STANDARD};
#[cfg(feature = "aivmx")]
use ndarray::ShapeBuilder;
use ndarray::{concatenate, Array1, Array2, Array3, Axis};
use ort::session::Session;
#[cfg(feature = "aivmx")]
use std::io::Cursor;
use tokenizers::Tokenizer;
#[derive(PartialEq, Eq, Clone)]
pub struct TTSIdent(String);
impl std::fmt::Display for TTSIdent {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&self.0)?;
Ok(())
}
}
impl<S> From<S> for TTSIdent
where
S: AsRef<str>,
{
fn from(value: S) -> Self {
TTSIdent(value.as_ref().to_string())
}
}
pub struct TTSModel {
vits2: Option<Session>,
style_vectors: Array2<f32>,
ident: TTSIdent,
bytes: Option<Vec<u8>>,
}
/// High-level Style-Bert-VITS2's API
pub struct TTSModelHolder {
tokenizer: Tokenizer,
bert: Session,
models: Vec<TTSModel>,
pub jtalk: jtalk::JTalk,
max_loaded_models: Option<usize>,
}
impl TTSModelHolder {
/// Initialize a new TTSModelHolder
///
/// # Examples
///
/// ```rs
/// let mut tts_holder = TTSModelHolder::new(std::fs::read("deberta.onnx")?, std::fs::read("tokenizer.json")?, None)?;
/// ```
pub fn new<P: AsRef<[u8]>>(
bert_model_bytes: P,
tokenizer_bytes: P,
max_loaded_models: Option<usize>,
) -> Result<Self> {
let bert = model::load_model(bert_model_bytes, true)?;
let jtalk = jtalk::JTalk::new()?;
let tokenizer = tokenizer::get_tokenizer(tokenizer_bytes)?;
Ok(TTSModelHolder {
bert,
models: vec![],
jtalk,
tokenizer,
max_loaded_models,
})
}
/// Return a list of model names
pub fn models(&self) -> Vec<String> {
self.models.iter().map(|m| m.ident.to_string()).collect()
}
#[cfg(feature = "aivmx")]
pub fn load_aivmx<I: Into<TTSIdent>, P: AsRef<[u8]>>(
&mut self,
ident: I,
aivmx_bytes: P,
) -> Result<()> {
let ident = ident.into();
if self.find_model(ident.clone()).is_err() {
let mut load = true;
if let Some(max) = self.max_loaded_models {
if self.models.iter().filter(|x| x.vits2.is_some()).count() >= max {
load = false;
}
}
let model = model::load_model(&aivmx_bytes, false)?;
let metadata = model.metadata()?;
if let Some(aivm_style_vectors) = metadata.custom("aivm_style_vectors")? {
let aivm_style_vectors = BASE64_STANDARD.decode(aivm_style_vectors)?;
let style_vectors = Cursor::new(&aivm_style_vectors);
let reader = npyz::NpyFile::new(style_vectors)?;
let style_vectors = {
let shape = reader.shape().to_vec();
let order = reader.order();
let data = reader.into_vec::<f32>()?;
let shape = match shape[..] {
[i1, i2] => [i1 as usize, i2 as usize],
_ => panic!("expected 2D array"),
};
let true_shape = shape.set_f(order == npyz::Order::Fortran);
ndarray::Array2::from_shape_vec(true_shape, data)?
};
drop(metadata);
self.models.push(TTSModel {
vits2: if load { Some(model) } else { None },
bytes: if self.max_loaded_models.is_some() {
Some(aivmx_bytes.as_ref().to_vec())
} else {
None
},
ident,
style_vectors,
})
}
}
Ok(())
}
/// Load a .sbv2 file binary
///
/// # Examples
///
/// ```rs
/// tts_holder.load_sbv2file("tsukuyomi", std::fs::read("tsukuyomi.sbv2")?)?;
/// ```
pub fn load_sbv2file<I: Into<TTSIdent>, P: AsRef<[u8]>>(
&mut self,
ident: I,
sbv2_bytes: P,
) -> Result<()> {
let (style_vectors, vits2) = crate::sbv2file::parse_sbv2file(sbv2_bytes)?;
self.load(ident, style_vectors, vits2)?;
Ok(())
}
/// Load a style vector and onnx model binary
///
/// # Examples
///
/// ```rs
/// tts_holder.load("tsukuyomi", std::fs::read("style_vectors.json")?, std::fs::read("model.onnx")?)?;
/// ```
pub fn load<I: Into<TTSIdent>, P: AsRef<[u8]>>(
&mut self,
ident: I,
style_vectors_bytes: P,
vits2_bytes: P,
) -> Result<()> {
let ident = ident.into();
if self.find_model(ident.clone()).is_err() {
let mut load = true;
if let Some(max) = self.max_loaded_models {
if self.models.iter().filter(|x| x.vits2.is_some()).count() >= max {
load = false;
}
}
self.models.push(TTSModel {
vits2: if load {
Some(model::load_model(&vits2_bytes, false)?)
} else {
None
},
style_vectors: style::load_style(style_vectors_bytes)?,
ident,
bytes: if self.max_loaded_models.is_some() {
Some(vits2_bytes.as_ref().to_vec())
} else {
None
},
})
}
Ok(())
}
/// Unload a model
pub fn unload<I: Into<TTSIdent>>(&mut self, ident: I) -> bool {
let ident = ident.into();
if let Some((i, _)) = self
.models
.iter()
.enumerate()
.find(|(_, m)| m.ident == ident)
{
self.models.remove(i);
true
} else {
false
}
}
/// Parse text and return the input for synthesize
///
/// # Note
/// This function is for low-level usage, use `easy_synthesize` for high-level usage.
#[allow(clippy::type_complexity)]
pub fn parse_text(
&mut self,
text: &str,
) -> Result<(Array2<f32>, Array1<i64>, Array1<i64>, Array1<i64>)> {
crate::tts_util::parse_text_blocking(
text,
None,
&self.jtalk,
&self.tokenizer,
|token_ids, attention_masks| {
crate::bert::predict(&mut self.bert, token_ids, attention_masks)
},
)
}
#[allow(clippy::type_complexity)]
pub fn parse_text_neo(
&mut self,
text: String,
given_tones: Option<Vec<i32>>,
) -> Result<(Array2<f32>, Array1<i64>, Array1<i64>, Array1<i64>)> {
crate::tts_util::parse_text_blocking(
&text,
given_tones,
&self.jtalk,
&self.tokenizer,
|token_ids, attention_masks| {
crate::bert::predict(&mut self.bert, token_ids, attention_masks)
},
)
}
fn find_model<I: Into<TTSIdent>>(&mut self, ident: I) -> Result<&mut TTSModel> {
let ident = ident.into();
self.models
.iter_mut()
.find(|m| m.ident == ident)
.ok_or(Error::ModelNotFoundError(ident.to_string()))
}
fn find_and_load_model<I: Into<TTSIdent>>(&mut self, ident: I) -> Result<bool> {
let ident = ident.into();
// Locate target model entry
let target_index = self
.models
.iter()
.position(|m| m.ident == ident)
.ok_or(Error::ModelNotFoundError(ident.to_string()))?;
// Already loaded
if self.models[target_index].vits2.is_some() {
return Ok(true);
}
// Get bytes to build a Session
let bytes = self.models[target_index]
.bytes
.clone()
.ok_or(Error::ModelNotFoundError(ident.to_string()))?;
// Enforce max loaded models by evicting a different loaded model's session, not removing the entry
if let Some(max) = self.max_loaded_models {
let loaded_count = self.models.iter().filter(|m| m.vits2.is_some()).count();
if loaded_count >= max {
if let Some(evict_index) = self
.models
.iter()
.position(|m| m.vits2.is_some() && m.ident != ident)
{
// Drop only the session to free memory; keep bytes/style for future reload
self.models[evict_index].vits2 = None;
}
}
}
// Build and set session in-place for the target model
let s = model::load_model(&bytes, false)?;
self.models[target_index].vits2 = Some(s);
Ok(true)
}
/// Get style vector by style id and weight
///
/// # Note
/// This function is for low-level usage, use `easy_synthesize` for high-level usage.
pub fn get_style_vector<I: Into<TTSIdent>>(
&mut self,
ident: I,
style_id: i32,
weight: f32,
) -> Result<Array1<f32>> {
style::get_style_vector(&self.find_model(ident)?.style_vectors, style_id, weight)
}
/// Synthesize text to audio
///
/// # Examples
///
/// ```rs
/// let audio = tts_holder.easy_synthesize("tsukuyomi", "こんにちは", 0, SynthesizeOptions::default())?;
/// ```
pub fn easy_synthesize<I: Into<TTSIdent> + Copy>(
&mut self,
ident: I,
text: &str,
style_id: i32,
speaker_id: i64,
options: SynthesizeOptions,
) -> Result<Vec<u8>> {
self.find_and_load_model(ident)?;
let style_vector = self.get_style_vector(ident, style_id, options.style_weight)?;
let audio_array = if options.split_sentences {
let texts: Vec<&str> = text.split('\n').collect();
let mut audios = vec![];
for (i, t) in texts.iter().enumerate() {
if t.is_empty() {
continue;
}
let (bert_ori, phones, tones, lang_ids) = self.parse_text(t)?;
let vits2 = self
.find_model(ident)?
.vits2
.as_mut()
.ok_or(Error::ModelNotFoundError(ident.into().to_string()))?;
let audio = model::synthesize(
vits2,
bert_ori.to_owned(),
phones,
Array1::from_vec(vec![speaker_id]),
tones,
lang_ids,
style_vector.clone(),
options.sdp_ratio,
options.length_scale,
0.677,
0.8,
)?;
audios.push(audio.clone());
if i != texts.len() - 1 {
audios.push(Array3::zeros((1, 1, 22050)));
}
}
concatenate(
Axis(2),
&audios.iter().map(|x| x.view()).collect::<Vec<_>>(),
)?
} else {
let (bert_ori, phones, tones, lang_ids) = self.parse_text(text)?;
let vits2 = self
.find_model(ident)?
.vits2
.as_mut()
.ok_or(Error::ModelNotFoundError(ident.into().to_string()))?;
model::synthesize(
vits2,
bert_ori.to_owned(),
phones,
Array1::from_vec(vec![speaker_id]),
tones,
lang_ids,
style_vector,
options.sdp_ratio,
options.length_scale,
0.677,
0.8,
)?
};
tts_util::array_to_vec(audio_array)
}
pub fn easy_synthesize_neo<I: Into<TTSIdent> + Copy>(
&mut self,
ident: I,
text: &str,
given_tones: Option<Vec<i32>>,
style_id: i32,
speaker_id: i64,
options: SynthesizeOptions,
) -> Result<Vec<u8>> {
self.find_and_load_model(ident)?;
let style_vector = self.get_style_vector(ident, style_id, options.style_weight)?;
let audio_array = if options.split_sentences {
let texts: Vec<&str> = text.split('\n').collect();
let mut audios = vec![];
for (i, t) in texts.iter().enumerate() {
if t.is_empty() {
continue;
}
let (bert_ori, phones, tones, lang_ids) =
self.parse_text_neo(t.to_string(), given_tones.clone())?;
let vits2 = self
.find_model(ident)?
.vits2
.as_mut()
.ok_or(Error::ModelNotFoundError(ident.into().to_string()))?;
let audio = model::synthesize(
vits2,
bert_ori.to_owned(),
phones,
Array1::from_vec(vec![speaker_id]),
tones,
lang_ids,
style_vector.clone(),
options.sdp_ratio,
options.length_scale,
0.677,
0.8,
)?;
audios.push(audio.clone());
if i != texts.len() - 1 {
audios.push(Array3::zeros((1, 1, 22050)));
}
}
concatenate(
Axis(2),
&audios.iter().map(|x| x.view()).collect::<Vec<_>>(),
)?
} else {
let (bert_ori, phones, tones, lang_ids) = self.parse_text(text)?;
let vits2 = self
.find_model(ident)?
.vits2
.as_mut()
.ok_or(Error::ModelNotFoundError(ident.into().to_string()))?;
model::synthesize(
vits2,
bert_ori.to_owned(),
phones,
Array1::from_vec(vec![speaker_id]),
tones,
lang_ids,
style_vector,
options.sdp_ratio,
options.length_scale,
0.677,
0.8,
)?
};
tts_util::array_to_vec(audio_array)
}
}
/// Synthesize options
///
/// # Fields
/// - `sdp_ratio`: SDP ratio
/// - `length_scale`: Length scale
/// - `style_weight`: Style weight
/// - `split_sentences`: Split sentences
pub struct SynthesizeOptions {
pub sdp_ratio: f32,
pub length_scale: f32,
pub style_weight: f32,
pub split_sentences: bool,
}
impl Default for SynthesizeOptions {
fn default() -> Self {
SynthesizeOptions {
sdp_ratio: 0.0,
length_scale: 1.0,
style_weight: 1.0,
split_sentences: true,
}
}
}