Files
sbv2-api/sbv2_core/src/model.rs
2024-09-13 09:05:43 +00:00

90 lines
2.9 KiB
Rust

use crate::error::Result;
use ndarray::{array, Array1, Array2, Array3, Axis};
use ort::{GraphOptimizationLevel, Session};
#[allow(clippy::vec_init_then_push, unused_variables)]
pub fn load_model<P: AsRef<[u8]>>(model_file: P, bert: bool) -> Result<Session> {
let mut exp = Vec::new();
#[cfg(feature = "tensorrt")]
{
if bert {
exp.push(
ort::TensorRTExecutionProvider::default()
.with_fp16(true)
.with_profile_min_shapes("input_ids:1x1,attention_mask:1x1")
.with_profile_max_shapes("input_ids:1x100,attention_mask:1x100")
.with_profile_opt_shapes("input_ids:1x25,attention_mask:1x25")
.build(),
);
}
}
#[cfg(feature = "cuda")]
{
#[allow(unused_mut)]
let mut cuda = ort::CUDAExecutionProvider::default()
.with_conv_algorithm_search(ort::CUDAExecutionProviderCuDNNConvAlgoSearch::Default);
#[cfg(feature = "cuda_tf32")]
{
cuda = cuda.with_tf32(true);
}
exp.push(cuda.build());
}
#[cfg(feature = "directml")]
{
exp.push(ort::DirectMLExecutionProvider::default().build());
}
#[cfg(feature = "coreml")]
{
exp.push(ort::CoreMLExecutionProvider::default().build());
}
exp.push(ort::CPUExecutionProvider::default().build());
Ok(Session::builder()?
.with_execution_providers(exp)?
.with_optimization_level(GraphOptimizationLevel::Level3)?
.with_intra_threads(num_cpus::get_physical())?
.with_parallel_execution(true)?
.with_inter_threads(num_cpus::get_physical())?
.commit_from_memory(model_file.as_ref())?)
}
#[allow(clippy::too_many_arguments)]
pub fn synthesize(
session: &Session,
bert_ori: Array2<f32>,
x_tst: Array1<i64>,
tones: Array1<i64>,
lang_ids: Array1<i64>,
style_vector: Array1<f32>,
sdp_ratio: f32,
length_scale: f32,
) -> Result<Array3<f32>> {
let bert = bert_ori.insert_axis(Axis(0));
let x_tst_lengths: Array1<i64> = array![x_tst.shape()[0] as i64];
let x_tst = x_tst.insert_axis(Axis(0));
let lang_ids = lang_ids.insert_axis(Axis(0));
let tones = tones.insert_axis(Axis(0));
let style_vector = style_vector.insert_axis(Axis(0));
let outputs = session.run(ort::inputs! {
"x_tst" => x_tst,
"x_tst_lengths" => x_tst_lengths,
"sid" => array![0_i64],
"tones" => tones,
"language" => lang_ids,
"bert" => bert,
"style_vec" => style_vector,
"sdp_ratio" => array![sdp_ratio],
"length_scale" => array![length_scale],
}?)?;
let audio_array = outputs
.get("output")
.unwrap()
.try_extract_tensor::<f32>()?
.to_owned();
Ok(Array3::from_shape_vec(
(audio_array.shape()[0], audio_array.shape()[1], audio_array.shape()[2]),
audio_array.into_raw_vec_and_offset().0,
)?)
}