Extracting terms matching query in the document

This commit is contained in:
Paul Masurel
2018-08-30 09:23:34 +09:00
parent 18814ba0c1
commit a12d211330
6 changed files with 201 additions and 5 deletions

75
examples/snippet.rs Normal file
View File

@@ -0,0 +1,75 @@
// # Snippet example
//
// This example shows how to return a representative snippet of
// your hit result.
// Snippet are an extracted of a target document, and returned in HTML format.
// The keyword searched by the user are highlighted with a `<b>` tag.
extern crate tempdir;
// ---
// Importing tantivy...
#[macro_use]
extern crate tantivy;
use tantivy::collector::TopCollector;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// Let's create a temporary directory for the
// sake of this example
let index_path = TempDir::new("tantivy_example_dir")?;
// # Defining the schema
let mut schema_builder = SchemaBuilder::default();
schema_builder.add_text_field("body", TEXT);
let schema = schema_builder.build();
// # Indexing documents
let index = Index::create_in_dir(&index_path, schema.clone())?;
let mut index_writer = index.writer(50_000_000)?;
let title = schema.get_field("title").unwrap();
let body = schema.get_field("body").unwrap();
let mut old_man_doc = Document::default();
// we'll only need one doc for this example.
index_writer.add_document(doc!(
title => "Of Mice and Men",
body => "A few miles south of Soledad, the Salinas River drops in close to the hillside \
bank and runs deep and green. The water is warm too, for it has slipped twinkling \
over the yellow sands in the sunlight before reaching the narrow pool. On one \
side of the river the golden foothill slopes curve up to the strong and rocky \
Gabilan Mountains, but on the valley side the water is lined with trees—willows \
fresh and green with every spring, carrying in their lower leaf junctures the \
debris of the winters flooding; and sycamores with mottled, white, recumbent \
limbs and branches that arch over the pool"
));
// ...
index_writer.commit()?;
index.load_searchers()?;
let searcher = index.searcher();
let query_parser = QueryParser::for_index(&index, vec![title, body]);
let query = query_parser.parse_query("sycamore spring")?;
let mut top_collector = TopCollector::with_limit(10);
searcher.search(&*query, &mut top_collector)?;
let doc_addresses = top_collector.docs();
for doc_address in doc_addresses {
let retrieved_doc = searcher.doc(&doc_address)?;
generate_snippet(&retrieved_doc, query
}
Ok(())
}
use tempdir::TempDir;

View File

@@ -68,6 +68,17 @@ pub trait HasLen {
}
}
pub fn is_stricly_sorted<T: Ord>(els: &[T]) -> bool {
if els.is_empty() {
true
} else {
els.iter()
.zip(els[1..].iter())
.all(|(left, right)| left < right)
}
}
const HIGHEST_BIT: u64 = 1 << 63;
/// Maps a `i64` to `u64`
@@ -105,12 +116,20 @@ pub fn u64_to_i64(val: u64) -> i64 {
pub(crate) mod test {
pub use super::serialize::test::fixed_size_test;
use super::{compute_num_bits, i64_to_u64, u64_to_i64};
use super::{compute_num_bits, i64_to_u64, u64_to_i64, is_stricly_sorted};
fn test_i64_converter_helper(val: i64) {
assert_eq!(u64_to_i64(i64_to_u64(val)), val);
}
#[test]
fn test_is_strictly_sorted() {
assert!(is_stricly_sorted::<u32>(&[]));
assert!(is_stricly_sorted(&[1]));
assert!(is_stricly_sorted(&[1, 2, 3]));
assert!(!is_stricly_sorted(&[1, 3, 2]));
}
#[test]
fn test_i64_converter() {
assert_eq!(i64_to_u64(i64::min_value()), u64::min_value());

View File

@@ -7,6 +7,11 @@ use query::{Scorer, Weight};
use schema::{Field, IndexRecordOption};
use termdict::{TermDictionary, TermStreamer};
use Result;
use query::weight::MatchingTerms;
use SkipResult;
use Term;
use DocId;
use DocSet;
/// A weight struct for Fuzzy Term and Regex Queries
pub struct AutomatonWeight<A>
@@ -36,6 +41,48 @@ impl<A> Weight for AutomatonWeight<A>
where
A: Automaton,
{
fn matching_terms(&self,
reader: &SegmentReader,
matching_terms: &mut MatchingTerms) -> Result<()> {
let max_doc = reader.max_doc();
let mut doc_bitset = BitSet::with_max_value(max_doc);
let inverted_index = reader.inverted_index(self.field);
let term_dict = inverted_index.terms();
let mut term_stream = self.automaton_stream(term_dict);
let doc_ids = matching_terms.sorted_doc_ids();
let mut docs_matching_current_term: Vec<DocId> = vec![];
let mut term_buffer: Vec<u8> = vec![];
while term_stream.advance() {
docs_matching_current_term.clear();
let term_info = term_stream.value();
let mut segment_postings = inverted_index.read_postings_from_terminfo(term_info, IndexRecordOption::Basic);
for &doc_id in &doc_ids {
match segment_postings.skip_next(doc_id) {
SkipResult::Reached => {
docs_matching_current_term.push(doc_id);
}
SkipResult::OverStep => {}
SkipResult::End => {}
}
}
if !docs_matching_current_term.is_empty() {
term_buffer.clear();
let term_ord = term_stream.term_ord();
inverted_index.terms().ord_to_term(term_ord, &mut term_buffer);
let term = Term::from_field_bytes(self.field, &term_buffer[..]);
for &doc_id in &docs_matching_current_term {
matching_terms.add_term(doc_id, term.clone());
}
}
}
Ok(())
}
fn scorer(&self, reader: &SegmentReader) -> Result<Box<Scorer>> {
let max_doc = reader.max_doc();
let mut doc_bitset = BitSet::with_max_value(max_doc);

View File

@@ -8,6 +8,8 @@ use query::Weight;
use schema::IndexRecordOption;
use Result;
use Term;
use SkipResult;
use query::weight::MatchingTerms;
pub struct TermWeight {
term: Term,
@@ -38,6 +40,26 @@ impl Weight for TermWeight {
}
}
fn matching_terms(&self,
reader: &SegmentReader,
matching_terms: &mut MatchingTerms) -> Result<()> {
let doc_ids = matching_terms.sorted_doc_ids();
let mut scorer = self.scorer(reader)?;
for doc_id in doc_ids {
match scorer.skip_next(doc_id) {
SkipResult::Reached => {
matching_terms.add_term(doc_id, self.term.clone());
}
SkipResult::OverStep => {}
SkipResult::End => {
break;
}
}
}
Ok(())
}
fn count(&self, reader: &SegmentReader) -> Result<u32> {
if reader.num_deleted_docs() == 0 {
let field = self.term.field();

View File

@@ -1,6 +1,37 @@
use super::Scorer;
use core::SegmentReader;
use Result;
use DocId;
use std::collections::HashSet;
use Term;
use std::collections::BTreeMap;
pub struct MatchingTerms {
doc_to_terms: BTreeMap<DocId, HashSet<Term>>
}
impl MatchingTerms {
pub fn from_doc_ids(doc_ids: &[DocId]) -> MatchingTerms {
MatchingTerms {
doc_to_terms: doc_ids
.iter()
.cloned()
.map(|doc_id| (doc_id, HashSet::default()))
.collect()
}
}
pub fn sorted_doc_ids(&self) -> Vec<DocId> {
self.doc_to_terms.keys().cloned().collect()
}
pub fn add_term(&mut self, doc_id: DocId, term: Term) {
if let Some(terms) = self.doc_to_terms.get_mut(&doc_id) {
terms.insert(term);
}
}
}
/// A Weight is the specialization of a Query
/// for a given set of segments.
@@ -11,6 +42,10 @@ pub trait Weight {
/// See [`Query`](./trait.Query.html).
fn scorer(&self, reader: &SegmentReader) -> Result<Box<Scorer>>;
fn matching_terms(&self, reader: &SegmentReader, matching_terms: &mut MatchingTerms) -> Result<()> {
Ok(())
}
/// Returns the number documents within the given `SegmentReader`.
fn count(&self, reader: &SegmentReader) -> Result<u32> {
Ok(self.scorer(reader)?.count())

View File

@@ -1,10 +1,8 @@
use htmlescape::encode_minimal;
use htmlescape::encode_minimal;
use schema::FieldValue;
use schema::Value;
use std::collections::BTreeMap;
use tokenizer::BoxedTokenizer;
use tokenizer::{Token, TokenStream, Tokenizer};
use Document;
use tokenizer::{Token, TokenStream};
use Index;
use Term;