Files
tantivy/src/directory/managed_directory.rs
Paul Masurel 06e7bd18e7 Clippy (#421)
* Cargo Format

* Clippy

* bugfix

* still clippy stuff

* clippy step 2
2018-09-15 14:56:14 +09:00

336 lines
12 KiB
Rust

use core::MANAGED_FILEPATH;
use directory::error::{DeleteError, IOError, OpenReadError, OpenWriteError};
use directory::{ReadOnlySource, WritePtr};
use error::TantivyError;
use indexer::LockType;
use serde_json;
use std::collections::HashSet;
use std::io;
use std::io::Write;
use std::path::{Path, PathBuf};
use std::result;
use std::sync::RwLockWriteGuard;
use std::sync::{Arc, RwLock};
use Directory;
use Result;
/// Returns true iff the file is "managed".
/// Non-managed file are not subject to garbage collection.
///
/// Filenames that starts by a "." -typically locks-
/// are not managed.
fn is_managed(path: &Path) -> bool {
path.to_str()
.map(|p_str| !p_str.starts_with('.'))
.unwrap_or(true)
}
/// Wrapper of directories that keeps track of files created by Tantivy.
///
/// A managed directory is just a wrapper of a directory
/// that keeps a (persisted) list of the files that
/// have been created (and not deleted) by tantivy so far.
///
/// Thanks to this list, it implements a `garbage_collect` method
/// that removes the files that were created by tantivy and are not
/// useful anymore.
#[derive(Debug)]
pub struct ManagedDirectory {
directory: Box<Directory>,
meta_informations: Arc<RwLock<MetaInformation>>,
}
#[derive(Debug, Default)]
struct MetaInformation {
managed_paths: HashSet<PathBuf>,
}
/// Saves the file containing the list of existing files
/// that were created by tantivy.
fn save_managed_paths(
directory: &mut Directory,
wlock: &RwLockWriteGuard<MetaInformation>,
) -> io::Result<()> {
let mut w = serde_json::to_vec(&wlock.managed_paths)?;
writeln!(&mut w)?;
directory.atomic_write(&MANAGED_FILEPATH, &w[..])?;
Ok(())
}
impl ManagedDirectory {
/// Wraps a directory as managed directory.
pub fn new<Dir: Directory>(directory: Dir) -> Result<ManagedDirectory> {
match directory.atomic_read(&MANAGED_FILEPATH) {
Ok(data) => {
let managed_files_json = String::from_utf8_lossy(&data);
let managed_files: HashSet<PathBuf> = serde_json::from_str(&managed_files_json)
.map_err(|_| TantivyError::CorruptedFile(MANAGED_FILEPATH.clone()))?;
Ok(ManagedDirectory {
directory: Box::new(directory),
meta_informations: Arc::new(RwLock::new(MetaInformation {
managed_paths: managed_files,
})),
})
}
Err(OpenReadError::FileDoesNotExist(_)) => Ok(ManagedDirectory {
directory: Box::new(directory),
meta_informations: Arc::default(),
}),
Err(OpenReadError::IOError(e)) => Err(From::from(e)),
}
}
/// Garbage collect unused files.
///
/// Removes the files that were created by `tantivy` and are not
/// used by any segment anymore.
///
/// * `living_files` - List of files that are still used by the index.
///
/// This method does not panick nor returns errors.
/// If a file cannot be deleted (for permission reasons for instance)
/// an error is simply logged, and the file remains in the list of managed
/// files.
pub fn garbage_collect<L: FnOnce() -> HashSet<PathBuf>>(&mut self, get_living_files: L) {
info!("Garbage collect");
let mut files_to_delete = vec![];
// It is crucial to get the living files after acquiring the
// read lock of meta informations. That way, we
// avoid the following scenario.
//
// 1) we get the list of living files.
// 2) someone creates a new file.
// 3) we start garbage collection and remove this file
// even though it is a living file.
//
// releasing the lock as .delete() will use it too.
{
let meta_informations_rlock = self
.meta_informations
.read()
.expect("Managed directory rlock poisoned in garbage collect.");
// The point of this second "file" lock is to enforce the following scenario
// 1) process B tries to load a new set of searcher.
// The list of segments is loaded
// 2) writer change meta.json (for instance after a merge or a commit)
// 3) gc kicks in.
// 4) gc removes a file that was useful for process B, before process B opened it.
if let Ok(_meta_lock) = LockType::MetaLock.acquire_lock(self) {
let living_files = get_living_files();
for managed_path in &meta_informations_rlock.managed_paths {
if !living_files.contains(managed_path) {
files_to_delete.push(managed_path.clone());
}
}
}
}
let mut deleted_files = vec![];
{
for file_to_delete in files_to_delete {
match self.delete(&file_to_delete) {
Ok(_) => {
info!("Deleted {:?}", file_to_delete);
deleted_files.push(file_to_delete);
}
Err(file_error) => {
match file_error {
DeleteError::FileDoesNotExist(_) => {
deleted_files.push(file_to_delete);
}
DeleteError::IOError(_) => {
if !cfg!(target_os = "windows") {
// On windows, delete is expected to fail if the file
// is mmapped.
error!("Failed to delete {:?}", file_to_delete);
}
}
}
}
}
}
}
if !deleted_files.is_empty() {
// update the list of managed files by removing
// the file that were removed.
let mut meta_informations_wlock = self
.meta_informations
.write()
.expect("Managed directory wlock poisoned (2).");
{
let managed_paths_write = &mut meta_informations_wlock.managed_paths;
for delete_file in &deleted_files {
managed_paths_write.remove(delete_file);
}
}
if save_managed_paths(self.directory.as_mut(), &meta_informations_wlock).is_err() {
error!("Failed to save the list of managed files.");
}
}
}
/// Registers a file as managed
///
/// This method must be called before the file is
/// actually created to ensure that a failure between
/// registering the filepath and creating the file
/// will not lead to garbage files that will
/// never get removed.
///
/// File starting by "." are reserved to locks.
/// They are not managed and cannot be subjected
/// to garbage collection.
fn register_file_as_managed(&mut self, filepath: &Path) -> io::Result<()> {
// Files starting by "." (e.g. lock files) are not managed.
if !is_managed(filepath) {
return Ok(());
}
let mut meta_wlock = self
.meta_informations
.write()
.expect("Managed file lock poisoned");
let has_changed = meta_wlock.managed_paths.insert(filepath.to_owned());
if has_changed {
save_managed_paths(self.directory.as_mut(), &meta_wlock)?;
}
Ok(())
}
}
impl Directory for ManagedDirectory {
fn open_read(&self, path: &Path) -> result::Result<ReadOnlySource, OpenReadError> {
self.directory.open_read(path)
}
fn open_write(&mut self, path: &Path) -> result::Result<WritePtr, OpenWriteError> {
self.register_file_as_managed(path)
.map_err(|e| IOError::with_path(path.to_owned(), e))?;
self.directory.open_write(path)
}
fn atomic_write(&mut self, path: &Path, data: &[u8]) -> io::Result<()> {
self.register_file_as_managed(path)?;
self.directory.atomic_write(path, data)
}
fn atomic_read(&self, path: &Path) -> result::Result<Vec<u8>, OpenReadError> {
self.directory.atomic_read(path)
}
fn delete(&self, path: &Path) -> result::Result<(), DeleteError> {
self.directory.delete(path)
}
fn exists(&self, path: &Path) -> bool {
self.directory.exists(path)
}
}
impl Clone for ManagedDirectory {
fn clone(&self) -> ManagedDirectory {
ManagedDirectory {
directory: self.directory.box_clone(),
meta_informations: Arc::clone(&self.meta_informations),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "mmap")]
use directory::MmapDirectory;
use std::io::Write;
use std::path::Path;
use tempdir::TempDir;
lazy_static! {
static ref TEST_PATH1: &'static Path = Path::new("some_path_for_test");
static ref TEST_PATH2: &'static Path = Path::new("some_path_for_test2");
}
#[test]
#[cfg(feature = "mmap")]
fn test_managed_directory() {
let tempdir = TempDir::new("index").unwrap();
let tempdir_path = PathBuf::from(tempdir.path());
{
let mmap_directory = MmapDirectory::open(&tempdir_path).unwrap();
let mut managed_directory = ManagedDirectory::new(mmap_directory).unwrap();
{
let mut write_file = managed_directory.open_write(*TEST_PATH1).unwrap();
write_file.flush().unwrap();
}
{
managed_directory
.atomic_write(*TEST_PATH2, &vec![0u8, 1u8])
.unwrap();
}
{
assert!(managed_directory.exists(*TEST_PATH1));
assert!(managed_directory.exists(*TEST_PATH2));
}
{
let living_files: HashSet<PathBuf> =
[TEST_PATH1.to_owned()].into_iter().cloned().collect();
managed_directory.garbage_collect(|| living_files);
}
{
assert!(managed_directory.exists(*TEST_PATH1));
assert!(!managed_directory.exists(*TEST_PATH2));
}
}
{
let mmap_directory = MmapDirectory::open(&tempdir_path).unwrap();
let mut managed_directory = ManagedDirectory::new(mmap_directory).unwrap();
{
assert!(managed_directory.exists(*TEST_PATH1));
assert!(!managed_directory.exists(*TEST_PATH2));
}
{
let living_files: HashSet<PathBuf> = HashSet::new();
managed_directory.garbage_collect(|| living_files);
}
{
assert!(!managed_directory.exists(*TEST_PATH1));
assert!(!managed_directory.exists(*TEST_PATH2));
}
}
}
#[test]
#[cfg(feature = "mmap ")]
fn test_managed_directory_gc_while_mmapped() {
let tempdir = TempDir::new("index").unwrap();
let tempdir_path = PathBuf::from(tempdir.path());
let living_files = HashSet::new();
let mmap_directory = MmapDirectory::open(&tempdir_path).unwrap();
let mut managed_directory = ManagedDirectory::new(mmap_directory).unwrap();
managed_directory
.atomic_write(*TEST_PATH1, &vec![0u8, 1u8])
.unwrap();
assert!(managed_directory.exists(*TEST_PATH1));
let _mmap_read = managed_directory.open_read(*TEST_PATH1).unwrap();
managed_directory.garbage_collect(|| living_files.clone());
if cfg!(target_os = "windows") {
// On Windows, gc should try and fail the file as it is mmapped.
assert!(managed_directory.exists(*TEST_PATH1));
// unmap should happen here.
drop(_mmap_read);
// The file should still be in the list of managed file and
// eventually be deleted once mmap is released.
managed_directory.garbage_collect(|| living_files);
assert!(!managed_directory.exists(*TEST_PATH1));
} else {
assert!(!managed_directory.exists(*TEST_PATH1));
}
}
}