Files
tantivy/src/indexer/merge_operation.rs
2019-11-20 21:18:05 +09:00

75 lines
2.1 KiB
Rust

use crate::Opstamp;
use crate::SegmentId;
use census::{Inventory, TrackedObject};
use std::collections::HashSet;
use std::ops::Deref;
#[derive(Default)]
pub(crate) struct MergeOperationInventory(Inventory<InnerMergeOperation>);
impl Deref for MergeOperationInventory {
type Target = Inventory<InnerMergeOperation>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl MergeOperationInventory {
pub fn segment_in_merge(&self) -> HashSet<SegmentId> {
let mut segment_in_merge = HashSet::default();
for merge_op in self.list() {
for &segment_id in &merge_op.segment_ids {
segment_in_merge.insert(segment_id);
}
}
segment_in_merge
}
}
/// A `MergeOperation` has two roles.
/// It carries all of the information required to describe a merge:
/// - `target_opstamp` is the opstamp up to which we want to consume the
/// delete queue and reflect their deletes.
/// - `segment_ids` is the list of segment to be merged.
///
/// The second role is to ensure keep track of the fact that these
/// segments are in merge and avoid starting a merge operation that
/// may conflict with this one.
///
/// This works by tracking merge operations. When considering computing
/// merge candidates, we simply list tracked merge operations and remove
/// their segments from possible merge candidates.
pub struct MergeOperation {
inner: TrackedObject<InnerMergeOperation>,
}
pub(crate) struct InnerMergeOperation {
target_opstamp: Opstamp,
segment_ids: Vec<SegmentId>,
}
impl MergeOperation {
pub(crate) fn new(
inventory: &MergeOperationInventory,
target_opstamp: Opstamp,
segment_ids: Vec<SegmentId>,
) -> MergeOperation {
let inner_merge_operation = InnerMergeOperation {
target_opstamp,
segment_ids,
};
MergeOperation {
inner: inventory.track(inner_merge_operation),
}
}
pub fn target_opstamp(&self) -> Opstamp {
self.inner.target_opstamp
}
pub fn segment_ids(&self) -> &[SegmentId] {
&self.inner.segment_ids[..]
}
}