Files
tantivy/benches/agg_bench.rs
Moe 70e591e230 feat: added filter aggregation (#2711)
* Initial impl

* Added `Filter` impl in `build_single_agg_segment_collector_with_reader` + Added tests

* Added `Filter(FilterBucketResult)` + Made tests work.

* Fixed type issues.

* Fixed a test.

* 8a7a73a: Pass `segment_reader`

* Added more tests.

* Improved parsing + tests

* refactoring

* Added more tests.

* refactoring: moved parsing code under QueryParser

* Use Tantivy syntax instead of ES

* Added a sanity check test.

* Simplified impl + tests

* Added back tests in a more maintable way

* nitz.

* nitz

* implemented very simple fast-path

* improved a comment

* implemented fast field support

* Used `BoundsRange`

* Improved fast field impl + tests

* Simplified execution.

* Fixed exports + nitz

* Improved the tests to check to the expected result.

* Improved test by checking the whole result JSON

* Removed brittle perf checks.

* Added efficiency verification tests.

* Added one more efficiency check test.

* Improved the efficiency tests.

* Removed unnecessary parsing code + added direct Query obj

* Fixed tests.

* Improved tests

* Fixed code structure

* Fixed lint issues

* nitz.

* nitz

* nitz.

* nitz.

* nitz.

* Added an example

* Fixed PR comments.

* Applied PR comments + nitz

* nitz.

* Improved the code.

* Fixed a perf issue.

* Added batch processing.

* Made the example more interesting

* Fixed bucket count

* Renamed Direct to CustomQuery

* Fixed lint issues.

* No need for scorer to be an `Option`

* nitz

* Used BitSet

* Added an optimization for AllQuery

* Fixed merge issues.

* Fixed lint issues.

* Added benchmark for FILTER

* Removed the Option wrapper.

* nitz.

* Applied PR comments.

* Fixed the AllQuery optimization

* Applied PR comments.

* feat: used `erased_serde` to allow filter query to be serialized

* further improved a comment

* Added back tests.

* removed an unused method

* removed an unused method

* Added documentation

* nitz.

* Added query builder.

* Fixed a comment.

* Applied PR comments.

* Fixed doctest issues.

* Added ser/de

* Removed bench in test

* Fixed a lint issue.
2025-11-18 20:54:31 +01:00

539 lines
17 KiB
Rust

use binggan::plugins::PeakMemAllocPlugin;
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
use rand::prelude::SliceRandom;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use rand_distr::Distribution;
use serde_json::json;
use tantivy::aggregation::agg_req::Aggregations;
use tantivy::aggregation::AggregationCollector;
use tantivy::query::{AllQuery, TermQuery};
use tantivy::schema::{IndexRecordOption, Schema, TextFieldIndexing, FAST, STRING};
use tantivy::{doc, Index, Term};
#[global_allocator]
pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
/// Mini macro to register a function via its name
/// runner.register("average_u64", move |index| average_u64(index));
macro_rules! register {
($runner:expr, $func:ident) => {
$runner.register(stringify!($func), move |index| {
$func(index);
})
};
}
fn main() {
let inputs = vec![
("full", get_test_index_bench(Cardinality::Full).unwrap()),
(
"dense",
get_test_index_bench(Cardinality::OptionalDense).unwrap(),
),
(
"sparse",
get_test_index_bench(Cardinality::OptionalSparse).unwrap(),
),
(
"multivalue",
get_test_index_bench(Cardinality::Multivalued).unwrap(),
),
];
bench_agg(InputGroup::new_with_inputs(inputs));
}
fn bench_agg(mut group: InputGroup<Index>) {
group.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
register!(group, average_u64);
register!(group, average_f64);
register!(group, average_f64_u64);
register!(group, stats_f64);
register!(group, extendedstats_f64);
register!(group, percentiles_f64);
register!(group, terms_few);
register!(group, terms_many);
register!(group, terms_many_top_1000);
register!(group, terms_many_order_by_term);
register!(group, terms_many_with_top_hits);
register!(group, terms_many_with_avg_sub_agg);
register!(group, terms_many_json_mixed_type_with_avg_sub_agg);
register!(group, cardinality_agg);
register!(group, terms_few_with_cardinality_agg);
register!(group, range_agg);
register!(group, range_agg_with_avg_sub_agg);
register!(group, range_agg_with_term_agg_few);
register!(group, range_agg_with_term_agg_many);
register!(group, histogram);
register!(group, histogram_hard_bounds);
register!(group, histogram_with_avg_sub_agg);
register!(group, histogram_with_term_agg_few);
register!(group, avg_and_range_with_avg_sub_agg);
// Filter aggregation benchmarks
register!(group, filter_agg_all_query_count_agg);
register!(group, filter_agg_term_query_count_agg);
register!(group, filter_agg_all_query_with_sub_aggs);
register!(group, filter_agg_term_query_with_sub_aggs);
group.run();
}
fn exec_term_with_agg(index: &Index, agg_req: serde_json::Value) {
let agg_req: Aggregations = serde_json::from_value(agg_req).unwrap();
let reader = index.reader().unwrap();
let text_field = reader.searcher().schema().get_field("text").unwrap();
let term_query = TermQuery::new(
Term::from_field_text(text_field, "cool"),
IndexRecordOption::Basic,
);
let collector = get_collector(agg_req);
let searcher = reader.searcher();
black_box(searcher.search(&term_query, &collector).unwrap());
}
fn average_u64(index: &Index) {
let agg_req = json!({
"average": { "avg": { "field": "score", } }
});
exec_term_with_agg(index, agg_req)
}
fn average_f64(index: &Index) {
let agg_req = json!({
"average": { "avg": { "field": "score_f64", } }
});
exec_term_with_agg(index, agg_req)
}
fn average_f64_u64(index: &Index) {
let agg_req = json!({
"average_f64": { "avg": { "field": "score_f64" } },
"average": { "avg": { "field": "score" } },
});
exec_term_with_agg(index, agg_req)
}
fn stats_f64(index: &Index) {
let agg_req = json!({
"average_f64": { "stats": { "field": "score_f64", } }
});
exec_term_with_agg(index, agg_req)
}
fn extendedstats_f64(index: &Index) {
let agg_req = json!({
"extendedstats_f64": { "extended_stats": { "field": "score_f64", } }
});
exec_term_with_agg(index, agg_req)
}
fn percentiles_f64(index: &Index) {
let agg_req = json!({
"mypercentiles": {
"percentiles": {
"field": "score_f64",
"percents": [ 95, 99, 99.9 ]
}
}
});
execute_agg(index, agg_req);
}
fn cardinality_agg(index: &Index) {
let agg_req = json!({
"cardinality": {
"cardinality": {
"field": "text_many_terms"
},
}
});
execute_agg(index, agg_req);
}
fn terms_few_with_cardinality_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_few_terms" },
"aggs": {
"cardinality": {
"cardinality": {
"field": "text_many_terms"
},
}
}
},
});
execute_agg(index, agg_req);
}
fn terms_few(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_few_terms" } },
});
execute_agg(index, agg_req);
}
fn terms_many(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_many_terms" } },
});
execute_agg(index, agg_req);
}
fn terms_many_top_1000(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_many_terms", "size": 1000 } },
});
execute_agg(index, agg_req);
}
fn terms_many_order_by_term(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_many_terms", "order": { "_key": "desc" } } },
});
execute_agg(index, agg_req);
}
fn terms_many_with_top_hits(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_many_terms" },
"aggs": {
"top_hits": { "top_hits":
{
"sort": [
{ "score": "desc" }
],
"size": 2,
"doc_value_fields": ["score_f64"]
}
}
}
},
});
execute_agg(index, agg_req);
}
fn terms_many_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_many_terms" },
"aggs": {
"average_f64": { "avg": { "field": "score_f64" } }
}
},
});
execute_agg(index, agg_req);
}
fn terms_many_json_mixed_type_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "json.mixed_type" },
"aggs": {
"average_f64": { "avg": { "field": "score_f64" } }
}
},
});
execute_agg(index, agg_req);
}
fn execute_agg(index: &Index, agg_req: serde_json::Value) {
let agg_req: Aggregations = serde_json::from_value(agg_req).unwrap();
let collector = get_collector(agg_req);
let reader = index.reader().unwrap();
let searcher = reader.searcher();
black_box(searcher.search(&AllQuery, &collector).unwrap());
}
fn range_agg(index: &Index) {
let agg_req = json!({
"range_f64": { "range": { "field": "score_f64", "ranges": [
{ "from": 3, "to": 7000 },
{ "from": 7000, "to": 20000 },
{ "from": 20000, "to": 30000 },
{ "from": 30000, "to": 40000 },
{ "from": 40000, "to": 50000 },
{ "from": 50000, "to": 60000 }
] } },
});
execute_agg(index, agg_req);
}
fn range_agg_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"rangef64": {
"range": {
"field": "score_f64",
"ranges": [
{ "from": 3, "to": 7000 },
{ "from": 7000, "to": 20000 },
{ "from": 20000, "to": 30000 },
{ "from": 30000, "to": 40000 },
{ "from": 40000, "to": 50000 },
{ "from": 50000, "to": 60000 }
]
},
"aggs": {
"average_f64": { "avg": { "field": "score_f64" } }
}
},
});
execute_agg(index, agg_req);
}
fn range_agg_with_term_agg_few(index: &Index) {
let agg_req = json!({
"rangef64": {
"range": {
"field": "score_f64",
"ranges": [
{ "from": 3, "to": 7000 },
{ "from": 7000, "to": 20000 },
{ "from": 20000, "to": 30000 },
{ "from": 30000, "to": 40000 },
{ "from": 40000, "to": 50000 },
{ "from": 50000, "to": 60000 }
]
},
"aggs": {
"my_texts": { "terms": { "field": "text_few_terms" } },
}
},
});
execute_agg(index, agg_req);
}
fn range_agg_with_term_agg_many(index: &Index) {
let agg_req = json!({
"rangef64": {
"range": {
"field": "score_f64",
"ranges": [
{ "from": 3, "to": 7000 },
{ "from": 7000, "to": 20000 },
{ "from": 20000, "to": 30000 },
{ "from": 30000, "to": 40000 },
{ "from": 40000, "to": 50000 },
{ "from": 50000, "to": 60000 }
]
},
"aggs": {
"my_texts": { "terms": { "field": "text_many_terms" } },
}
},
});
execute_agg(index, agg_req);
}
fn histogram(index: &Index) {
let agg_req = json!({
"rangef64": {
"histogram": {
"field": "score_f64",
"interval": 100 // 1000 buckets
},
}
});
execute_agg(index, agg_req);
}
fn histogram_hard_bounds(index: &Index) {
let agg_req = json!({
"rangef64": { "histogram": { "field": "score_f64", "interval": 100, "hard_bounds": { "min": 1000, "max": 300000 } } },
});
execute_agg(index, agg_req);
}
fn histogram_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"rangef64": {
"histogram": { "field": "score_f64", "interval": 100 },
"aggs": {
"average_f64": { "avg": { "field": "score_f64" } }
}
}
});
execute_agg(index, agg_req);
}
fn histogram_with_term_agg_few(index: &Index) {
let agg_req = json!({
"rangef64": {
"histogram": { "field": "score_f64", "interval": 10 },
"aggs": {
"my_texts": { "terms": { "field": "text_few_terms" } }
}
}
});
execute_agg(index, agg_req);
}
fn avg_and_range_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"rangef64": {
"range": {
"field": "score_f64",
"ranges": [
{ "from": 3, "to": 7000 },
{ "from": 7000, "to": 20000 },
{ "from": 20000, "to": 60000 }
]
},
"aggs": {
"average_in_range": { "avg": { "field": "score" } }
}
},
"average": { "avg": { "field": "score" } }
});
execute_agg(index, agg_req);
}
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Cardinality {
/// All documents contain exactly one value.
/// `Full` is the default for auto-detecting the Cardinality, since it is the most strict.
#[default]
Full = 0,
/// All documents contain at most one value.
OptionalDense = 1,
/// All documents may contain any number of values.
Multivalued = 2,
/// 1 / 20 documents has a value
OptionalSparse = 3,
}
fn get_collector(agg_req: Aggregations) -> AggregationCollector {
AggregationCollector::from_aggs(agg_req, Default::default())
}
fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
let mut schema_builder = Schema::builder();
let text_fieldtype = tantivy::schema::TextOptions::default()
.set_indexing_options(
TextFieldIndexing::default().set_index_option(IndexRecordOption::WithFreqs),
)
.set_stored();
let text_field = schema_builder.add_text_field("text", text_fieldtype);
let json_field = schema_builder.add_json_field("json", FAST);
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
let text_field_few_terms = schema_builder.add_text_field("text_few_terms", STRING | FAST);
let score_fieldtype = tantivy::schema::NumericOptions::default().set_fast();
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
let index = Index::create_from_tempdir(schema_builder.build())?;
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
let many_terms_data = (0..150_000)
.map(|num| format!("author{num}"))
.collect::<Vec<_>>();
{
let mut rng = StdRng::from_seed([1u8; 32]);
let mut index_writer = index.writer_with_num_threads(1, 200_000_000)?;
// To make the different test cases comparable we just change one doc to force the
// cardinality
if cardinality == Cardinality::OptionalDense {
index_writer.add_document(doc!())?;
}
if cardinality == Cardinality::Multivalued {
index_writer.add_document(doc!(
json_field => json!({"mixed_type": 10.0}),
json_field => json!({"mixed_type": 10.0}),
text_field => "cool",
text_field => "cool",
text_field_many_terms => "cool",
text_field_many_terms => "cool",
text_field_few_terms => "cool",
text_field_few_terms => "cool",
score_field => 1u64,
score_field => 1u64,
score_field_f64 => lg_norm.sample(&mut rng),
score_field_f64 => lg_norm.sample(&mut rng),
score_field_i64 => 1i64,
score_field_i64 => 1i64,
))?;
}
let mut doc_with_value = 1_000_000;
if cardinality == Cardinality::OptionalSparse {
doc_with_value /= 20;
}
let _val_max = 1_000_000.0;
for _ in 0..doc_with_value {
let val: f64 = rng.gen_range(0.0..1_000_000.0);
let json = if rng.gen_bool(0.1) {
// 10% are numeric values
json!({ "mixed_type": val })
} else {
json!({"mixed_type": many_terms_data.choose(&mut rng).unwrap().to_string()})
};
index_writer.add_document(doc!(
text_field => "cool",
json_field => json,
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
text_field_few_terms => few_terms_data.choose(&mut rng).unwrap().to_string(),
score_field => val as u64,
score_field_f64 => lg_norm.sample(&mut rng),
score_field_i64 => val as i64,
))?;
if cardinality == Cardinality::OptionalSparse {
for _ in 0..20 {
index_writer.add_document(doc!(text_field => "cool"))?;
}
}
}
// writing the segment
index_writer.commit()?;
}
Ok(index)
}
// Filter aggregation benchmarks
fn filter_agg_all_query_count_agg(index: &Index) {
let agg_req = json!({
"filtered": {
"filter": "*",
"aggs": {
"count": { "value_count": { "field": "score" } }
}
}
});
execute_agg(index, agg_req);
}
fn filter_agg_term_query_count_agg(index: &Index) {
let agg_req = json!({
"filtered": {
"filter": "text:cool",
"aggs": {
"count": { "value_count": { "field": "score" } }
}
}
});
execute_agg(index, agg_req);
}
fn filter_agg_all_query_with_sub_aggs(index: &Index) {
let agg_req = json!({
"filtered": {
"filter": "*",
"aggs": {
"avg_score": { "avg": { "field": "score" } },
"stats_score": { "stats": { "field": "score_f64" } },
"terms_text": {
"terms": { "field": "text_few_terms" }
}
}
}
});
execute_agg(index, agg_req);
}
fn filter_agg_term_query_with_sub_aggs(index: &Index) {
let agg_req = json!({
"filtered": {
"filter": "text:cool",
"aggs": {
"avg_score": { "avg": { "field": "score" } },
"stats_score": { "stats": { "field": "score_f64" } },
"terms_text": {
"terms": { "field": "text_few_terms" }
}
}
}
});
execute_agg(index, agg_req);
}